大气层结稳定度51页PPT
合集下载
大气层结稳定度解读

-lnp γ
γd γ
T T΄ T΄
T
(2) 饱和湿空气 ( 将 γd换成 γs )
不稳定
s 中性 (3-22)P72
稳定
(3) 实际大气 d s
d (必 s ) 绝对不稳定 (s 必 d ) 绝对稳定
常见:
d s
对干空气和未饱和湿空气是稳定的,对 饱和湿空气是不稳定的。称之为条件不 稳定。
四.温度平流的判断
V T 0 为暖平流,图3-9(a) 90 0
-∇ T
V
0°c
α
5
10
15 a
图3-14
风由高吹向低温区,使局地气温升高。
V T 0
为冷平流,图3-14(c)
90 0
-∇ T 0°c
α c
5
10 V
15
图3-14
风由低吹向高温区,使局地气温降低。
V T 0
为零平流,图3-9 (b) 900 cos900 0
当垂直方向加速度为零时,气块是静力平衡的:
0 1 p g
Z
引入准静力条件: p p' p p' ' g
z z
代入气块的垂直方向的运动方程:
dw 1 ' g g g ( ' )
dt
(3-15)
代入状态方程: ' p P
RT'
RT
得:
dw g T T ' g T
层结稳定度与垂直速度的共同作用、
热量的得失 。
T t
V 2T
( d
)w
1 cp
dQ dt
讨论:
短期天气过程: dQ 0
dt
大尺度大气:右第二项比较小
γd γ
T T΄ T΄
T
(2) 饱和湿空气 ( 将 γd换成 γs )
不稳定
s 中性 (3-22)P72
稳定
(3) 实际大气 d s
d (必 s ) 绝对不稳定 (s 必 d ) 绝对稳定
常见:
d s
对干空气和未饱和湿空气是稳定的,对 饱和湿空气是不稳定的。称之为条件不 稳定。
四.温度平流的判断
V T 0 为暖平流,图3-9(a) 90 0
-∇ T
V
0°c
α
5
10
15 a
图3-14
风由高吹向低温区,使局地气温升高。
V T 0
为冷平流,图3-14(c)
90 0
-∇ T 0°c
α c
5
10 V
15
图3-14
风由低吹向高温区,使局地气温降低。
V T 0
为零平流,图3-9 (b) 900 cos900 0
当垂直方向加速度为零时,气块是静力平衡的:
0 1 p g
Z
引入准静力条件: p p' p p' ' g
z z
代入气块的垂直方向的运动方程:
dw 1 ' g g g ( ' )
dt
(3-15)
代入状态方程: ' p P
RT'
RT
得:
dw g T T ' g T
层结稳定度与垂直速度的共同作用、
热量的得失 。
T t
V 2T
( d
)w
1 cp
dQ dt
讨论:
短期天气过程: dQ 0
dt
大尺度大气:右第二项比较小
大气科学基础课件§5大气静力稳定度

midnight
Open question 2: How is the seasonal evolution of the air instablity?
neutral
stable
unstable
winter
Spring and autumn
summer
• 不稳定能量
• 对流不稳定及位势不稳定
(3) γs <γ<γd ,对未饱大气,层结是稳定的;但对于 饱和湿空气而言,则是不稳定的,称为“条件不 稳定”
为了区别与后来提出的“第二类条件不稳定 ”(CISK-Conditional Instability of Second Kind),这 里的条件不稳定又被称为“第一类条件不稳定”
• 绝对稳定
向相反,表明气层层结稳定。
如果气块是干空气,或者是未饱和的湿空气
i
dT dz
d
静力稳定度判据为:
> γ = γd
<
静力不稳定 静力中性 静力稳定
• 条件不稳定
✓ 实际大气中,除了贴地气层以外,γ>γd的干绝 热不稳定是很少出现的;
✓ 饱和湿空气由于凝结潜热的释放,使气块受到的
浮力增加,即使在γ>γd的情况下,也可能出现不稳 定;
• 逆温层的作用
✓ 强对流爆发前夕,在中 低层常有逆温层的存在;
✓ 阻止水汽、热量上传, 使其在低层不断积累;
✓ 一旦逆温层被破坏(通 过地面加热、整层抬升等) ,强对流天气便会发生。
思考题
1. What is “absolutely stable”? 2. What is “absolutely unstable”? 3. What is “conditionally unstable”? 4. What is “conventionally unstable”? 5. What is dry adiabatic process and moist
《大气静力稳定度》PPT课件

运用气块模型,令气块离开平衡位置作微小的虚拟位 移,如果气块有回到原平衡位置的趋势,则这种大气 层结是稳定的.
如果气块既不远离平衡位置也无返回原平衡位置的 趋势,而是随遇平衡,就是中性的.
如果气块到达新位置后有继续移动的趋势,则此气层 的大气层结是不稳定的,它表明稍有扰动就会导致垂 直运动的发展.
平衡高度
自由对流高度 B
潜在不稳定型〔不同高度
T
与Tve关系不同〕,分
v
为:
真潜不稳定型〔"+">"—"〕
特点:在这种气层中,其底部只要受 到较强的扰动,迫使气块移到自由对流高 度B以上,气块的上升运动得到发展,其称 为真潜不稳定型;
ln<p00/p>
真潜不稳定型
p4
E
平衡高度
对流有效位 能CAPE
2、静力稳定度仅指气块处在该气层中,铅直 运动发展的趋势与可能;
3、稳定气层中可以有对流运动,但不利于对 流发展;不稳定气层中若无扰动,亦不可能 发展对流,但利于对流发展.
大气的垂直运动产生,主要决定于两个原因:一个是动力 原因,一个是热力原因.
动力原因: 飞机飞过,高山阻档,槽前和槽后等
热力原因 由于地表面局部受热不均匀,使得近地面层的空气温 度在水平方向上分布不均,温度较高的空气就因密度较小而 上升,周围较冷空气因密度较大而下沉补尝.
E'
E
平衡高度
se0
seH q0
自由对流高度 B Hc 0
1 H
P〔E'〕 P〔E〕
P<H> P<Hc>
p0
Td0
T0 T1 Tg
T
5.2.3 热雷雨的预报〔1〕
如果气块既不远离平衡位置也无返回原平衡位置的 趋势,而是随遇平衡,就是中性的.
如果气块到达新位置后有继续移动的趋势,则此气层 的大气层结是不稳定的,它表明稍有扰动就会导致垂 直运动的发展.
平衡高度
自由对流高度 B
潜在不稳定型〔不同高度
T
与Tve关系不同〕,分
v
为:
真潜不稳定型〔"+">"—"〕
特点:在这种气层中,其底部只要受 到较强的扰动,迫使气块移到自由对流高 度B以上,气块的上升运动得到发展,其称 为真潜不稳定型;
ln<p00/p>
真潜不稳定型
p4
E
平衡高度
对流有效位 能CAPE
2、静力稳定度仅指气块处在该气层中,铅直 运动发展的趋势与可能;
3、稳定气层中可以有对流运动,但不利于对 流发展;不稳定气层中若无扰动,亦不可能 发展对流,但利于对流发展.
大气的垂直运动产生,主要决定于两个原因:一个是动力 原因,一个是热力原因.
动力原因: 飞机飞过,高山阻档,槽前和槽后等
热力原因 由于地表面局部受热不均匀,使得近地面层的空气温 度在水平方向上分布不均,温度较高的空气就因密度较小而 上升,周围较冷空气因密度较大而下沉补尝.
E'
E
平衡高度
se0
seH q0
自由对流高度 B Hc 0
1 H
P〔E'〕 P〔E〕
P<H> P<Hc>
p0
Td0
T0 T1 Tg
T
5.2.3 热雷雨的预报〔1〕
第五章 大气静力稳定度

稳定气层:
气块在受扰后, 有一铅直虚位移,若 气块到达新位置后有 返回原来位置的趋势, 则为稳定气层;
中性气层:
气块在受扰后,有一 铅直位移,若气块到达新 位置后既无离开又无返回 原来位置的趋势,则为中 性气层;(随遇平衡)
不稳定气层:
气块在受扰后,有一铅直 虚位移,若气块到达新位置 后有离开原来位置的趋势, 则为不稳定气层;
1、当 T T e 时,则 暖时,可获得向上的加速度。 d w 2、当 T T e 时,则 d t 0。说明若气块比周围空气 冷时,将获得向下的加速度。 d w 3、若 T T e 时, d t 0 。说明气块与周围空气无温 差时,气块的垂直加速度为零。
d w 0 。说明若气块比周围空气 d t
不稳定 中性 稳定
-㏑P
γd
γ T
γ
γd T
稳定大气
-㏑P
不稳定大气
γd
γ T
中性大气
现举例说明:设有A、B、C 三团空气,均未饱和,其位置都在 离地200m的高度上,在作升降运动时其温度均按干绝热直减率 变化,即1℃/100m。而周围空气的温度直减率γ分别为 0.8℃/100m、1℃/100m 和1.2℃/100m,则可以有三种不同的 稳定度(图2· 25):
T T d w v ve B g d t T ve
单位质量 空气净浮力
考虑净浮力做功以及气块动能变化
T T d w v ve d z g d z d t T ve
5.2.1气层的不稳定能量(2)
利用dz=w dt ,由z0到z积分 :
z T T 1 2 12 v ve w w Δ E g d z 0 k z 2 2 T 0 ve 右边:净浮力将单位质量空气从z0移到z所作的功。 左边:转化成气块的动能增量,以Ek表示 若气块温度高于环境温度,则净浮力为正,气块 的垂直运动动能不断增加;反之,净浮力为负, 气块的动能将减小。 由于气块上升时的温度变化是确定的,因此浮力 的正负取决于厚气层的温度层结。
大气稳定度

硝酸、亚硝酸、硝酸盐、亚硝酸盐、硝酸酯
ester、亚硝酸酯和铵盐等。 含 碳 化 合 物 : CO 、 CO2 、 碳 氢 化 合 物
hydrocarbon等 含烃类卤(C素F化Cs合)化物合:物等CH。3Cl、CH3Br、CH3I、氟氯
1、含硫化合物
1969年Robinson等人报道,地球上全年 SO2的产生量为2.97亿吨。
天然源:海洋中生物的作用、植物叶绿素
chlorophyl的分解、森林中放出萜terpene的
氧化、森林大火以及大气中CH4的光化学氧化和 CO2的光解等,放电作用引起云层中有机物的光 氧化作用,二氧化碳的轻微解离作用,以及种子
发芽burgeon、籽苗生长及人和动物新陈代谢 metabolism过程等等。
人为源:其余都是由于人类活动产生的。
如:氟氯烃类(CFCs)化合物(氟里昂)可用作冰 箱制冷剂、喷雾器中的推进剂、溶剂和塑料起泡 剂等。CFCs完全由人为产生。
最常用的氟里昂是二氟二氯甲烷(F-12)和一 氟三氯甲烷(F-11)。
➢ NOx能和碳氢化合物生成光化学烟雾。
➢ 特点:
➢ 城市空气中的NOx含量大约高出全球平均值2个 数量级。
➢ NOx的浓度变化受季节和气象因素影响:一般冬 季高于夏季;取暖期高于非取暖期。
➢ NOx的汇:
➢ 被土壤和植被吸收; ➢ 转化成HNO3和硝酸盐而去除。
3、含碳化合物
CO
人为源:含碳燃料的不完全燃烧,或者是内燃机 在高温、高压的条件下燃烧。
各类工业企业向大气中排放的主要污染物质
环境化学中主要研究化学污染物,不涉及 物理污染物、较少涉及生物污染物,因为 后两者分别属于环境物理学和环境医学的 范畴。
大气污染化学中主要讨论氮氧化物、碳氧 化物、含硫化合物、颗粒物、挥发性有机 物等大气污染物。
ester、亚硝酸酯和铵盐等。 含 碳 化 合 物 : CO 、 CO2 、 碳 氢 化 合 物
hydrocarbon等 含烃类卤(C素F化Cs合)化物合:物等CH。3Cl、CH3Br、CH3I、氟氯
1、含硫化合物
1969年Robinson等人报道,地球上全年 SO2的产生量为2.97亿吨。
天然源:海洋中生物的作用、植物叶绿素
chlorophyl的分解、森林中放出萜terpene的
氧化、森林大火以及大气中CH4的光化学氧化和 CO2的光解等,放电作用引起云层中有机物的光 氧化作用,二氧化碳的轻微解离作用,以及种子
发芽burgeon、籽苗生长及人和动物新陈代谢 metabolism过程等等。
人为源:其余都是由于人类活动产生的。
如:氟氯烃类(CFCs)化合物(氟里昂)可用作冰 箱制冷剂、喷雾器中的推进剂、溶剂和塑料起泡 剂等。CFCs完全由人为产生。
最常用的氟里昂是二氟二氯甲烷(F-12)和一 氟三氯甲烷(F-11)。
➢ NOx能和碳氢化合物生成光化学烟雾。
➢ 特点:
➢ 城市空气中的NOx含量大约高出全球平均值2个 数量级。
➢ NOx的浓度变化受季节和气象因素影响:一般冬 季高于夏季;取暖期高于非取暖期。
➢ NOx的汇:
➢ 被土壤和植被吸收; ➢ 转化成HNO3和硝酸盐而去除。
3、含碳化合物
CO
人为源:含碳燃料的不完全燃烧,或者是内燃机 在高温、高压的条件下燃烧。
各类工业企业向大气中排放的主要污染物质
环境化学中主要研究化学污染物,不涉及 物理污染物、较少涉及生物污染物,因为 后两者分别属于环境物理学和环境医学的 范畴。
大气污染化学中主要讨论氮氧化物、碳氧 化物、含硫化合物、颗粒物、挥发性有机 物等大气污染物。
第七章大气静力稳定度和不稳能量第一节稳定度

880 17
700 -1
600 -18
500 -25
第一项:气块在起始高度时内外温差引起的 垂直加速度。 第二项:周围大气的温度递减率和气块本身 温度递减率的差别而引起的垂直加速度。 大气稳定度基本判别式:
dT T0 T0 r z dz dz g Tz dT r z dz dw T0' T0 dz 整理 : g g dt Tz Tz
(
rd
0)
t℃
1 dw g (r rm ) dz dt Tz
②、气块作湿绝热运动时,大气稳定 度的判据。
1 . r rm
1 dw 0 大气层结不稳定 dz dt
-lnp rm -lnp rm
-lnp rm r t℃
r
r 2)、 r=rm 中性 t℃
r<rm
t℃ 稳定
说明:气层对湿绝热运动的气块是 不稳定的。
( se 0)
se ( 0)
se ( 0)
③、结合干、湿绝热过程,大气稳定度判据。
1 . 当r rd (r rd rm ) 大气绝对不稳定和 se 0) ( 0
1、定义:气块受到垂直方向上扰动后,大气层结 使气块具有返回或远离平衡位置的趋势和程度。 二、判断稳定度的基本方法——气块法
复习:
r.rd .rm
Z
r :实际大气温度随高度的变化率。 r 曲线:实际大气温度随高度的变化曲线。 r
的数据由探空资料获得
r 曲线
T
rd
:干空气或未饱和的湿空气作绝热上升或下降时温度随高 度的变化率。
说明:气层对干绝热垂直运动的气块显不稳定 t℃
《大气静力稳定度》课件

2
大气静力稳定度在农业生产中的应用
农作物生长需要适宜的气候条件,稳定度对农业生产至关重要。
3
大气静力稳定度在环保领域中的应用
环境污染和空气质量监测需要考虑大气的稳定性。
总结
大气静力稳定度的研究对多个领域都具有重要意义,并且值得进一步探索。
参文献
相关文献的引用可以提供更深入的了解。
《大气静力稳定度》PPT课件
# 大气静力稳定度 ## 一、概述 - 什么是大气静力稳定度? - 为什么需要研究大气静力稳定度?
大气静力稳定度的计算方法
大气静力稳定度的定义
静力稳定度是描述大气中空气质 量分布不均匀性的物理指标。
稳定度的计算方法
稳定度通过计算空气质量的垂直 温度递减率得出。
不同稳定度计算方法的比较
不同方法在描述大气稳定度时考 虑了不同的因素,根据需要选择 适合的方法。
影响大气静力稳定度的因素
湿度的影响
湿度影响空气质量的密度和稳定性。
温度的影响
温度决定了空气流动的速度和稳定性。
风速的影响
风速对空气的混合和稳定度有直接影响。
大气静力稳定度的应用
1
大气静力稳定度在建筑物设计中的应用
了解大气的稳定度有助于设计建筑物的通风和空调系统。
大气静力稳定度优秀课件

• 不同的强对流天气现象的发展、移动与动力层结稳定度 有直接关系,例如龙卷、大雹、强烈的雷暴大风一般在 低空强烈的垂直切变环境中发展,并向垂直切变更大的 方向移动
• “相对风暴螺旋度”的概念其实是一个很好表述对称 不稳定(SI)的物理参量(v·du/dz-u·dv/dz),而理 论导出的“理查森数”是一个热力/动力稳定度的组合 参量
条件不稳定判据
绝对不稳定(干绝热不稳定)
绝对稳定
绝对稳定
条件性不稳定
4、对流性不稳定
• 气块理论——气层本身是静止的。实际大气常被 整层抬升(如气流过山,空气沿着锋面抬升)
• 不论气层原先的层结稳定性如何,在其被抬升达 到饱和后,如果是稳定的,称为对流性稳定,如 果不稳定,称为对流性不稳定,如果中性,称为 对流性中性。
• 上干下湿的条件性稳定气层,甚至是绝对稳定的 气层(如有逆温),经过整层抬升,可能变为不 稳定。
对流性不稳定判据
• 用假相当位温、相当位温、假湿球温度表示
对流性稳定
对流性不稳定
对流性不稳定和条件性不稳定比较
• 【相同点】ቤተ መጻሕፍቲ ባይዱ
• 都是潜在性不稳定
• 需要一定的外加抬升力才能使得潜在的不稳定转 化成真实的不稳定
• 适用:雷暴等对流性天气 • 基于气块法
雷暴和强风暴系统都是对流现象,而对流运动的 主要作用是浮力。浮力越强,产生的上升运动越 强,雷暴的垂直发展越高。 • 静力稳定度:反映气块在特定大气层结中所受浮 力状况,又称层结稳定度。 • 对流:气象上指由于浮力作用导致的垂直方向的 热传输
静力稳定度分类
不稳定 静力 中性
稳定 如果气层中任选一气块,气块受到垂直方向的冲击力 气块加速浮升——层结不稳定:促进气块垂直运动 气块等速运动——层结中性:不促进/不抑制气块垂
• “相对风暴螺旋度”的概念其实是一个很好表述对称 不稳定(SI)的物理参量(v·du/dz-u·dv/dz),而理 论导出的“理查森数”是一个热力/动力稳定度的组合 参量
条件不稳定判据
绝对不稳定(干绝热不稳定)
绝对稳定
绝对稳定
条件性不稳定
4、对流性不稳定
• 气块理论——气层本身是静止的。实际大气常被 整层抬升(如气流过山,空气沿着锋面抬升)
• 不论气层原先的层结稳定性如何,在其被抬升达 到饱和后,如果是稳定的,称为对流性稳定,如 果不稳定,称为对流性不稳定,如果中性,称为 对流性中性。
• 上干下湿的条件性稳定气层,甚至是绝对稳定的 气层(如有逆温),经过整层抬升,可能变为不 稳定。
对流性不稳定判据
• 用假相当位温、相当位温、假湿球温度表示
对流性稳定
对流性不稳定
对流性不稳定和条件性不稳定比较
• 【相同点】ቤተ መጻሕፍቲ ባይዱ
• 都是潜在性不稳定
• 需要一定的外加抬升力才能使得潜在的不稳定转 化成真实的不稳定
• 适用:雷暴等对流性天气 • 基于气块法
雷暴和强风暴系统都是对流现象,而对流运动的 主要作用是浮力。浮力越强,产生的上升运动越 强,雷暴的垂直发展越高。 • 静力稳定度:反映气块在特定大气层结中所受浮 力状况,又称层结稳定度。 • 对流:气象上指由于浮力作用导致的垂直方向的 热传输
静力稳定度分类
不稳定 静力 中性
稳定 如果气层中任选一气块,气块受到垂直方向的冲击力 气块加速浮升——层结不稳定:促进气块垂直运动 气块等速运动——层结中性:不促进/不抑制气块垂