北大西洋海表风速季节特征及长期变化趋势分析

北大西洋海表风速季节特征及长期变化趋势分析
北大西洋海表风速季节特征及长期变化趋势分析

北大西洋海表风速季节特征及长期变化趋势分析摘要:利用来自欧洲中期天气预报中心(ECMWF——European Centre for Medium-Range Weather Forecasts)的长时间序列、高精度的ERA-40海表10 m风场资料,对北大西洋海域海表风场的季节特征、长期变化趋势进行深入研究,研究发现:(1)北大西洋海域的海表风速等值线在各季均大致呈东西带状分布,且由高纬度向赤道表现出高—低—高—低的分布特征。MAM和SON期间海表风速的分布特征较为相似,大值中心分布于北半球西风带海域;DJF期间的海表风速为全年最大;JJA期间的海表风速为全年最小。加勒比海海域常年存在一风速的相对大值中心。从多年平均来看,风速存在一明显的、范围较广的大值区:西风带海域,加勒比海也存在一范围较小的大风区。(2)1958年至2001年期间,北大西洋海域的海表风速以0.0049 m·s-1·a-1的速度显著性逐年线性递增。(3)北大西洋海表风速的变化趋势表现出较大的区域性差异:呈显著性逐年线性递增的区域主要分布于30°N以下的低纬度海域,变化趋势在0.01~0.025 m·s-1·a-1左右,西班牙东北部近海的递增趋势最为强劲,达到0.035 m·s-1·a-1以上,墨西哥湾和加勒比海则呈显著性逐年线性递减,趋势为-0.015 m·s-1·a-1左右,其余海域的海表风速无显著变化趋势。(4)近44年期间,北大西洋海域的海表风速存在明显的突变现象,突变期为1972年前后。

关键词:北大西洋ERA-40风场季节特征长期变化趋势

Seasonal Characteristics of Sea Surface Wind Field and Its Long

风速风量计算方法

风量(Q):所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示: Q=60VA Q(风量)=m3/min V(风速)=m/sec A(截面积)=m2 压力常用换算公式 1Pa=0.102mmAq 1mbar=10.197mmAq 1mmHg=13.6mmAq 1psi=703mmAq 1Torr=133.3pa 1Torr=1.333mbar 常用单位换算表-风量 1m3/min(CMM)=1000 l/min = 35.31 ft3/min(CFM) 常用名词说明(1)标准状态:为20℃,绝对压力760mmHg,相对湿度 65%。此状态简称为STP,一般在此状态下1m3之空气重量为1.2kg。 (2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmaq来表示。 (3)基准状态:为0℃,绝对压力760mmHg,相对湿度0%。此状态简称为NTP,一般在此状态下1m3之空气重量为1.293kg。 压力(1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以kgf/m2或mmaq来表示,且可以直接经过量测取得。而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。 (2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmaq来表示. (3)全压(PT):所谓全压就是静压与动压之和,在使用上常以kgf/m2或mmaq来表示。在风机中全压值是属固定,并不会因风管缩管而产

全球及中国风速变化及对风能影响的新认知

Climate Change Research Letters 气候变化研究快报, 2016, 5(1), 41-47 Published Online January 2016 in Hans. https://www.360docs.net/doc/2b16576840.html,/journal/ccrl https://www.360docs.net/doc/2b16576840.html,/10.12677/ccrl.2016.51006 The Updated Understanding of the Change in Near-Surface and Upper Air Wind and Wind Energy Cheng Chen1, Guoyu Ren2 1Hubei Meteorological Information and Technological Support Center, Wuhan Hubei 2Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing Received: Jan. 13th, 2016; accepted: Jan. 24th, 2016; published: Jan. 29th, 2016 Copyright ? 2016 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/2b16576840.html,/licenses/by/4.0/ Abstract The assessment of wind speed and energy change and the main results of IPCC (AR5), SRREN AND domestic researchers are reviewed in this paper. The first working group of IPCC (AR5) concluded that the surface wind speed decreased in low and mid-latitude areas while increasing in high-latitude areas including Arctic and Antarctic. There are few studies about the upper-air with systematic global trend analysis. The domestic studies expose that the near-surface and upper-air wind speed decreased in most parts of China except some places located in high-latitude or on the mountains, but the decrease tendency of the upper-air is much more inconspicuous than that of near-surface. Because lacking of the homogenized records, the confidence in both near-surface and upper-air wind speed trend is low. The SRREN considers that the climate change will change the quality of the wind power by changing the distribution and the yearly variation. But it will not prohibit the using of the wind power resource. Keywords Wind Speed, Climate Change, Wind Power, Upper Air Wind, IPCC, AR5, SRREN 全球及中国风速变化及对风能影响的新认知 陈城1,任国玉2 1湖北省气象信息与技术保障中心,湖北武汉 2中国气象局气候研究开放实验室,国家气候中心,北京

风速风量计算方法

风量(Q :所谓风量(又称体积流率)指的是风管之截面积所通过气流之流速,一般在使用上以下式来表示: Q=60VA Q (风量)=m3/min V (风速)二m/sec A (截面积)=m2 压力常用换算公式1Pa=0.102mmAq 1mbar=10.197mmAq 1mmHg=13.6mmAq 1psi=703mmAq 1T orr=133.3pa 仃 orr=1.333mbar 常用单位换算表-风量 1m3/min( CMM =1000 l/min = 35.31 ft3/min ( CFM 常用名词说明(1)标准状态:为20C,绝对压力760mmHg相对湿度65 %。此状态简称为STP 一般在此状态下1m3之空气重量为 1.2kg。(2)空气之绝对压力:为当地大气压计所显示的大气压力再加上表压力之和,一般用kgf/m2或mmaq来表示。 (3)基准状态:为0C,绝对压力760mmHg相对湿度0%。此状态简称为NTP —般在此状态下1m3之空气重量为1.293kg。 压力(1)静压(Ps):所谓静压就是流体施加於器具表面且与表面垂直的力,在风机中一般是由於重力与风扇之推动所造成,在使用上常以kgf/m2或mmac来表示,且可以直接经过量测取得。而在风机之风管中,任何方向之静压值皆为定值且也有正负之分,若静压值为正则表示风管目前正被胀大,若静压值为负则表示风管目前正受挤压。(2)动压(Pv):所谓动压就是流体在风管内流动之速度所形成之压力,在使用上常以kgf/m2或mmaq来表示. (3)全压(PT):所谓全压就是静压与动压之和,在使用上常以 kgf/m2 或mmaq来表示。在风机中全压值是属固定,并不会因风管缩管而产 生变化. 风压与温度温度变化会影响空气之密度。故在其他条件不变的情况下,温度变化时,其风压必须依下面之关系加以校正,以获得标准情况下之风压值:

北大西洋海表风速季节特征及长期变化趋势分析

北大西洋海表风速季节特征及长期变化趋势分析摘要:利用来自欧洲中期天气预报中心(ECMWF——European Centre for Medium-Range Weather Forecasts)的长时间序列、高精度的ERA-40海表10 m风场资料,对北大西洋海域海表风场的季节特征、长期变化趋势进行深入研究,研究发现:(1)北大西洋海域的海表风速等值线在各季均大致呈东西带状分布,且由高纬度向赤道表现出高—低—高—低的分布特征。MAM和SON期间海表风速的分布特征较为相似,大值中心分布于北半球西风带海域;DJF期间的海表风速为全年最大;JJA期间的海表风速为全年最小。加勒比海海域常年存在一风速的相对大值中心。从多年平均来看,风速存在一明显的、范围较广的大值区:西风带海域,加勒比海也存在一范围较小的大风区。(2)1958年至2001年期间,北大西洋海域的海表风速以0.0049 m·s-1·a-1的速度显著性逐年线性递增。(3)北大西洋海表风速的变化趋势表现出较大的区域性差异:呈显著性逐年线性递增的区域主要分布于30°N以下的低纬度海域,变化趋势在0.01~0.025 m·s-1·a-1左右,西班牙东北部近海的递增趋势最为强劲,达到0.035 m·s-1·a-1以上,墨西哥湾和加勒比海则呈显著性逐年线性递减,趋势为-0.015 m·s-1·a-1左右,其余海域的海表风速无显著变化趋势。(4)近44年期间,北大西洋海域的海表风速存在明显的突变现象,突变期为1972年前后。 关键词:北大西洋ERA-40风场季节特征长期变化趋势 Seasonal Characteristics of Sea Surface Wind Field and Its Long

对数风廓线对研究风随高度与沿海地区地形变化的关系

中国海洋大学本科生边界层气象学论文 对数风廓线对研究风随高度与沿海地区地形变化的关系 中国海洋大学2013级大气科学 张开翼 2016/5/1

对数风廓线对研究风随高度与沿海地区地形变化的关系 【摘要】边界层中风随高度与地形的变化一直是边界层气象学研究中的重要课题。本文主要论述对数风廓线对研究风场中风随高度与沿海地区地形的变化的意义与局限性。通过绘制风随高度的对数风廓线,模拟风随高度的变化。运用对数或指数风廓线公式, 对沿海地区测风资料作简单高度换算以得到海面10m风速的订正方法一般是不合理的,因此需要采用数值模拟的办法。 【关键词】对数风廓线风场数值模拟 引言 研究边界层中风随高度的变化,通常将高度取对数后进行研究。因为对数函数具有良好的性质(如单调性),将高度取对数以后可以减小纵坐标的长度,并且使高度的对数与风速形成近似的线性关系。以便于研究。 沿海地区测风资料具有年代久、定点性好、持续性长及质量高等优点, 但往往不能代表海面10m处的风。在资料使用中, 要么不加订正, 要么只是运用对数风廓线公式作简单高度换算。然而, 不同的天气状况、拔海高度与位置共同决定了此订正绝不是一个简单的高度换算问题, 而是一个复杂的动力学问题。因此,就需要用数值模拟进行研究。

一、边界层中风随高度的变化。 首先通过几个实际例子来进行研究: 边界层风随高度的分布的几个例子 作图。 以10为底,对高度取对数,作图。 3 4 5 6 7 4 6 8 10 12 2 4 6 8 10

垂直坐标为对数(10为底) 可以发现并总结为如下规律: 即风速U与高度z的对数lnz呈线性关系。 02810 0.010 0.100 1.000 10.000 100.000 1000.000 34567 4681012 246810 b z a U+ =ln ln z z a U=

风量风压风速的计算方法

离心式风机风量风压转速的关系和计算 n:转速 N:功率 P:压力 Q:流量 Q1/Q2=n1/n2 P1/P2=(n1/n2)平方 N1/N2=(n1/n2)立方 风机风量及全压计算方法风机 功率(W)=风量(L/S)*风压(Kpa)/效率(75%)/力率(75%) 全压=静压+动压。风机马达功率(W)=风机功率(W)*130%= 风量(L/S)*风压(Kpa)/效率(75%)/力率(75%)*130% 风机的,静压,动压,全压 所谓静压的定义是:气体对平行于气流的物体表面作用的压力。通俗的讲:静压是指克服管道阻力的压力。 动压的定义是:把气体流动中所需动能转化成压的的形式。通俗的讲:动压 是带动气体向前运动的压力。 全压=静压+动压 全压是出口全压和入口全压的差值 静压是风机的全压减取风机出口处的动压(沿程阻力) 动压是空气流动时自身产生的阻力P动=*密度*风速平方 P=P动+P静 、两台型号相同且转速相等的风机并联后,风量最高时是两台风机风量的90%左右,风压等于单台风机的压力。 2、两台型号相同且转速相等的风机串联后,风压是单台风机风压的2倍,风量等于单台风机的风量。 3、两台型号不同且转速不等并联使用,风量等于较大的一台风机的风量,风压不叠加。 4、两台型号不同且转速不等,型号较大的一台置前串联使用,风压小于单台风机的风压,风量等于较大的一台风机的风量 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-

压关系,风的动压为 wp=·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度 r= [kN/m3]。纬度为45°处的重力加速度g=[m/s2], 我们得到

风量风压的计算方法

风量的计算方法,风压和风速的关系 1、假设在直径300mm的风管中风速为0.5m/m,它的风压是多少帕?怎么计算?(要求有公式,并说明公式中符号的意思,举例) 2、假如一台风机它的风量为100003/h,分别给10个房间抽风,就是有10个抽风口,风管的主管道是直径400mm,靠近风机的第一个抽风口的风压和抽风量肯定大于后面的抽风口,要怎么样配管才能使所有的抽风口的抽风量一样?要怎么计算? 3、如何快速的根据电机的转速、风机叶片的角度、面积来来计算出这台风机的风量和风压。?(要求有公式,并说明公式中符号的意思,举例) 4、风管的阻力怎么计算,矩形和圆形,每米的阻力是多少帕,一台风压为200帕的抽风机,管道50m,它的进风口的风压是多少帕??(要求有公式,并说明公式中符号的意思,举例) 首先,我们要知道风机压力是做什么用的,通俗的讲:风机压力是保证流量的一种手段。基于上述定义,我们可以通过一些公式来计算出在300mm管道中要保证风速为0.5m/s时所需的压力。 1.1、计算压力: 1.2、Re=(D*ν/0.0000151) =(0.3*0.5/0.0000151) =9933.77 1.3、λ=0.35/Re^0.25 =0.35/9933.77^0.25 =0.035 1.4、R=[(λ/D)*(ν^2*γ/2)]*65 =(0.035/0.3)*(0.5^2*1.2/2) =0.07Pa 1.5、结论:在每米直径300mm风管中要保证0.5m/s的风速压力应为0.07Pa。 2、计算400mm管道中的流速: 2.1、ν=Q/(r^2* 3.14*3600) =10000/(0.2^2*3.14*3600) =22.11(m/s) 2.2、平衡各抽风口的压力,并计算出各个抽风口的直径: 为保证各抽风口的流量相等,需对各抽风口的压力进行平衡,我们采用试算法调管径。当支管与主环路阻力不平衡时,可重新选择支管的管径和流速,重新计算阻力直至平衡为止。这种方法是可行的,但只有试算多次才能找到符合节点压力平衡要求的管径。 设1-2段的阻力值为Ho,为使节点2的压力达到平衡,应使4-2段的阻力H等于Ho。设每一个抽风口的间距为1m,每条支管长为1m(如图):

2018高考地理二轮复习练习--第4讲大气运动规律

专题4 大气运动规律--练习 一、选择题 (2017·枣庄调研)读“某地风速、风向随高度变化而变化状况示意图”,完成1~3题。 1.随高度增加() A.风速增大加快,风向偏转幅度加大 B.风速增大加快,风向偏转幅度减小 C.风速增大变慢,风向偏转幅度减小 D.风速增大变慢,风向偏转幅度加大 2.此图所示地点位于() A.南半球 B.北半球 C.赤道地区 D.无法判断 3.引起风速、风向随高度变化而变化的根本原因是() A.地转偏向力随高度增加变大 B.地面摩擦力随高度增加变小 C.水平气压梯度力随高度增加变大 D.大气温度随高度增加变低 1.D 2.B 3.B 第1题,箭头长短表示风速大小。据图知近地面风速变化大,随高度增加风速变化减小,所以随高度增加风速增大变慢;根据风向与等压线的关系:近地面风的风向与等压线斜交,高空中的风向与等压线平行,所以随高度增加,风向偏转幅度加大。第2题,根据风向与水平气压梯度力、地转偏向力的关系可知,风向右偏,据此判断此图所示地点位置。第3题,随着高度的增加,摩擦力逐渐变小,从而导致风向、风速发生改变。]

(2016·云南部分名校10月联考)下图是“我国西南部分地区锋面位置示意图”,所示天气系统冬季较长时间控制该地区,锋面云层向东可延伸到贵阳上空。读图,回答4~5题。 4.此时,昆明() A.以晴天为主 B.气压较贵阳高 C.降水量较大 D.气温日较差小 5.就贵阳市区而言,“天无三日晴”的现象除受图中天气系统控制外,还要受下列四图中哪幅图代表的大气运动的控制() 4.A 5.C 第4题,读图知,昆明此时受暖气团控制,气温较高,天气晴朗。第5题,受城市热岛效应影响,城市气流上升,气温降低,利于形成降水或雾,多阴雨天气。] (2016·武汉5月教学质检)下图为汉中盆地的北部秦岭山区、中部平川平原地区以及南部巴山山区三个地区的气温资料。读“汉中盆地三地冬夏季节气温随海拔变化趋势图”,回答6~7题。

废气处理的风量风管计算方法

废气处理中风量风管计算方法 风管: 风管尺寸=风量/风速风量=房间面积*房间高*换气次数 有个例子:风量4万,风速9m/s,得风管尺寸=40000/9/3600=1.23平方 1.23=1.5*0.82 所以风管尺寸为 1500*800 Q:1、例子中的3600是既定参数吗? 2、这个风管尺寸计算公式,对排烟,排风管道尺寸计算通用吗? 3、求风口和排烟口尺寸计算公式~~或者求暖通基础知识学习文档,手里的设计规范对现在的我来说太太高深,还是从基础打起吧 一小时有3600秒,除以3600是因为计算公式前后的单位要统一。这个公式对所有风管计算都适用,但是9m/s这个风速值不是固定值,需要由你来设定。排烟排风的公式都是一样的算法,这个9m/s的风速需要根据噪音要求调整的,楼主可参考下采暖通风设计规范消声部分,还有矩形风管的规格最好用标准的,施工规范里的是1600,没有1500。

管道直径设计计算步骤,专业制作与安装-铁皮风管-不锈钢风管,通风工程以假定流速法为例,其计算步骤和方法如下: 1.绘制通风或空调系统轴测图,对各管段进行编号,标注长度和风量。 管段长度一般按两管件间中心线长度计算,不扣除管件(如三通,弯头)本身的长度。 2.确定合理的空气流速 风管内的空气流速对通风、空调系统的经济性有较大的影响。流速高,风管断面小,材料耗用少,建造费用小;但是系统的阻力大,动力消耗增大,运用费用增加。对除尘系统会增加设备和管道的摩损,对空调系统会增加噪声。流速低,阻力小,动力消耗少;但是风管断面大,材料和建造费用大,风管占用的空间也增大。对除尘系统流速过低会使粉尘沉积堵塞管道。因此,必须通过全面的技术经济比较选定合理的流速。根据经验总结,风管内的空气流速可按表6-2-1、表6-2-2及表6-2-3确定。除尘器后风管内的流速可比表6-2-3中的数值适当减小。

风量风速计算方法

一、室内风管风速选择表 1、低速风管系统的推荐和最大的流速m/s 2、低速风管系统的最大允许速m/s 二、室内风口风速选择表 1、送风口风速 2、以噪音标准控制的允许送风流速m/s

3、推荐的送风口流速m/s 4、送风口之最大允许流速m/s 5、回风口风速 6、回风格栅的推荐流速m/s 7、百叶窗的推荐流速m/s 8、逗留区流速与人体感觉的关系 三、通风系统设计

一般原则:(1)人不经常停留的地方;(2)房间的边和角;(3)有利于气流的组织 2、标准型号风盘所接散流器的尺寸表-办公室 风机盘管接风管的风速:通常为1.5~2.0 m/s,不能大于2.5 m/s,否则会将冷凝水带出来. 3、散流器布置 散流器平送时,宜按对称布置或者梅花形布置,散流器中心与侧墙的距离不宜小于1000mm;圆形或方形散流器布置时,其相应送风范围(面积)的长宽不宜大于1:1.5,送风水平射程与垂直射程()平顶至工作区上边界的距离)的比值,宜保持在0.5~1.5之间.实际上这要看装饰要求而定,如250×250的散流器,间距一般在3.5米左右,320×320米在4.2米左右. 四、风管、风口分类 1、风管分类 1)按风管材料 A、镀锌钢板风管:常用在空调送、回风管道(优点:使用寿命较长,摩擦阻力小,制作快速方便,可工厂预制也可 现场临时制作;缺点:受加工设备限制,厚度不宜超过1.2mm) B、普通钢板风管:常用在厨房炉具排油烟以及防油烟风道上(要求2mm上只能采用普通钢板焊接而成,对焊接技 术有一定要求) C、无机玻璃钢风管:常用于消防防排烟系统(优点:具有耐腐蚀、使用寿命长,强度较高的优点,造价与钢板风管 基本相同;缺点:质量不稳定,某些厂商生产的材料质量比较差,强度和耐火性达不到要求,现场维修较困难) D、硅酸盐板风管:常用排烟管道(优点与无机玻璃钢板相类似,显著特点是防火性能较好;缺点:综合造价较高) E、复合保温板风管:常用有:上海万博(铝箔聚氨酯)、湖南中野(酚醛树脂)、北京百夏(BBS)、铝箔玻璃绵保温风 管等 F、软风管:常用有铝箔型软管、铝制波纹型半软管、波纤管(在工程上具有施工简单、灵活方便等特点,但其风管 阻力比较大,且对施工管理要求比较高) G、其他风管:土建、砖茄、布风管等 2)按风管作用分:送风、回风、排风、新风管等 3)按风管内风速分:低速、高速风 2、风口分类: 1)按风口材料分:铝合金风口、铸钢风口、塑料风口、木制风口等 2)按风口形状及功能分: A、百叶风口:门铰式百叶风口、单层百叶、双层百叶、防雨百叶等

风机风量的计算、风机的选择

风机风量如何计算 风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。 风量如何计算?要加入风机功率管道等因素,抽风空间的大小等? 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说0.1或0.5米每秒的风速多长时间可以抽100立方或500立方的风?以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3.14*3600。 6、风速计算:ν=Q/(r^2*3.14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3.14*ν) 二、 1、风速为0.5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0.3m。 Q=ν*r^2*3.14*3600

测量风速的方法

测量风速的方法 20101308017

移,常以米/秒、公里/小时、海里/小时表示。1805年英国人F·蒲福根据风对地面(或海面)物体的影响,提出风力等级表,几经修改后得下表。目测风时,根据风力等级表中各级风的特征,即可估计出相应的风速。 蒲福风力等级表

32.7 118 64 (1)风向测量仪器:风向标是一种应用最广泛的测量风向仪器的主要部件,由水平指向杆、尾翼和旋转轴组成。在风的作用下,尾翼产生旋转力矩使风向标转动,并不断调整指

向杆指示风向。风向标感应的风向必须传递到地面的指示仪表上,以触点式最为简单,风向标带动触点,接通代表风向的灯泡或记录笔电磁铁,作出风向的指示或记录,但它的分辨只能做到一个方位(22.5°)。精确的方法有自整角机和光电码盘。 (2)风速测量仪器:a)风杯风速表是应用最广泛的一种风速表,由三个(或四个)半球形或抛物形空杯,都顺一面均匀分布在一水平支架上,支架与转轴相连。在风力作用下,风杯绕转轴旋转,其转速正比于风速。转速可以用电触点、测速发电机、齿轮或光电

风速计其基本原理是将一根细的金属丝放在流体中,通电流加热金属丝,使其温度高于流体的温度,因此将金属丝 称为“热线”。当流体沿垂直方向流过金属丝时,将带走金属丝的一部分热量,使金属丝温度下降。根据强迫对流热交换理论,可导出热线散失的热量Q与流体的速度v之间存在关系式。标准的热线探头由两根支架张紧一根短而细的金属丝组成,如图2.1所示。金属丝通常用铂、铑、钨等熔点高、延展性好的金属制成。常用的丝直径为5μm,长为2 mm; 各个方向的气流同时冲击热元件,从而会影响到测量结果的准确性。在湍流中测量时,热敏式风速仪流速传感器的示值往往高于转轮式探头。以上现象可以在管道测量过程中观察到。根据管理管道紊流的不同设计,甚至在低速时也会出现。因此,风速仪测量过程应在管道的直线部分进行。直线部分的起点应至少在测量点前10×D(D=管道直径,单位为CM)外;终点至少在测量点后4×D处。流体截面不得有任何遮挡。(棱角,重悬,物等)

大气压力按指数律随海拔高度增加而降低

①大气压力按指数律随海拔高度增加而降低。在晴空条件下,无雪盖的高山白天太阳直接辐射强度和夜间有效辐射强度随高度增加而增大。因坡向不同,阳坡和阴坡得到的太阳辐射不同,并因此影响气温和气流的分布。 ②气温随海拔高度增加而降低。一般气温垂直递减率在一年中以夏季最大,冬季最小。山脉走向和坡向对气温的影响主要表现在使山脉两侧的气温产生差异,并导致不同的气候现象。阳坡气温高,变化大,阴坡气温低,变化小。山顶和山坡的气温日较差和年较差相对较小,而且有秋温高于春温的现象,山谷和山间盆地的气温日较差和年较差相对较大,而且有春温高于秋温的现象。 高山草地 ③降水量和降水日数随山地海拔高度增加而增加。在一定高度以上的山地,由于气流中水汽含量减少,降水量又随高度增加而减少。降水量达到最大值的高度称为最大降水高度。坡向对降雨的影响表现为迎风坡雨量多于背风坡。特别是高大山脉两侧,雨量的巨大差异造成植被景观的很大变化。例如,北美西海岸科迪勒拉山系中南部处于温带西风带,迎风的西侧为森林景观,而背风的东侧为荒漠或半荒漠景观。山地地形也影响降雨量的日变化。一般山脉顶部以日雨为多,而山谷盆地则以夜雨为主。 ④风速随山地海拔升高而增大。山顶、山脊以及峡谷风口处风速大,盆地、谷底和背风处风速小。高山上风速一般夜间大,白天小,午后最小,而山麓、山谷则相反。山地还能产生一些局地环流,如山谷风、布拉风、焚风、坡风、冰川风等。 ⑤在湿度(水汽压和相对湿度)方面,水气压随海拔高度增加而降低。在多数情况下,山地上部因气温低、云雾多,相对湿度高于下部,但冬季高山区也有相反情况,山顶冬季云雾较少而相对湿度小。山谷和盆地相对湿度日变化大,夜高而昼低,午后最低。山顶相对湿度日变化一般很小。

风压与风速的计算方法

风压与风速的计算方法 风速与风压的关系 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m2],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。引用 Cyberspace 的文章:风力风压风速风力级别我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度 r=0.01225 [kN/m?]。纬度为45°处的重力加速度g=9.8[m/s?], 我们得到 wp=v?/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,在高原上要比在平原地区小, r/g 也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。风压 P = pV^2/2 = 1.2*9^2/2 = 48.6 (Pa) 假如说 9[m/s]风速,风压应该怎么计算,请把公式也写下要测风道中的风速但手边没有风速计,只有个测风压的,我知道一般风压与风速的换算公式近似为风压=风速^2x1600 不是风道中测的负压能不能直接带进去,或者有什么其他的换算方式?你的风压计测得的风道中的压力是静压 Pj 吧,如果能测出同一断面处的全压 Pq,则该断面的动压 Pd=Pq-Pj(静压 Pj 为负值,连同负号代入),而动压 Pd=pV^2/2,从中可以算出风速 V=(2Pd/p)^(1/2)。我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为wp=0.5·ro·v? (1) 其中 wp 为风压[kN/m?],ro 为空气密度[kg/m?],v 为风速[m/s]。由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v?/g (2) 此式为标准风压公式。在标准状态下(气压为 1013 hPa, 温度为15° C), 空气重度r=0.01225 [kN/m?]。纬度为45°处的重力加速度 g=9.8[m/s?], 我们得到wp=v?/1600 (3) 此式为用风速估计风压的通用公式。

风压高度变化系数

风压高度变化系数 反映风压随不同场地、地貌和高度变化规律的系数。以规定离地面高度的风压为依据,为不同高度风压与规定离地面高度风压的比值。 在大气边界层内,风速随离地面高度变化而增大。当气压场随高度不变时,速度随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度。通常认为在离地面高度为300~500m时风速不再受地面粗糙度的影响,也即达到所谓“梯度风速”,该高度称之梯度风高度。地面粗糙度等级低的地区,其梯度风高度比等级高的地区为低。 一、风压高度变化系数是:反映风压随不同场地、地貌和高度变化规律的系数。以规定离地面高度的风压为依据,为不同高度风压与规定离地面高度风压的比值。 二、如何确定: 1、在大气边界层内,风速随离地面高度变化而增大。当气压场随高度不变时,速度随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度。通常认为在离地面高度为300~500m时风速不再受地面粗糙度的影响,也即达到所谓“梯度风速”,该高度称之梯度风高度。地面粗糙度等级低的地区,其梯度风高度比等级高的地区为低。 2、建筑物所承受风压大小随建筑物的最高高度的增加而加大。为了反映这个事实,计算风载荷时,包含有这个反映高度效应的系数 风压风速风量仪一般使用场合在,通风管道,除尘管道,工业送风,及烟气烟道。上海雷若仪表科技有限公司生产的风压风速风量仪适用在各

种复杂工况下可耐高温900度以内的工况。上海市宝山区锦川仪表经营部销售仪器仪表,我们的业务开始于2003年,主要生产环境类测试仪器,各种气体分析仪、微压计、风速仪、风量罩、照度计、温湿度计、皮托管、压差计、激光粒子计数器、气压计、负离子检测仪、风洞等专业实验设备的研发及自动化软件的开发。

风压高度变化系数

风压高度变化系数 在大气边界层内,风速随离地面高度增加而增大。风速随高度增大的规律,主要取决于地面粗糙度。在这一点上,中标和美标一样。中美标准分别采用风压高度变化系数μz和风压暴露系数Kz来体现风压变化,其实就是体现在不同粗糙度地面风速随高度变化的规律。 中标地面粗糙度分为A、B、C、D四类:A类指近海海面和海岛、海岸、湖岸及沙漠地区;B类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C类指有密集建筑群的城市市区;D类指有密集建筑群且房屋较的城市市区。在确定城区的地面粗糙度类别时,以拟建房2km为半径的迎风半圆影响范围内的房屋高度和密集度来区分粗糙度类别,风向原则上应以该地区最大风的风向为准,但也可取其主导风。以半圆影响范围内建筑物的平均高度ha划分地面粗糙度类别,当ha≥18m,为D类,9m<ha<18m,为C类,ha≤9m,为B类。美标地面粗糙度分为B、C、D三类:地面粗糙度B指城镇和城市郊区,树林或具有大量密布的不小于单一家庭住宅面积或更大的障碍物区域;地面粗糙度C指具有高度通常小于9.1米的分散障碍物的空旷区域,包括平坦空旷的乡村和草地;地面粗糙度D指平坦、无遮挡的区域和水域,包括平坦的泥滩、盐地、未破坏的冰区。 根据相关文献,中美标准地形类别的划分存在大致的对应关系。

从风压高度变化系数的列表中,同一地形类别,中美梯度风高度是不同的。可以看出中标A类地形的梯度风高度为300m,B、C、D类梯度风高度分别为350m、450m、550m。而美标B类地形的梯度风高度为365.76m,C、D类274.32m、213.36m。对中标地形类别B,100m处风压高度变化系数μz,100为2.00,而10m处μz,100为1.0,二者比值为2。对美标地形类别C,100m处风压暴露系数K100为1.62,而10m处K10为1.0,二者比值为1.62。同一地形类别中,中标不同高度处风压高度变化系数与10m处风压高度变化系数的比值要高于美标。也就是说,中标风速随高度的变化要快于美标,产生原因主要是由于梯度风高度和指数不同造成。

风速计算公式及方法

您好,根据相关标准,56.1m/s及以上的风统一划为17级风,因为诸如72m/s的风速事实上是极其罕见的了,并没有进一步分级;至于台风的分级,目前最高级别也就是超强台风,指的是中心附近最大风力大于16级(51m/s)的台风。 基本风压值与风力简单换算 基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地 0.35 7 10米 0.40 8 10米 0.50 9 10米 0.60 10 10米 0.70 11 10米 0.85 12 10米 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有ro=r/g。在(1)中使用这一关系,得到wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 基本风压值与风力简单换算

基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地 0.35 7 10米 0.40 8 10米 0.50 9 10米 0.60 10 10米 0.70 11 10米 0.85 12 10米 * 以上换算数值根据国家建筑荷载规范进行计算,因风压换算需要空气密度、水汽压等数据,故此值仅供参考 例题:根据气象部门资料计算基本风压。 山东省济南市某单位拟建一座广告塔,其广告画面为30m×10m(双面),广告牌总高度为27m。广告塔结构采用螺栓球钢网架空间结构(单立柱),建造地点在济南长清区京沪高速路旁(郊外),地震列度为6度三组,经济南气象台提供该地区50年一遇的最大风速为24.6m/s,水气压为39.2(Pa) 。查荷载规范济南市n=50m时的基本风压值为0.45KN/m 2 ,试校核该地实际风压值。 解: 1 、基本风压值ω0 的确定:根据已知条件,该地最大风速为24.6m/s ,水气压为39.2(Pa) ,根据《建筑结构荷载规范》GB 50009-2001 附录D 中公式对已知基本风压进行复核。 根据公式:ω0 = ρμo 2 / 2 式中:ω0 ——基本风压(KN/m 2 ) ρ——空气密度(t/m 3 )ρ=0.00125e -0.0001z e——水气压(Pa) z——风速仪实际高度(m) 得: ω0 =(0.00125×39.2 -0.0001×170 ×24.6 2 )/2 =0.4024KN/m 2 <0.45 KN/m 2 (规范值),取0.45 KN/m 2 2、基本风压取值:该地规范基本风压值为0.45 KN/m 2,根据该地最大风速计算实际为0.4024 KN/m 2,故按规范0.45 KN/m 2取值。

风压高度变化系数

风压高度变化系数 一、风压高度变化系数是:反映风压随不同场地、地貌和高度变化规律的系数。以规定离地面高度的风压为依据,为不同高度风压与规定离地面高度风压的比值。 二、如何确定: 1、在大气边界层内,风速随离地面高度变化而增大。当气压场随高度不变时,速度随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度。通常认为在离地面高度为300~500m时风速不再受地面粗糙度的影响,也即达到所谓“梯度风速”,该高度称之梯度风高度。地面粗糙度等级低的地区,其梯度风高度比等级高的地区为低。 2、建筑物所承受风压大小随建筑物的最高高度的增加而加大。为了反映这个事实,计算风载荷时,包含有这个反映高度效应的系数。反映风压随不同场地、地貌和高度变化规律的系数。以规定离地面高度的风压为依据,为不同高度风压与规定离地面高度风压的比值。 在大气边界层内,风速随离地面高度变化而增大。当气压场随高度不变时,速度随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度。通常认为在离地面高度为300~500m时风速不再受地面粗糙度的影响,也即达到所谓“梯度风速”,该高度称之梯度风高度。地面粗糙度等级低的地区,其梯度风高度比等级高的地区为低。 一、风压高度变化系数是:反映风压随不同场地、地貌和高度变化规律的系数。以规定离地面高度的风压为依据,为不同高度风压与规定

离地面高度风压的比值。 二、如何确定: 1、在大气边界层内,风速随离地面高度变化而增大。当气压场随高度不变时,速度随高度增大的规律,主要取决于地面粗糙度和温度垂直梯度。通常认为在离地面高度为300~500m时风速不再受地面粗糙度的影响,也即达到所谓“梯度风速”,该高度称之梯度风高度。地面粗糙度等级低的地区,其梯度风高度比等级高的地区为低。 2、建筑物所承受风压大小随建筑物的最高高度的增加而加大。为了反映这个事实,计算风载荷时,包含有这个反映高度效应的系数。

风压高度变化系数

风压: 风压(wind pressure)由于建筑物的阻挡,使四周空气受阻,动压下降,静压升高。侧面和背面产生局部涡流,静压下降,动压升高。和远处未受干扰的气流相比,这种静压的升高和降低统称为风压。 简言之:风压就是垂直于气流方向的平面所受到的风的压力。 风荷载: 风荷载空气流动对工程结构所产生的压力。其大小与风速的平方成正比,即式中ρ为空气质量密度,va和vb分别为风法结构表面前与结构表面后的风速。 基本含义: 风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载ш与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风,其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。 计算公式: 垂直于建筑物表面上的风荷载标准值,应按下述公式计算: 1 当计算主要承重结构时,按式:wk=βzμsμzWo 式中wk—风荷载标准值(kN/m2); βz—高度z 处的风振系数;

μs—风荷载体型系数; μz—风压高度变化系数; Wo—基本风压(kN/㎡)。 2 当计算围护结构时,按式:wk=βgzμslμzWo 式中βgz—高度z 处的阵风系数; μsl--风荷载局部体型系数。 风荷载参数: 基本风压 中国规定的基本风压w0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速v(即年最大风速分布的96.67%分位值,并按w0=ρv2/2确定。式中ρ为空气质量密度;v为风速)。根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I型考虑。基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。青藏高原为风压较大区,主要由海拔高度较高所造成。其他内陆地区风压都较小。风速风速随时间不断变化,在一定的时距Δt 内将风速分解为两部分:一部分是平均风速的稳定部分;另一部分是指风速的脉动部分。为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。

相关文档
最新文档