超限高层建筑抗震设计重点与难点
抗震超限审查要点

抗震超限审查要点学习抗震超限审查要点这么久,今天来说说关键要点。
我理解抗震超限审查啊,这可是和建筑安全息息相关的大事呢。
最开始接触这一块,我就蒙圈,这超限是啥意思呢?我总结了一下,超限指的就是超过抗震设计规范限制的那些情况。
比如说呀,建筑物的高度超了,平常咱们看到的普通住宅比如说就是些多层或者小高层建筑,那要是突然来个超高的摩天大楼,那就可能涉及高度超限了。
结构体系有时候也会超限呢。
就像有些建筑为了追求独特的造型,设计出一些奇奇怪怪的结构,不是咱们常规的框架结构或者剪力墙结构之类的,那这种就得审查得严格一点。
我之前就疑惑,为啥要这么严呢?后面明白这是为了大家的安全着想。
要是结构体系不稳,万一地震来了,楼可就危险了。
在审查的时候,建筑的平面和竖向不规则也是重点关注对象。
我就想啊,这平面不规则像啥呢。
就好比一个拼图,正常是方方正正的那种,你要是缺一块或者突出来一块,形状不规则了,那在地震的时候受力可能就不均匀了。
竖向规则性也是,你不能上面细下面粗或者中间突然变窄之类的。
像有些大厦,中间弄个很大的空洞或者几层合在一起做一个超大空间啥的,这可能就会影响到竖向的规则性呢。
还有啊,对了还有个要点,对于超限建筑,咱们得详细计算它的地震反应呢。
这就好比给这个建筑做体检,各个数据啊,像是位移啦,加速度啦,都得仔细看看是不是在合理范围。
计算这个地震反应可不容易,我学习时就感觉头疼,那些计算公式复杂极了。
不过我找到个小技巧,就是多对比实际的案例。
看看之前那些超限建筑是怎么计算的,怎么解决问题的。
我查了很多资料呢,像《建筑抗震设计规范》这就是基本的参考资料,里面有很多基本的原则和要求。
我还在网上找了一些专门做抗震超限审查的报告案例,看那些成功的例子是怎么分析建筑情况的。
抗震超限审查确实很严谨和复杂,咱们都得继续好好研究才行啊。
这不仅是对自己学习的提升,也是对以后可能参与的建筑项目负责嘛。
比如说你自己要是住在一个经过有疏漏的超限审查的建筑里,这风险多大呀。
超限高层建筑结构抗震设计

超限高层建筑结构抗震设计【摘要】随着我国经济的发展,我国基础设施的建设也有了很好的发展,越来越多的流动资金向基础设施建设这个行业汇集。
在人们对空间充分利用的需求下超高层建筑工程应运而生的,这体现了人们对更舒适、更具现代化的高质量的城市生活的追求。
与此同时,问题也随着超高层建筑工程的发展而体现了出来,因为超限高层建筑工程本身的结构特点已经超出了我国对建筑工程的规定,抗震问题也成为了摆在超高建筑工程面前的重大难题,如果不解决超限高层建筑工程的抗震问题,将会影响超限高层建筑工程行业的发展。
基于此,本文对超限高层建筑结构中的抗震设计进行了研究。
【关键词】超限高层建筑结构抗震设计原则中图分类号: tu3 文献标识码: a 文章编号:在人们对空间充分利用的需求下超高层建筑工程应运而生的,这体现了人们对更舒适、更具现代化的高质量的城市生活的追求。
在人们对空间充分利用的需求下超高层建筑工程应运而生的,这体现了人们对更舒适、更具现代化的高质量的城市生活的追求。
与此同时,问题也随着超高层建筑工程的发展而体现了出来,因为超限高层建筑工程本身的结构特点已经超出了我国对建筑工程的规定,抗震问题也成为了摆在超高建筑工程面前的重大难题。
如果超限高层建筑工程的抗震设计问题能够解决,有助于避免超限高层建筑工程抗震安全隐患,同时又促进超限高层建筑技术发展。
超限高层建筑结构抗震设计超限高层建筑结构抗震设计原则从世界范围来看,各国的超限高层建筑工程抗震都秉持着“小震不坏,中震可修,大震不倒”的基本原则。
而且在实际抗震设计过程中,此原则也得到了广泛的认可和取得了一定的成效。
参照此抗震原则执行的绝大部分地区的大部分建筑物符合了抗震规范设计,随着而来的重大地震过程中所造成的人员伤亡有明显下降。
但是发生中小地震的时候,有时候可能造成建筑物的部分结构无法正常使用,从而影响了人们的正常生活,进而影响人们对更高生活水平的追求。
超限高层建筑结构抗震设计要点针对宽度和高度比超限的建筑的设计,其要点是一般连体板主要用来计算建筑物的连体部位和周边、连体部位的层数应该采用型钢混凝土或者彩钢结构。
超限高层建筑结构抗震设计需重视的几个问题-徐培福

41
42
28
7度,65层,305m
2层、5层楼板开大洞
29
3. 结构方案设计中注意的问题
⑤ 结构两个正交方向的第一平动周期比大于0.8
– 天津嘉里中心,59层,200m – 调整前T1x=4.654s,T1y=3.653s,T1x/T1y=0.785
30
3. 结构方案设计中注意的问题
⑥ 加强层伸臂桁架深入筒体剪力墙 伸臂桁架内力计算可不计楼板作用
– 层抗剪承载力计算中,加强层的斜撑承载力不能采用 25 绝对值的叠加
南京德基广场: 49层,209m, 11层、24层、37层设加强层
26
Ki Vi / Ui
Ki Vi / Ui / hi
27
3. 结构方案设计中注意的问题
④ 楼板大开洞
– 情况复杂 – 弹性楼板不计入平面外刚度,按大震计算楼 板应力 – 计算对竖向构件的不利影响
U2(m)
罕遇地震作用下,所有连廊隔震支座的最大变形分 别为39.5cm,支座选用最大位移量50cm
34
35
3. 结构方案设计中注意的 问题
⑧ 鞭梢效应的计算 按大震分析
36
4. 对计算分析的要求
① 现有软件为结构工程师提供了十分必要的 分析工具,但仍需要工程师的分析判断 ② 弹性静力分析的计算原则严格遵守规范规 定 ③ 工程计算出现怪异情况的,设计工程师要 分析,软件工程师要及时改正
B12T1N B12T1S B12T2N B12T2S B23T2N B23T2S B23T3N B23T3S B35T3N B35T3S B35T5N B35T5S B56T5N B56T5S B56T6S B56T6N B69T6N B69T6S B69T9N B69T9S B78T7N B78T7S B78T8N B78T8S B89T8N B89T8S B89T9N B89T9S
高层建筑结构抗震超限设计分析

高层建筑结构抗震超限设计分析随着建筑行业的发展和社会的需要,越来越多的高层建筑投入使用。
但是高层建筑很容易受到自然灾害的影响,尤其是地震灾害。
因此人们必须加强高层建筑的抗震性,对建筑结构设计的时候进行全方面的考虑,充分提高高层建筑结构的稳定性。
本文从高层建筑结构抗震超限设计概念及其要点出发,提出了加强抗震超限设计的有效措施,希望能够促进我国高层建筑的进一步发展。
标签:高层建筑;结构设计;超限抗震地震灾害对于高层建筑具有很大的破坏性。
随着城市高层建筑数量的增多,人们逐渐提升了对于建筑结构抗震设计的重视程度。
只有做好高层建筑的抗震设计,才能保证建筑的安全性与稳定性,进而保障居民的人身安全以及财产安全。
高层建筑的结构抗震设计是一个长期的设计过程,而且涉及到的各项内容比较繁复,在设计的过程中一旦出现问题就会影响后续的各项操作。
因此设计人员在具体设计过程中需要根据建筑结构的质量控制标准,全方面考虑各种影响因素,保证建筑结构的稳定性,提升建筑的抗震性能。
同时设计人员还应加强建筑结构的整体布局设计,根据现场实际情况来提升建筑的稳定性,保障社会和人民的生命财产安全。
1 高层建筑结构抗震超限设计概述高层建筑结构抗震超限设计不仅需要保证建筑的稳定性和安全性,也要符合人们的实际生活需要。
在进行抗震结构设计的时候,设计人员需要考虑多方面内容。
相关设计人员需要充分了解抗震结构和建筑材料性能,遵循一定的原则来采取有效措施,保证抗震设计的合理性。
首先,设计人员在建筑物抗震设计中要保证结构的整体性,保证能够使建筑物整体的抗震效果最大限度地得以保留。
其次建筑结构的刚度必须满足抗震的相关要求。
如果建筑物的刚度与相关要求不相符,那么将无法避免地震给建筑物带来的严重损害。
建筑结构的设计人员需要针对建筑物的刚度采取有效措施,对结构产生的变形现象进行有效控制,提高高层建筑的稳定性。
2 高层建筑结构抗震超限设计要点分析高层建筑结构超限设计需要考虑结构的稳定性,使建筑具有较大的承载力,最大限度内减少地震给高层建筑带来的损害,从而确保建筑结构的安全性。
浅谈超高层结构的抗震和超限设计

浅谈超高层结构的抗震和超限设计超高层建筑是指高度超过300米,同时包含超过80层的建筑物。
这些建筑不仅高度超出常规建筑,其建筑结构也需要考虑超越常规的设计要求,如抗震和超限设计。
本文将从这两个方面浅谈超高层结构的设计和特点。
一、超高层结构的抗震设计超高层结构的抗震设计是其中最重要的一环。
这是因为超高层建筑的高度和体积比通常的建筑要大得多。
因此,它们受到外部地震和内部荷载的影响更大。
此外,由于建筑结构和搭载设备的复杂性,超高层建筑的构造更为复杂,难度也更大。
因此,超高层建筑的抗震设计需要考虑以下三个方面:1.地震参数的分析和确定地震参数是指地震发生时可能产生的各种力和荷载。
抗震设计需要对这些参数进行详细的分析和确定。
这包括地震的等级和其穿透力,建筑物的动态反应和结构体系的耐震设计等。
抗震设计需要对建筑整体进行考虑,包括立面、地基和结构布局等。
2.结构体系的设计结构体系是指建筑的骨架。
超高层建筑需要采用抗震设计,从而确保其在地震发生时不会倒塌。
这需要使用更复杂的结构体系,以承受更大的荷载。
超高层建筑的钢结构和混凝土结构通常是采用混合结构,以提高其抗震能力。
3.建筑材料的质量和使用超高层建筑的建筑材料要求更高的品质,以提高其抗震能力。
建筑材料必须能够应对各种环境和气候的挑战,同时也要符合建筑材料的性能标准。
建筑材料的选择应该基于建筑物的结构体系和受力情况,以确保其能承受地震和其他荷载。
二、超高层结构的超限设计超高层建筑的设计也需要考虑超限设计。
这是指建筑组件和结构的超出正常范围的设计。
超限设计在保证安全的同时也增加了建筑的复杂度。
超高层建筑的超限设计包括以下几个方面:1.结构强度结构强度是保证超高层建筑整体结构稳定的重要因素之一。
超高层建筑的结构强度需要符合超出正常水平的设计要求。
这包括弯曲、扭转和拉伸等不同方向的测量,以及不同角度和形状的标准。
2.动态反应超高层建筑对地层和动态反应的要求更高。
特别是在突发事件或重大地震发生时,超高层建筑必须考虑其动态反应。
高度和高宽比超限的高层建筑抗震设计

高度和高宽比超限的高层建筑抗震设计高层建筑是现代城市的标志性建筑之一,因其在城市空间中的地位、视觉效果、居住、商业和办公等功能上的重要性,受到人们广泛关注。
然而,如何把高层建筑的抗震安全水平提高到最高点,减少人员伤亡和财产损失,是一个长期困扰高层建筑设计者的难题。
在国家的大力支持下,自1970年代以来,我国的高层建筑抗震安全水平逐步提高,许多新技术和新材料得以应用于抗震设计中。
但是,一些高度和高宽比超限的高层建筑依然存在抗震安全问题,本文将从理论和实践两个方面,对这种情况下的抗震设计进行分析和探讨。
一、理论分析高层建筑的抗震设计需要先从理论方面进行深入的研究和探讨。
以下是理论分析的几个关键点。
1. 高度和高宽比的概念根据《建筑结构设计规范》中的定义,高度是指从地面或起点到建筑顶部的距离。
建筑物的高度越高,其地震力越大,对于抗震设计来说,高度是一个非常重要的控制参数。
高宽比是指建筑物的高度与基底的最大横截面宽度之比。
高宽比的大小直接决定了建筑物的抗震性能。
2. 抗震设计的基本思路一般来说,高层建筑的抗震设计基本思路是:以控制建筑物结构的变形为主,通过设计合理的结构布局、选用适当的结构形式和材料等综合措施,确保在地震作用下建筑物各构件处于可控状态,减少损失。
在此基础上,根据建筑物的高度和高宽比,结合地震波的性质和频谱规律,控制建筑物结构响应的峰值加速度、位移和能量等参数,从而保证建筑物的抗震安全性。
3. 针对高度和高宽比超限的抗震设计高度和高宽比超限的高层建筑,在抗震设计中需要通过设置控制节点、加强节点构造细节、加强构件截面及抗震加固等手段来提高其抗震安全性。
在选取配置荷载时,应根据建筑物的高度和高宽比,选用与标准规范适应的高层建筑的黑土或白云石谷场地、按照不同地震烈度要求确定基本加速度,同时根据变形控制理论要求,按适当的变形限值确定等效静力荷载。
二、实践探讨高度和高宽比超限的高层建筑的抗震设计还需要从实践中积累经验,不断总结,才能得到不断提高。
超限高层建筑结构设计重难点分析

超限高层建筑结构设计重难点分析城市对建筑结构设计的要求逐渐提升,不仅要求实用与美观共存,更要满足城市人口不断增加对居住环境的要求。
因此,为满足居民与经济发展对建筑的要求,产生了超限高层建筑结构设计,不仅可以节约土地空间,更成为城市的靓丽风景线,满足城市化发展的需求。
标签:超限高层;建筑结构设计;重难点为满足城市化发展对建筑结构设计的需求,本文针对新时期超限高层建筑结构设计中的重难点进行主要分析,以促进城市超限高层建筑效率,满足城市人口的迫切需求,从而提高城市化发展进程。
1 超限高层建筑结构体系概述在高层建筑中,抗侧力结构体系的选择与组成成为高层建筑结构设计的首要考虑及决策重点。
当抗侧力体系决定后,水平构件体系的大格局便已确定,当然楼盖布置的细节也可再进一步进行推敲,因其其也有可能会反过来对抗侧力体系产生影响。
目前应用于高层建筑的主要结构体系主要有以下几种:1.1框架结构。
其基本组成构件为梁与柱,框架结构的优点是建筑平面布置较为灵活,结构受力简洁而清晰,施工也较为方便;且在抗震设计中,其延性较好,耗能能力也较强,因此,具有很好的抗震性能。
通常使用的柱网间为5-9m,而当采用预应力和钢骨混凝土的结构时,柱距大于等于15。
如果建筑物较高时,应该考虑建筑结构设计的主控因素(风荷载和地震作用),其缺点是抗侧刚度较弱,所以需要设计较大截面的梁、柱才能满足变形要求,这样会影响建筑的使用空间;另一个考虑对象是非结构构件的填充墙,其变形性能比框架差很远,且框架结构变形较大时,容易损坏。
1.2剪力墙结构。
其最大特点就是抗侧刚度大和承载力高。
一般而言,布置合理的剪力墙结构,会有较强的抗震和抗风能力。
在众多大地震中,剪力墙结构出现破坏的较少,表现出了其良好的抗震性能。
而其缺点则是自重大和刚性大以及延性差,并且对水平荷载也只能“硬碰硬”,所以剪力墙结构的周期较短,地震惯性力也较大。
剪力墙的间距一般较小,为3-8m,因此,其平面布置不够灵活,建筑空间受限制。
超限高层抗震设审查要点

超限高层抗震设审查要点超限高层抗震设(简称超抗设)是指建筑物中超出设计超震设的层,它的使用对于增强建筑抗震能力,保障人员生命安全至关重要。
超抗设审查是建设工程中的一个关键环节,下面将从超抗设的地基处理、结构设计、施工管理三个方面,对超抗设审查的要点进行详细阐述。
超抗设审查的要点之一是地基处理。
地基是建筑物的承载体,地基的稳定性对建筑物的抗震能力有着重要的影响。
在超抗设审查中,需要对超抗设所在地基的稳定性进行评估。
评估地基稳定性的主要内容包括地基的承载能力、地基的沉降性、地基的稳定性等方面。
此外,还需要对超抗设周围的地质环境进行评估,如地下水位、地震活动等。
超抗设审查的要点之二是结构设计。
超抗设的结构设计是建筑物抗震能力的保障,因此,在超抗设审查中需要对超抗设的结构设计进行审核。
结构设计审查的主要内容包括结构的荷载承载能力、结构的抗震性能、结构的刚度和变形能力等。
需要确保超抗设的结构设计符合相关的建筑抗震设计规范和标准,并能满足超抗设所在地区的抗震需求。
超抗设审查的要点之三是施工管理。
施工管理是超抗设建设过程中的重要环节,合理的施工管理能够有效地确保超抗设的质量和安全。
在超抗设审查中,需要对施工组织设计、施工方案、施工工艺等进行审核。
此外,还需要对超抗设的施工过程进行监督和检验,确保施工质量符合相关标准和规范,避免施工质量问题对超抗设的抗震能力产生负面影响。
综上所述,超抗设审查是确保超抗设在地基处理、结构设计和施工管理等方面符合相关标准和规范,能够提供良好的抗震能力的重要环节。
只有通过严格的审查和监督,才能确保超抗设的质量和安全,最终保障建筑物中的人员生命安全。
因此,在超抗设审查中,需要注重对地基处理、结构设计和施工管理等要点的把握,确保超抗设的质量和安全。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东院周建龙总工讲超限高层建筑抗震设计重点与难点编制依据《建筑抗震设计规范》送审稿《高层建筑混凝土结构技术规程》 (征求意见稿)《超限高层建筑工程抗震设防管理规定》 (建设部令第111号)《上海市超限高层建筑设防管理实施细则》 (沪健 【2003】702号)广东省实施《高层建筑混凝土结构技术规程》 (jgj3‐2002)补充规定江苏省《房屋建筑工程抗震设防审查细则》《超限高层建筑工程抗震设防专项审查技术要点》(建质【2006】220号)《关于加强超限高层建筑抗震设防审查工作的建议》 (2007年工作会议)《关于加强超限高层建筑工程抗震设防审查技术把关的建议》 (2009年2月6号)《超限高层建筑抗震工程抗震设计指南》 (第二版吕西林主编)超限的认定《超限高层建筑工程抗震设防专项审查技术要点》 建质【2006】220号新抗震规范及高层混凝土结构规范推出后,其划分范围作相应调整将大跨结构纳入审查将市政工程纳入审查CECS如与抗规及高规矛盾,以高规及抗规为主上海工程还需满足《上海市超限高层建筑设防管理实施细则》 (沪建建【2003】702号)计算分析总体要求总体判断,根据受力特点建模计算参数选取要合理计算假定要符合实际受力计算结果应进行分析判断计算参数的选取连梁的单元形式(杆单元或壳单元)巨柱采用杆或壳单元墙单元最大单元尺寸楼板单元是否合理阻尼比的选择连梁刚度的折减周期折减系数最不利地震方向(正方形增加45°)最不利风荷载方向施工模拟的方式嵌固端的选取特殊构件的定义足够的振型数量是否考虑p‐△效应考虑偶然偏心混凝土柱的计算长度系数(地下室、悬臂梁)计算结构的总体判断质量&荷载沿高度分布是否合理振型、周期、位移形态和量值是否合理地震作用沿高度分布是否合理单工况下总体和局部力学平衡条件是否满足对称部位构件的内力及配筋是否相近不同程序的比较受力复杂构件(如转换构件等)内力及应力分布与概念、经验是否一致嵌固端的要求地下室与土0.00的刚度比≥2(上海地区为1.5)楼板厚度大于180地下室刚度不计入离主楼较远的外墙刚度土0.00水平传力不连续时,嵌固端应伸至地下室,并对大开口周边梁、板配筋加强 地下室外墙离主楼较远,可在主楼周边设置剪力墙,直接将水平力传给底板土0.00有较大高差时,在高差处设置垂直向剪力墙,且采取存在高差处的柱子箍筋加密,水平传力梁加腋等措施,确保水平力传递嵌固端设在地面层,宜设刚性地坪,确保传力可靠回填土对地下室约束系数,一般地下室填3,几乎完全约束时填5,刚性约束填负数。
嵌固端在地面层或地下层时,仅表示嵌固端的水平位移受到约束,而转角不能设为约束。
嵌固端及下一层的抗震等级同土0.00,其余地下室的抗震等级可设为3级楼层刚度比抗震设计,对框架结构、框架承担倾覆力矩大于50%的框架‐剪力墙和板柱‐剪力墙结构,楼层侧向刚度可取楼层剪力与层间位移之比,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%对框架承担倾覆力矩不大于50%的框架‐剪力墙和板柱‐剪力墙结构,剪力墙、框架‐核心筒结构、桶中桶结构,楼层侧向刚度可取楼层剪力与楼层层间位移角之比,其楼层侧向刚度不宜小于相邻上部楼层侧向刚度的90%,楼层层高大于相邻上部楼层侧向刚度的1.1倍,底层侧向刚度不宜小于相邻上部楼层侧向刚度的1.5倍。
对转换层结构,宜采用剪切刚度比,控制转换层上下主体结构抗侧刚度不小于70%,当转换层设置在3层及3层以上时,其楼层侧向刚度不小于相邻上部楼层的60% 当底部大空间为1、2层时,可近似采用转换层上下结构等效剪切刚度γ表示转换层上下结构刚度的变化,γ宜接近1,非抗震设计时不应大于3;(γ为上部剪切刚度比与下部楼层剪切刚度比的商)当底部大空间大于2层,其转换层上下结构等效剪切刚度γe(见高规附录)表示转换层上下结构刚度的变化,γ不大于1.3,非抗震设计时不应大于2上海工程应采用剪切刚度比地震波的选择要求每条时程曲线计算的结构底部剪力不应小于振型分解反应谱法求得的65%,一般也不应大于振型分解反应谱法求得的135%,多条时程曲线计算的结构底部剪力平均值不应小于振型分解反应谱法求得的80%时程曲线数量随工程高度及复杂性增加,重要工程不少于5~7组地震加速度时程曲线应通过傅立叶变换与反应谱进行比较,对超高层建筑,必要时考虑长周期地震波对超高层结构的影响输入地震加速度时程曲线应满足地震动三要素要求,即有效加速度峰值、频谱特性和持时要求。
每组波形有效持续时间一般不少于结构基本周期的5~10倍和15s,时间间距取0.01s 或0.02s;输入地震加速度记录的地震影响系数与振型反应谱法采用的地震影响系数相比,在各周期点上相差不宜大于20%对于有效持续时间,以波形在首次出现0.1倍峰值为起点,以最后出现0.1倍为终点,对应区间为有效持时范围。
对超高层建筑,在波形的选择上,在符合有效加速度峰值、频谱特性和持时要求外,满足底部剪力及高阶振型的影响,如条件许可,地震波的选取,尚应考虑地震的震源机制。
对于双向地震输入的情况,上述统计特性仅要求水平主方向,在进行底部剪力比较时,单向地震动输入的时程分析结果与单向振型分解反应谱法分析结果进行对比,双向地震动输入的时程分析结果与双向振型分解反应谱法分析结果进行对比。
采用的天然地震波宜采用同一波的xyz方向,各分量均应进行缩放,满足峰值及各自比例要求。
采用天然波进行水平地震动分析时,每组自然波应按照地震波的主方向分别作用在主轴x及y方向进行时程分析。
人工波无法区分双向,在采用其时程分析时可考虑两个方向作用不同的人工波。
每组人工波应按照主要地震波分别作用那个在主轴x及y方向进行时程分析。
地震安评与反应谱是否安评按项目重要性及项目建设地要求执行。
场地安全评估报告一般应满足《工程场地地震安全性评价》GB17741‐2005要求:小震分析时,宜取按规范反应谱计算结果和安评报告计算结果的基底剪力较大值,不应部分采用规范参数,部分采用安评参数,计算结果同时必须满足规范最小剪力系数的要求。
中震、大震一般以规范为主,也可采用大于规范值的安评参数,此时不考虑最小剪力系数。
小震计算结果取多条波的平均值,超限程度较大应取包络值,以发现需要加强的楼层范围和加强程度。
如果拟建工程基础埋置很深,如经专家论证也可采用基底的反应谱曲线及地震波数据。
阻尼比抗震设计:钢结构:高度不大于50m,取0.04;高度大于50m,且小于200m时,取0.03;高度不小于200m时,宜取0.02混合结构:0.04混凝土:0.05罕遇地震弹塑性分析,阻尼比取0.05抗风设计:0.02~0.04 (根据房屋高度及结构形式,以及风荷载回归期取值)。
一般,风荷载作用下,结构承载力验算时阻尼比取0.02~0.03,变形验算取0.015~0.020,顶部加速度验算取0.01~0.015。
高度超限计算分析要求验算楼层剪力的最小剪重比,控制结构整体刚度。
足够振型数量,满足振型参与的有效质量大于总质量的90%应验算高层建筑的稳定性(刚重比验算至多数人员到达的最高高度),并决定是否考虑p‐△影响。
基础设计时应验算整体结构的抗倾覆稳定性;验算桩基在水平力最不利组合情况下桩身是否会出现拉力或者过大压力应验算核心筒墙体在重力荷载代表值作用下的轴压比。
应进行弹性时程分析法的补充计算,计算结果与反应谱结果进行对比,找出薄弱层。
非荷载作用(温度、混凝土收缩徐变、基础沉降等)对结果受力影响进行分析高度超B级较多应调整框架部分承担水平力至规范上限(取0.20V0、1.5V MAX的较大值) 高度不超过150m,可采用静力弹塑性方法,高度超过200m,应采用弹塑性时程分析;高度150~200m,根据结构的变形特征选择。
高度超300m或新体系结构需要两个单位两套软件独立计算校核。
混合结果或对重力较为敏感的结构(转换,倾斜)等应进行施工过长模拟计算验算结果顶部风荷载作用下的舒适度(验算至上人最高层)必要时进行抗连续倒塌设计。
根据建筑物的高度及复杂程度,应提高主要抗侧力构件的抗震性能指标(中震弹性、中震不屈服、或仅加强部位中震不屈服)采用抗震性能更好的型钢混凝土(钢骨混凝土、钢管混凝土、钢筋芯柱、钢板剪力墙)结构控制核心筒截面的剪应力水平、轴压比,小墙肢的轴压比和独立墙肢的稳定性验算 加大核心筒约束边缘构件的范围,如将核心筒约束边缘构件的范围延伸至轴压力0.2以下范围。
采取保证核心筒延性的措施控制核心筒底部的层间有害位移角,如抗震底层位移角不大于1/2000验算中震或大震下外围柱子的抗倾覆能力及受拉承载力基础设计时考虑底层柱脚或剪力墙在水平荷载作用下是否出现受拉并采取合适构造措施设置地震观测仪器或风速观测仪必要时,整体结果模型实验及节点试验平面不规则计算分析要求:考虑楼板平面内弹性变形楼板缺失严重时,按单榀验算构件承载力,并宜尽量增加结构的刚度。
楼板缺失应注意验算跨层柱的计算长度,长短柱并存时,外框的长柱可按短柱的剪力复核承载力;必要时,跨层短柱按大震安全复核承载力。
仅局部少量楼板,宜并层计算大开洞,局部楼板宜按大震复核平面内承载力应验算狭长楼板周边构件的承载力,并按照偏拉构件设计如层间位移小于1/2500,对位移比适当放松,放松限值可较规范放松1/3.如构件承载力满足中震弹性的要求,则底部的扭转位移比可适当放松至1.8受力复杂部位的楼板应进行应力分析,楼板内应力分析一般可采用膜单元分析,并在板中部配置必要加强钢筋,当验算楼板受力复杂,楼板应采用壳元,与楼板平面外重力荷载产生的应力进行叠加缺口部位加设拉梁(板),且这些梁(板)及周围的梁板的配筋进行加强对于平面中楼板间连接较弱的情况,连接部位楼板宜适当加厚,配筋加强,必要时设置钢板控制抗侧力墙体间楼板的长宽比大开口周边的梁柱配筋应进行加强,特别是由于开口形成的狭长板带传递水平力时,周边梁的拉通钢筋,腰筋等应予加强。
连廊等与主体连接采用隔震支座或设缝断开主楼与裙房在地面以上可设置抗震缝分开。
扭转位移超标时,超标部位附近的柱子及剪力墙的内力应乘以放大系数,配筋应进行加强加强整体结构的抗扭刚度,加强外围构件的刚度,避免过大的转角窗和不必要的结构开洞。
对于平面超长的结构,结构布置应考虑减少温度应力对结构的影响竖向不规则的计算分析要求(加强层)通过计算分析布置加强层,布置1个加强层可设置在0.6倍房屋高度附近;布置2个加强层时,可分别设置在顶层和0.5倍房屋高度附近;布置多个加强层时,宜沿竖向从顶层向下均匀布置,加强层也可同时设置周边水平环带构件。
水平伸臂构件、周边环带构件可采用斜腹杆桁架、实体梁、箱形梁、空腹桁架等形式。
加强层的刚度不宜过大,避免内力突变,其布置数量除考虑受力要求外,也应考虑对施工工期的影响。