材料性能_ 材料的疲劳性能_7-4 疲劳抗力指标_
复合材料的疲劳寿命与性能评估

复合材料的疲劳寿命与性能评估在现代工程领域,复合材料因其卓越的性能而备受青睐。
从航空航天到汽车制造,从体育器材到医疗器械,复合材料的应用无处不在。
然而,要确保这些材料在长期使用中的可靠性和安全性,对其疲劳寿命和性能进行准确评估就显得至关重要。
复合材料与传统材料相比,具有独特的性能优势。
它们通常由两种或更多种不同性质的材料组合而成,通过巧妙的设计和制造工艺,实现了单一材料无法达到的性能指标。
例如,碳纤维增强复合材料具有高强度、高刚度和低密度的特点,这使得其在追求轻量化和高性能的应用中具有极大的吸引力。
疲劳寿命是指材料在反复加载和卸载的循环作用下,直至发生失效所经历的循环次数。
对于复合材料而言,其疲劳寿命的评估是一个复杂的过程,受到众多因素的影响。
首先,材料的组成和微观结构起着关键作用。
复合材料中的增强纤维和基体材料的性能、纤维的排列方向和分布、纤维与基体之间的界面结合强度等,都会直接影响疲劳寿命。
以碳纤维增强复合材料为例,如果碳纤维在基体中的分布不均匀或者纤维与基体之间的界面结合不良,那么在循环载荷作用下,容易在这些薄弱部位产生裂纹,并逐渐扩展,从而降低材料的疲劳寿命。
其次,加载条件也是影响复合材料疲劳寿命的重要因素。
加载的频率、幅值、波形以及加载的环境温度和湿度等,都会对疲劳性能产生影响。
例如,高频加载往往会导致材料内部的热量积聚,加速材料的损伤和失效;而在潮湿的环境中,水分可能会渗透到材料内部,削弱纤维与基体之间的结合力,从而降低疲劳寿命。
此外,制造工艺也会对复合材料的疲劳性能产生显著影响。
制造过程中的缺陷,如孔隙、分层、纤维褶皱等,会成为潜在的裂纹源,降低材料的疲劳强度。
因此,优化制造工艺,减少缺陷的产生,对于提高复合材料的疲劳寿命至关重要。
为了评估复合材料的疲劳寿命,研究人员采用了多种实验方法和理论模型。
常见的实验方法包括恒幅疲劳试验、变幅疲劳试验和随机疲劳试验等。
在实验过程中,通过监测材料在不同循环次数下的应力、应变以及损伤的发展情况,来确定材料的疲劳寿命和疲劳性能。
材料科学-材料性能与指标

溶剂都可以将其溶解; • 交联型高分子在有机溶剂中不溶解,但能溶胀,使材
料体积膨胀,性能变差; • 不同的高分子材料,其分子链以及侧基不同,对各种
有机溶剂表现出不同的耐受性; • 组织结构对耐溶剂性也有较大影响。
– 例如,作为结晶性聚合物,聚乙烯在大多数有机溶剂中都难 溶,因而具有很好的耐溶剂性。
2.1.4 耐老化性 (3) Chemical stability of polymers ——高分子材料面临的问题
应力-应变曲线
无明显屈服的塑性材料拉伸曲线
树脂材料拉伸曲线
(MPa)
900
800
锰钢
700
600
硬铝
500
低碳钢
400
300
200 退火球墨铸铁
100
(%)
0 10 20 30
延展性或塑性的表征
• 延伸率
elongation
l f l0 100%
l0
< 5%:
脆性材料
材料性能知识点总结

材料性能知识点总结材料的性能是指材料在特定条件下所表现出来的力学、物理、化学、热学等方面的特性。
了解材料的性能对于进行材料的选择、设计以及工程应用至关重要。
本文将从材料的力学性能、物理性能、化学性能和热学性能等方面进行总结。
一、材料的力学性能1. 强度材料的强度是指材料抵抗外部力作用下抵抗破坏的能力。
常见的强度指标包括抗拉强度、抗压强度、抗弯强度等。
强度是材料最基本的性能之一,对于工程结构的设计和选择材料至关重要。
2. 韧性材料的韧性是指材料在受到外部力作用下发生损伤时的能力。
与强度不同,韧性反映了材料在受到冲击或者局部损伤后的延展性和吸能能力。
韧性高的材料通常会在受力后产生一定程度的变形而不会立即断裂。
3. 刚度材料的刚度是指材料在受力作用下的变形程度。
刚度高的材料在受力后会产生较小的变形,具有较好的抗变形能力。
在很多工程应用中要求材料具有一定的刚度以满足设计要求。
4. 硬度材料的硬度是指材料抵抗表面划伤或者压痕的能力。
硬度测试通常通过洛氏硬度、巴氏硬度等方法进行检测。
硬度是材料的持久性能,硬度高的材料通常耐磨损、耐腐蚀能力较强。
5. 疲劳性能材料的疲劳性能是指材料在受到交变载荷或者重复载荷作用下的抗疲劳能力。
疲劳性能是材料在实际使用中的重要性能之一,对于机械零部件、航空工业等领域的材料选择至关重要。
6. 蠕变性能材料的蠕变性能是指材料在高温下长期受力变形的抗蠕变能力。
在高温环境下,材料的蠕变性能会影响结构的安全和可靠性。
二、材料的物理性能1. 密度材料的密度是指单位体积内的质量。
密度的大小直接影响了材料的重量和强度。
通常情况下,密度较小的材料更适合用于要求轻量化设计的结构。
2. 热导率材料的热导率是指材料传导热量的能力。
热导率高的材料在传热和散热方面表现更佳。
3. 电导率材料的电导率是指材料传导电流的能力。
电导率高的材料通常用于导电材料和电子器件的制造。
4. 磁性材料的磁性是指材料在外磁场作用下的磁导能力。
金属材料的力学性能-疲劳强度

金属材料的力学性能-疲劳强度疲劳强度:机械零件,如轴、齿轮、轴承、叶片、弹簧等,在工作过程中各点的应力随时间作周期性的变化,这种随时间作周期性变化的应力称为交变应力(也称循环应力)。
在交变应力的作用下,虽然零件所承受的应力低于材料的屈服点,但经过较长时间的工作后产生裂纹或突然发生完全断裂的现象称为金属的疲劳。
疲劳强度是指金属材料在无限多次交变载荷作用下而不破坏的最大应力称为疲劳强度或疲劳极限。
实际上,金属材料并不可能作无限多次交变载荷试验。
一般试验时规定,钢在经受107次、非铁(有色)金属材料经受108次交变载荷作用时不产生断裂时的最大应力称为疲劳强度。
疲劳破坏是机械零件失效的主要原因之一。
据统计,在机械零件失效中大约有80%以上属于疲劳破坏,而且疲劳破坏前没有明显的变形,所以疲劳破坏经常造成重大事故,所以对于轴、齿轮、轴承、叶片、弹簧等承受交变载荷的零件要选择疲劳强度较好的材料来制造。
材料力学性能教学课件材料的疲劳

疲劳曲线
疲劳曲线是描述材料在循环载荷作用下的疲劳寿命与应力幅的关系曲 线
疲劳曲线的形状取决于材料的疲劳性能和载荷条件
疲劳曲线可以分为线性疲劳曲线和非线性疲劳曲线
疲劳曲线的斜率反映了材料的疲劳寿命与应力幅的关系,斜率越大, 疲劳寿命越长
疲劳强度
疲劳强度是指材 料在循环载荷作 用下抵抗破坏的 能力
疲劳强度与材料 的力学性能、微 观结构、环境因 素等有关
采用强化处理技术
热处理:通过加 热和冷却,改变 材料的微观结构, 提高其强度和韧 性
表面处理:如喷 丸、喷砂等,提 高表面硬度和耐 磨性
复合材料:将两 种或多种材料结 合,提高材料的 综合性能
形状优化:通过 改变材料的形状 和尺寸,提高其 抗疲劳性能
降低应力集中与尺寸效应的影响
优化设计:通过优化设计降低应力集中,如采用圆角、倒角等设计 材料选择:选择具有良好抗疲劳性能的材料,如高强度钢、铝合金等 热处理:通过热处理提高材料的抗疲劳性能,如淬火、回火等 表面处理:通过表面处理提高材料的抗疲劳性能,如喷丸、滚压等
疲劳数据处理:通过分析疲劳试验数据来评估材料的疲劳 性能
疲劳数据的处理与分析
数据采集:通过疲劳试验获取数据
数据可视化:使用图表展示分析结果, 如折线图、柱状图等
数据预处理:去除异常值、填补缺失 值等
结果解释:根据分析结果,解释材料 的疲劳性能和失效原因
数据分析:使用统计方法分析数据,如 方差分析、回归分析等
07
疲劳试验与数据处理
疲劳试验的种类与方法
静态疲劳试验:通过施加恒定载荷来测试材料的疲劳性能
动态疲劳试验:通过施加周期性载荷来测试材料的疲劳性 能
疲劳寿命试验:通过测试材料的疲劳寿命来评估其疲劳性 能
聚合物基复合材料的疲劳性能研究

聚合物基复合材料的疲劳性能研究在现代工程领域中,聚合物基复合材料因其优异的性能而备受关注。
这些材料在航空航天、汽车、船舶、体育用品等众多行业中得到了广泛应用。
然而,要确保这些材料在长期使用中的可靠性和安全性,对其疲劳性能的深入研究至关重要。
疲劳是指材料在循环载荷作用下,经过一定次数的循环后,发生局部永久性结构变化,从而产生裂纹并逐渐扩展,最终导致材料失效的现象。
对于聚合物基复合材料而言,其疲劳性能受到多种因素的影响。
首先,复合材料的组分特性对疲劳性能有着显著的影响。
聚合物基体的性质,如分子量、交联度、结晶度等,会直接影响材料的韧性和强度,进而影响其抵抗疲劳破坏的能力。
增强纤维的种类、长度、直径、分布以及与基体的界面结合强度等,也在很大程度上决定了复合材料的疲劳性能。
例如,碳纤维具有高强度和高模量,能显著提高复合材料的疲劳强度;而玻璃纤维相对来说强度和模量较低,对疲劳性能的提升效果不如碳纤维显著。
此外,纤维与基体之间的界面结合强度若不够理想,在循环载荷作用下容易发生脱粘,从而加速疲劳裂纹的萌生和扩展。
其次,制造工艺对聚合物基复合材料的疲劳性能也有不可忽视的影响。
不同的成型方法,如手糊成型、喷射成型、模压成型、缠绕成型等,会导致复合材料内部的孔隙率、纤维分布均匀性等存在差异。
孔隙的存在会成为应力集中点,降低材料的疲劳寿命;而纤维分布不均匀则会导致局部强度薄弱,容易引发疲劳裂纹。
因此,优化制造工艺,减少内部缺陷,提高纤维分布的均匀性,对于改善复合材料的疲劳性能具有重要意义。
载荷条件同样是影响聚合物基复合材料疲劳性能的关键因素。
循环载荷的频率、幅值、波形以及加载方式等都会对疲劳寿命产生影响。
一般来说,高频率的循环载荷会使材料内部的热量积聚加快,加速材料的老化和损伤,从而降低疲劳寿命;而较大的载荷幅值则会使材料在较短的循环次数内就达到疲劳极限。
此外,拉伸压缩循环载荷相较于单纯的拉伸或压缩载荷,对材料的损伤更为严重,因为在拉伸压缩转换过程中,材料内部会产生更大的应力变化。
疲劳强度资料

疲劳强度
疲劳强度是指材料在受到交变应力作用下所能承受的最大应力水平,是材料抗
疲劳性能的一个重要指标。
在工程实践中,疲劳强度的评定对于保证结构的可靠性和安全性至关重要。
疲劳的危害
疲劳是一种特殊的损伤形式,其分裂起点往往位于材料的内部缺陷或表面微小
裂纹的周围。
当材料受到交变应力作用时,这些缺陷和裂纹会逐渐扩展,导致材料的逐渐衰减和最终破坏。
这种疲劳损伤通常是隐蔽的、逐渐的,却又具有极其危险的特点。
影响疲劳强度的因素
疲劳强度受多种因素影响,其中最主要的包括材料的性能、应力水平、循环次数、环境条件等。
不同材料的疲劳强度差异很大,通常需要通过实验和试验来确定具体数值。
另外,应力水平和循环次数也是影响疲劳强度的重要因素,较高的应力水平和更多的循环次数会显著降低材料的疲劳寿命。
提高疲劳强度的方法
为了提高材料的疲劳强度,可以采取一系列措施。
首先是改善材料的内在质量,减少表面缺陷和微裂纹的存在,以增加材料的抗疲劳性能。
其次是通过热处理、表面强化等工艺手段来改善材料的性能,提高疲劳强度。
此外,设计合理的结构和避免应力集中也是提高疲劳强度的有效途径。
结语
疲劳强度作为材料性能的重要指标之一,对于保证结构的安全性具有重要意义。
正确评定疲劳强度,合理设计结构,提高材料性能,可以有效延长材料的使用寿命,保证结构的可靠性和安全性。
钢材的基本性能和指标

4 钢材疲劳现象
各种应力循环下的应力比、应力幅
4 钢材疲劳现象
疲劳强度
钢材在一定次数N的反复荷载作用下发生疲劳破坏,则破 坏应力即为相应于荷载次数N的疲劳强度。
疲劳寿命
相应的上述的反复次数N则被称为疲劳寿命。
疲劳极限
循环无穷次而不破坏的应力上限称为疲劳极限。
4 钢材疲劳现象
疲劳计算(常幅)
与N的关系
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
7 钢材的品种与规格 (4)规格 钢板 : 圆钢: 等边角钢: 不等边角钢: 槽钢: 工字钢: 钢管: H型钢: 焊接工字钢:
6 钢材的塑性破坏和脆性破坏
对比内容 破坏应力 破坏前变 形 断口外形 断口色泽 断口细部 破坏过程 破坏机理 危害性 对策 塑性破坏
引起脆性破坏的原因
脆性破坏
fu
明显
杯形 暗淡 纤维状 延续较长时间 剪应力超过晶粒抗剪能 力 便于发现和补救,较轻 合理设计结构强度
fy
不明显 平直 有光泽 晶粒状 突然 拉应力超过晶粒抗拉能力 大 考虑疲劳和冲击作用,合理选择材料 种类、构造形式、施工工艺
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)材料成分及组织的影响
合金成分:结构钢中碳的作用(间隙固溶 强化,第二相弥散强 化),提高疲劳强度; 夹杂物和缺陷降低疲劳强度;
显微组织:细化晶粒,提高疲劳强度;组 织不同,疲劳强度不同。
dN
(2)疲劳裂纹扩展门槛值
ΔKth是疲劳裂纹不扩展的 临界值,称为疲劳裂纹 扩展门槛值,表示材料阻止裂纹开始疲劳扩展的性能。
根据定义可以建立裂纹不疲劳断裂(无限寿命)的 校核公式:
∆K = Y∆σ a ≤ ∆Kth
若如已知裂纹件的裂纹尺寸 a 和材料的疲劳门槛 值 ΔKth ,即可求得该件无限疲劳寿命的承载能力:
环境介质:使材料表面产生微观腐蚀, 降低疲劳强度。
(2)表面状态和尺寸因素
表面状态:表面缺口导致应力集中,形成疲 劳源,引起疲劳断裂;
尺寸因素:尺寸增大,疲劳强度降低(尺寸 效应)。
(3)表面强化和残余应力
提高表面塑变抗力(强度和硬度),降低 表面拉应力,提高弯曲、扭转载荷下材料的 疲劳强度。
qf反映了疲劳过程中材料发生应力重分布 的能力,即降低应力集中的能力。
5、影响疲劳强度的因素
(1)工作条件
载荷条件 • 应力状态、平均应力; • 过载将降低疲劳强度和寿命; • 次载锻炼,可提高疲劳强度; • 间歇效应,对应变时效材料,可提高疲劳强度。
环境温度:温度↑,疲劳强度↓;温度↓, 疲劳强度↑
7-4 疲劳抗力指标
材料的疲劳抗力指标包括疲劳极限、疲 劳裂纹扩展门槛值、过载持久值和疲劳缺口 敏感度等。
1、疲劳极限(强度)
德国人Wohler(维勒)针对火车车轴疲劳进行 研究,得到了循环应力(S)与疲劳循环寿命(N) 之间的关系,称为疲劳曲线(S-N曲线)。
• 疲劳极限(σr):当应 力低到某值时,材料或 构件承受无限多次应力 循环或应变循环而不发 生断裂的应力值。
强度和疲劳极限的关系
一般可以根据材料的静强度估算疲劳极限。 存在关系:抗拉强度↑,疲劳极限↑。
对结构钢: σ-1P =0.23(σs+ σb); σ-1 =0.27(σs + σb)
对铸铁: σ-1P =0.4 σb ;
σ-1 =0.45σb
对铝合金: σ-1P =0.17 σb +7.5; σ-1 =0.17 σb -7.5
• 过载损伤界越陡直,
损伤区越窄,其抵
抗疲劳过载的能力 σ-1 越强。
σmax
过载损伤界 过载损伤区 过载持久值线
lgN0
lgN
工业上需要考虑过载损伤区!
4、疲劳缺口敏感度
• 材料在变动应力作用下的缺口敏感性,常用 疲劳缺口敏感度qf表征,即
qf
=
Kf Kt
−1 −1
式中:Kt为理论应力集中系数; Kf为有效应力集中系数。
可能产生影响——过载损伤!
• 材料在某一过载应力水平下,只有运行一定周次后, 疲劳强度或疲劳寿命才会降低,造成过载损伤。
• 把在每个过载应力 下运行能引起损伤 的最少循环周次连 接起来就得到该材 σ-1 料的过载损伤界。
σmax
过载损伤界 过载损伤区 过载持久值线
lgN0
lgN
• 过载应力-周次组合一旦落入此区,则会产生过载 损伤,造成材料疲劳极限降低或疲劳寿命降低。
对青铜:
σ-1 =0.21 σb
疲劳极限与材料强度近似成正比,所以合金化、
细化晶粒和
2、疲劳裂纹扩展门槛值
(1)疲劳裂纹扩展速率曲线
Ⅰ区是疲劳裂纹初始
扩展阶段,
da dN
很小。
Ⅱ区是疲劳裂纹扩展 主要阶段,ddNa 较大。 Ⅲ区是疲劳裂纹扩展 最后阶段,da 很大。
疲劳极限是保证机件疲劳寿命的重要性能指标。
完整S-N曲线
准静态断裂(AB段):
σmax σ
AB C
A端应力接近于抗拉强度, b
循环寿命很短(<10),准
静态断裂。
有限疲 劳寿命
D
N
无限疲 劳寿命
低周疲劳(BC段):随着循环次数的增加,使材料
发生疲劳破坏的最大应力不断下降。
高周疲劳(CD段): 循环应力较低的CD段寿命 较长,称高周疲劳。大多 数通用机械零件及专用零 件的失效都是由高周疲劳 引起的。
Kf
= σ −1 σ −1N
Kf > 1 ,与缺口几何形状和材 料因素有关。
Kf为光滑试样和缺口试样疲劳强度之比
Kf = Kt时,没有发生应力重新分布,qf =1, 材料对缺口十分敏感。
当Kf =1时,σ-1=σ-1N,说明疲劳过程中应力 产生了很大的重新分布,应力集中完全消除, 材料对疲劳缺口完全不敏感。
因此,需要研究材料过载下的疲劳寿命。
(1)过载持久值
• 材料在高于疲劳强度的一定应力下工作,发生疲 劳断裂的应力循环周次称为材料的过载持久值,又 称为有限疲劳寿命。 特点:过载持久值由疲劳 曲线倾斜部分确定,曲线 倾斜得越陡直,持久值越 高,材料对过载荷的抗力 越高。
(2)过载损伤界
实际上,机件往往预先受短期过载,而以后再在 正常的工作应力下运行。这种短期的过载对材料 的性能是否产生影响?
σmax σ
AB C
b
D
有限疲 劳寿命
N
无限疲 劳寿命
D点所对应的应力σD是材料的无限寿命疲劳极限,也 称为持久疲劳极限,用符号σ-1表示。
有些机械零件,例如一次性使用的火箭发动机的 某些零件、导弹壳体等,在整个使用寿命期间应力 变化次数只有几百到几千次,故其疲劳属于低周疲 劳。但对绝大多数通用零件来说,当其承受变应力 作用时,其应力循环次数总是大于105的。所以大部 分是高周疲劳。
∆σ ≤ ∆Kth
Ya
若已知裂纹件的工作载荷Δσ和材料的疲劳门槛值 ΔKth ,即可求得裂纹的允许尺寸:
a < ( ) 1 ∆Kth 2 Y 2 ∆σ
3、疲劳过载
实际服役过程中机件在高于疲劳极限的应 力状态下偶尔短时过载。
• 例如:汽车的紧急刹车、突然起动。
不要求无限寿命设计。 • 例如:飞机的起落架。