信号与系统z变换教学(精选)
信号与系统 z变换

信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。
本文将介绍信号与系统中的z变换原理及应用。
一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。
在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。
它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。
z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。
通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。
此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。
二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。
通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。
2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。
我们可以通过分析代数方程的根的位置,判断系统的稳定性。
如果差分方程的根都在单位圆内,说明系统是稳定的。
3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。
通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。
4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。
通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。
然后再通过z逆变换将离散时间信号重构为连续时间信号。
5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。
通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。
z变换是信号与系统分析中非常重要的工具。
信号与系统_第八章 z变换、离散时间系统的z域分析

Re(z)
C是包围X(z)zn-1所有极点之逆时针闭合积分路线,通常选 择z平面收敛域内以原点为中心的圆。
➢ 求X(z)的反z变换的三种方法 ✓留数法 ✓幂级数展开和长除法 ✓部分分式展开法
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(1)
✓ 步骤 (1)将X(z)除以z,得到X(z)/z=X1(z); (2)将X1(z)按其极点展成部分分式(其方法与拉氏变换 的部分分式展开完全一致);
3.x(n)为左边序列
x(n)是无始有终的序列,即当n n2 时, x(n)=0 。
X (z)
n2
x(n)
z
n
x(n)z n
jIm(z)
n
n n2
✓若n20,0z RX2
0
RX2 Re(z)
✓若n20,0z RX2
中国民航大学 CAUC
8.2 z变换的收敛域
4.x(n)为双边序列
x(n)是从n =延伸到n = 的序列 。
(3)X(z)=zX1(z),得到X(z)的部分分式展开式;
(4)对X(z)的每一个部分分式进行反z变换,就得到X(z) 对应的序列x(n)。
[例]求 X (z)
z2
( z 1) 的逆z变换。
(z 1)( z 0.5)
中国民航大学 CAUC
8.3 逆z变换
二、部分分式展开法求逆z变换(2)
[例]求收敛域分别为z1和 z1 两种情况下, X (z) 1 2z 1
➢X(z)收敛域的确定必须同时依赖于 ✓ 序列的性质(有限长,右边,左边,双边) ✓ 是对x(n)进行单边还是双边z变换 ✓ X(z)的极点
中国民航大学 CAUC
信号与系统 §6.3 逆z变换

z (z a)3
2z (z a)3
▲
■
第9页
例:已知象函数 F(z) z3 z 2 ,z>1 的原函数。
(z 1)3
解: F(z) z 2 z K11 K12 K13
z (z 1)3 (z 1)3 (z 1)2 z 1
K11 (z 1)3
F(z) z
z1 2
K12
d dz
( z
,|z| > ,|z| <
可见,因果序列和反因果序列的象函数分别是z-1和z 的幂级数。其系数就是相应的序列值。
例:已知象函数
z2
z2
F(z)
(z 1)(z 2) z 2 z 2
其收敛域如下,分别求其相对应的原序列f(k)。 (1) |z| > 2 (2) |z|< 1 (3) 1< |z| < 2
1) 3
F(z) z
z 1
3
K13
1 2
d2 d z2
(z
1) 3
F(z) z
z 1
1
F(z) 2z 3z z (z 1)3 (z 1)2 z 1
f(k)=[k(k-1)+3k+1](k)
▲
■
第 10 页
z e j
若z> , f(k)=2K1kcos(k+)(k) 若z< , f(k)= –2K1kcos(k+)(– k – 1)
▲
■
第8页
(3) F(z)有重极点
F(z)展开式中含
(z
z a)r
项(r>1),则逆变换为
若z> ,对应原序列为 k(k 1).....(k r 2) ak r1 (k)
(完整版)信号与系统z变换教学

当|a-1z|<1,即|z|<|a|时,收敛。
1
1
z
X (z) 1 1 a1z 1 az1 z a ,
| z || a |
Im(z)
xa
1 Re(z
Unit
circle
例 两个实指数信号之和
x[n] 7(1/ 3)n u[n] 6(1/ 2)n u[n]
X (z) {7(1/ 3)n u[n] 6(1/ 2)n u[n]}zn n
第10章 z变换
掌握Z 变换定义及基本性质、牢记常用典型信号的Z 变换。 掌握求解信号Z 变换(包括正变换和反变换)的基本方法。 掌握运用Z 变换分析LTI 系统的方法。 掌握系统函数H(z)收敛域与系统因果稳定性的关系:定 性分析方法。
掌握系统的典型表示方法:H(z)、h[n]、差分方程、模拟 框图、信号流图、 零极点+收敛域图,以及它们之间的转 换。
X (z) X (re jw ) F{x[n]rn}
三、z变换的几何解释和收敛域
Z变换和DT信号傅立叶变换之间关系的讨 论和对CT信号的讨论几乎并行进行的,但 是一些重要的不同。
在z变换中当变量z的模为1,即z=ejω时,z 变换退化成DTFT。
傅立叶变换就是在复数z平面中,半径为1 的圆上的z变换。
离散时间信号的z变换定义为:
记作:
X (z) x[n]zn n
Z
x[n] X (z)
为了理解z变换和离散傅立叶变换之间的关系
z=rejw
则:
X ( z) X (re jw ) x[n](re jw )n n
因此,
(x[n]r n )e jwn n
Im(z) r
w 1 Re(z)
信号与系统第五章 Z变换

f(n) n n1 f(n)示意图 n2
F ( z)
n n1
n2
f (n) z
n
在这种情况下,有限长序列的Z变换收敛域为 |z|>0,即除了z=0外,序列Z变换在整个Z平面上收 敛。
信号处理基础 4) n1=n2=0
即f(n)=Aδ(n) ,A为常数,序列的Z变换为
0
F ( z ) A (n) z A
信号处理基础
收敛域的概念:
Z变换定义为无穷幂级数 之和,显然只有当幂 级数收敛,即
n
f ( n) z
n
时,Z变换才存在。
上式称为绝对可和条件 ,它是序列 f (n)的Z变换存 在的充分必要条件。
Z变换的收敛性取决于:序列和z的取值范围。如果 序列给定,则Z变换的收敛性取决于z的取值范围,我 们称所有使序列的Z变换绝对收敛的z值的集合为序列Z 变换的收敛域。
DTFT
F (e )
j
n
f ( n )e
jn
n
f (n)(e
j n
)
式中ejω 是 ω 的复函数,变量 ω 是实数。 也可看成是复数变量jω 的函数,这时ejω 就是复变函数。
信号处理基础
序列的傅里叶变换存在的充分条件为
n
f ( n)
F ( z) f (2) z f (1) z f (0) z f (1) z f (2) z ...
上式表明,序列的Z变换是复变量z-1 的幂级数, 其系数是序列的值。因此F(z)是复变函数,复变量z 代表Z平面中的点。 上述幂级数的项数等于序列的长度,且n<0的序 列值作为正次幂的系数,n>0的序列值作为负次幂 的系数。
信号与系统-逆Z变换

X(z) =
z2
(z − 1)( z − 0.5)
X ( z) = A1 + A2 z z − 0.5 z − 1
X(z) = 2z − z z − 1 z − 0.5
A1
=
⎡ ⎢⎣
X (z) z
(z
−
0.5)⎥⎦⎤ z=0.5
=
−1
A2
=
⎡ ⎢⎣
X (z) z
(z
−
1)⎥⎦⎤ z=1
=
2
x(n) = (2 − 0.5n )u(n)
X (z) z
=
1 z(z − 1)2
=
−1 + z−1
1 (z − 1)2
+
1 z
∴
X(z)
=
−z z−1
+
(z
z − 1)2
+1
x(n) = −u(n) + nu(n) + δ (n)
38
信号与系统 生物医学工程学院 2011级
¾ 长除法
x(n)的Z变换为
∞
∑ X (z) = x(n)z−n n = −∞
36
信号与系统 生物医学工程学院 2011级
例
X(z) =
1 (z − 1)2
,
z
> 1,求x(n)。
解
X (z) = 1 = B1 + B2 + B3
z z(z − 1)2 z − 1 (z − 1)2 z
Bj
=
1 (s −
⎡ ds− j
j
)!
⎢ ⎣
d
z
s−
j
(z
−
zi )s
信号与系统-Z变换

1
X (z) xnzn bn zn
n
n
bnzn 1 bnzn
n1
n0
若公比|b-1 z|<1,即|z|<|b|时此级数收敛。此时
X (z)
1
1 1 b1z
z
z b
zb
信号与系统(信息工程)
jIm[z]
b
╳
Re[z] z b
收敛域零、极点分布
信号与系统(信息工程)
当n→±∞,序列x(n)均不为零时,称x(n)为双边序列, 它可以看作是一个左边序列和一个右边序列之和。对此 序列进行Z变换得到
1
X (z) Zxn x(n)zn x(n)zn x(n)zn
n
n0
n
右边序列
左边序列
信号与系统(信息工程)
jIm[z]
R1
R2
o
Re[z]
信号与系统(信息工程)
例 :已知无限长双边序列x(k)为
x(n) anu(n) bnu(n 1)
式中,|b|>|a|。求x(k)的双边Z变换及其收敛域。
z
z 12
信号与系统(信息工程)
若
ZT
x1(n) X1(z)
Rx11 z Rx12
ZT
x2 (n) X 2 (z) Rx21 z Rx22
则
ZT
ax1(n) bx2 (n) aX1(z) bX 2 (z)
max
R , R x11
x21
z
min
R , R x12
x22
信号与系统(信息工程)
X (z)
n0
zn
1 1 z1
1 z
信号与系统(信息工程)
6.1.2 Z变换的收敛域
信号与系统第六章Z变换

差分方程的稳定性分析
01
稳定性定义
02
稳定性判据
如果一个离散时间系统在输入信号的 作用下,其输出信号不会无限增长, 则称该系统是稳定的。
对于差分方程,可以通过判断其极点 位置和类型来分析系统的稳定性。如 果所有极点都位于复平面的左半部分 ,则系统是稳定的;否则,系统是不 稳定的。
03
稳定性分析的意义
反转性质在通信和控制系统设计中非常有用,因为它允 许我们通过改变信号的方向来改变系统的性能。
卷积性质
卷积性质描述了z变换的卷积特性。如 果两个信号在时间上相乘,那么它们 的z变换就是它们的卷积。
卷积性质在信号处理中非常重要,因 为它允许我们通过将两个信号相乘来 得到一个新的信号。
复共轭性质
复共轭性质描述了z变换的复共轭特性。如果一个信号是实数,那么其z变换就是其复共轭的离散化表 示。
信号与系统第六章z 变换
目录
CONTENTS
• 引言 • z变换的收敛域 • z变换的性质和应用 • z变换与离散时间系统 • z变换与差分方程 • z变换与信号处理
01
引言
背景介绍
ห้องสมุดไป่ตู้
信号与系统是通信、电子、控制等领 域的重要基础课程,其中第六章z变换 是信号与系统中的重要章节之一。
z变换是离散时间信号处理中的一种数 学工具,用于分析离散时间信号和系 统的性质和行为。
离散信号的z变换
离散信号的z变换是将离散时间序列通过z变 换转换为复数序列,用于分析离散时间系统 的特性。
系统的频率响应和极点零点分析
01
系统的频率响应
02
系统的极点和零点
03
系统稳定性分析
通过z变换分析系统的频率响应, 了解系统在不同频率下的性能表 现。