9.3多项式乘多项式课文练习(含答案)
多项式乘多项式试题精选(二)附答案

.多项式乘多项式试题精选(二)一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片_________ 张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= _________ .3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于_________ .4.如图,已知正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼成一个长为(a+2b)、宽为(a+b)的大长方形,则需要A类卡片_________ 张,B类卡片_________ 张,C类卡片_________ 张.5.计算:(﹣p)2•(﹣p)3= _________ ;= _________ ;2xy•(_________ )=﹣6x2yz;(5﹣a)(6+a)= _________ .6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为_________ .7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖_________ 块.8.若(x+5)(x﹣7)=x2+mx+n,则m= _________ ,n= _________ .9.(x+a)(x+)的计算结果不含x项,则a的值是_________ .10.一块长m米,宽n米的地毯,长、宽各裁掉2米后,恰好能铺盖一间房间地面,问房间地面的面积是_________ 平方米.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为_________ .12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是_________ .二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值.15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)18.(x+7)(x﹣6)﹣(x﹣2)(x+1)19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).20.计算:(a﹣b)(a2+ab+b2)21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式_________ ;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值.28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少?29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.30.(1)填空:(a﹣1)(a+1)= _________ (a﹣1)(a2+a+1)= _________ (a﹣1)(a3+a2+a+1)= _________ (2)你发现规律了吗?请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= _________(3)根据上述规律,请你求42012+42011+42010+…+4+1的值._________ .多项式乘单项式试题精选(二)参考答案与试题解析一.填空题(共13小题)1.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(2a+b),宽为(a+b)的长方形,则需要C类卡片 3 张.2.(x+3)与(2x﹣m)的积中不含x的一次项,则m= 6 .3.若(x+p)(x+q)=x2+mx+24,p,q为整数,则m的值等于10,11,14,25 .根据边长组成图形.数出需要A类卡片1张,B类卡片2张,C类卡片3张.5.计算:(﹣p)2•(﹣p)3= ﹣p5;= ﹣a6b3;2xy•(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .a(﹣aa6.计算(x2﹣3x+1)(mx+8)的结果中不含x2项,则常数m的值为.m=7.如图是三种不同类型的地砖,若现有A类4块,B类2块,C类1块,若要拼成一个正方形到还需B类地砖 2 块.8.若(x+5)(x﹣7)=x2+mx+n,则m= ﹣2 ,n= ﹣35 .9.(x+a)(x+)的计算结果不含x项,则a的值是.x+.11.若(x+m)(x+n)=x2﹣7x+mn,则﹣m﹣n的值为7 .12.若(x2+mx+8)(x2﹣3x+n)的展开式中不含x3和x2项,则mn的值是 3 .,,13.已知x、y、a都是实数,且|x|=1﹣a,y2=(1﹣a)(a﹣1﹣a2),则x+y+a3+1的值为 2 .二.解答题(共17小题)14.若(x2+2nx+3)(x2﹣5x+m)中不含奇次项,求m、n的值..15.化简下列各式:(1)(3x+2y)(9x2﹣6xy+4y2);(2)(2x﹣3)(4x2+6xy+9);(3)(m﹣)(m2+m+);(4)(a+b)(a2﹣ab+b2)(a﹣b)(a2+ab+b2).m)m m+﹣;16.计算:(1)(2x﹣3)(x﹣5);(2)(a2﹣b3)(a2+b3)17.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)] (2)(a+b)(a2﹣ab+b2)18.(x+7)(x﹣6)﹣(x﹣2)(x+1)19.计算:(3a+1)(2a﹣3)﹣(6a﹣5)(a﹣4).20.计算:(a﹣b)(a2+ab+b2)21.若(x2+px﹣)(x2﹣3x+q)的积中不含x项与x3项,(1)求p、q的值;(2)求代数式(﹣2p2q)2+(3pq)﹣1+p2012q2014的值.)),(﹣+×+9.22.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.23.若(x﹣1)(x2+mx+n)=x3﹣6x2+11x﹣6,求m,n的值.24.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证等式a(a+b)=a2+ab成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式(a+2b)(a+b)=a2+3ab+2b2;(2)试写出一个与(1)中代数恒等式类似的等式,并用上述拼图的方法说明它的正确性.25.小明想把一长为60cm,宽为40cm的长方形硬纸片做成一个无盖的长方体盒子,于是在长方形纸片的四个角各剪去一个相同的小正方形.(1)若设小正方形的边长为xcm,求图中阴影部分的面积;(2)当x=5时,求这个盒子的体积.26.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.27.若(x﹣3)(x+m)=x2+nx﹣15,求的值...28.小明在进行两个多项式的乘法运算时(其中的一个多项式是b﹣1),把“乘以(b﹣1)”错看成“除以(b﹣1)”,结果得到(2a﹣b),请你帮小明算算,另一个多项式是多少?29.有足够多的长方形和正方形的卡片如图.如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.或30.(1)填空:(a﹣1)(a+1)= a2﹣1 (a﹣1)(a2+a+1)= a3﹣1 (a﹣1)(a3+a2+a+1)= a4﹣1 (2)你发现规律了吗?请你用你发现的规律填空:(a﹣1)(a n+a n﹣1+…+a2+a+1)= a n+1﹣1(3)根据上述规律,请你求42012+42011+42010+…+4+1的值.(42013﹣1).(。
多项式与多项式相乘-同步练习(含答案)

第3课时 多项式与多项式相乘要点感知 多项式与多项式相乘,先用一个多项式的_____乘另一个多项式的_____,再把所得的积_____.(a +b )(p +q )=_____.预习练习1-1 填空:(1)(a +4)(a +3)=a ·a +a ·3+4·_____+4×3=_____; (2)(2x -5y )(3x -y )=2x ·3x +2x ·_____+(-5y )·3x +(-5y )·_____=_____.1-2 计算:(x +5)(x -7)=_____;(2x -1)·(5x +2)=_____.知识点1 直接运用法则计算1.计算:(1)(m +1)(2m -1); (2)(2a -3b )(3a +2b ); (3)(2x -3y )(4x 2+6xy +9y 2); (4)(y +1)2;(5)a (a -3)+(2-a )(2+a ).2.先化简,再求值:(2x -5)(3x +2)-6(x +1)(x -2),其中x =51.知识点2 多项式乘以多项式的应用3.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A.6x 3-5x 2+4xB.6x 3-11x 2+4xC.6x 3-4x 2D.6x 3-4x 2+x +44.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为43a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是_____平方厘米.5.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了_____平方米.知识点3 (x +p )(x +q )=x 2+(p +q )x +pq6.下列多项式相乘的结果为x 2+3x -18的是( )A.(x -2)(x +9)B.(x +2)(x -9)C.(x +3)(x -6)D.(x -3)(x +6)7.已知(x +1)(x -3)=x 2+ax +b ,则a ,b 的值分别是( )A.a =2,b =3B.a =-2,b =-3C.a =-2,b =3D.a =2,b =-38.计算:(1)(x +1)(x +4) (2)(m -2)(m +3) (3)(y +4)(y +5) (4)(t -3)(t +4).9.计算:(1)(m -2n )(-m -n ); (2)(x 3-2)(x 3+3)-(x 2)3+x 2·x ;(3)(-7x 2-8y 2)·(-x 2+3y 2); (4)(3x -2y )(y -3x )-(2x -y )(3x +y ).10.(1)化简求值:(x -2y )(x +3y )-(2x -y )(x -4y ),其中x =-1,y =2.(2)已知|2a +3b -7|+(a -9b +7)2=0,试求(41a 2-21ab +b 2)(21 a +b )的值.11.若多项式(x 2+mx +n )(x 2-3x +4)展开后不含x 3和x 2项,求m 和n 的值.12.一个正方形的一边增加3 cm ,相邻的一边减少3 cm ,得到的长方形的面积与这个正方形每一边减少1 cm 所得的正方形的面积相等,求这个长方形的面积.13.求出使(3x +2)(3x -4)>9(x -2)(x +3)成立的非负整数解.挑战自我14.由课本第100页的问题3可知,一些代数恒等式可以用平面几何图形的面积来表示,如:(2a +b )(a +b )=2a 2+3ab +b 2,就可以用如图1的图形的面积表示.(1)请直接写出图形2表示的代数恒等式:;(2)试画出一个几何图形,使它的面积表示(a +b )·(a +3b )=a 2+4ab +3b 2.参考答案课前预习要点感知 每一项 每一项 相加 ap +aq +bp +bq预习练习1-1 (1)a a 2+7a +12 (2)(-y ) (-y ) 6x 2-17xy +5y 2 1-2 x 2-2x -35 10x 2-x -2当堂训练1.(1)原式=2m 2+m -1.(2)原式=6a 2-5ab -6b2.(3)原式=8x 3-27y3.(4)原式=y 2+2y +1.(5)原式=-3a +4.2.原式=1.3.B4.(43a 2+7a +16)5.(20x -25)6.D7.B8.(1)原式=x 2+5x +4.(2)原式=m 2+m -6.(3)原式=y 2+9y +20.(4)原式=t 2+t -12.课后作业9.(1)原式=-m 2+mn +2n 2.(2)原式=2x 3-6.(3)原式=7x 4-13x 2y 2-24y 4.(4)原式=-15x 2+10xy -y 2. 10.(1)-61. (2)2.11.m =3,n =5.12.设正方形的边长为x cm .依题意得(x +3)(x -3)=(x -1)(x -1).解得x =5.∴长方形的面积为:(5+3)×(5-3)=16(cm 2).13.原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <1546.∴x 取非负整数为0,1,2,3. 14.(1)(a +2b )·(2a +b )=2a 2+5ab +2b 2(2)图略.。
多项式乘多项式习题(含答案)

第3课时多项式与多项式相乘知识点多项式与多项式相乘1.填空:(1)(x-1)(x+2)=x2+________+________-2=______________;(2)(2x+3y)(x-2y)=________+________+________+________=________________.2.[2018·武汉]计算(a-2)(a+3)的结果是( )A.a2-6 B.a2+a-6 C.a2+6 D.a2-a+63.有下列各式:①(a-2b)(3a+b)=3a2-5ab-2b2;②(2x+1)(2x-1)=4x2-x-1;③(x-y)(x+y)=x2-y2;④(x+2)(3x+6)=3x2+6x+12.其中正确的有( )A.4个 B.3个 C.2个 D.1个4.化简:(1)(2x+3y)(3x-2y); (2)(a+3)(a-1)+a(a-2);(3)(2x-3)(x+4)-(x+5)(x+6).5.先化简,再求值:(1)8x2-(x-2)(3x+1)-2(x+1)(x-5),其中x=-2;(2)x(x+2)(x-3)+(x-1)(-x2-x+1),其中x=-1 3 .6.根据右图的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a2+3ab+b2,那么根据图②的面积可以说明多项式的乘法运算是( )A.(a+3b)(a+b)=a2+4ab+3b2B.(a+3b)(a+b)=a2+3b2C.(b+3a)(b+a)=b2+4ab+3a2D.(a+3b)(a-b)=a2+2ab-3b27.已知a+b=m,ab=-4,化简(a-2)(b-2)的结果是( )A.6 B.2m-8 C.2m D.-2m8.若(x -a )(x -5)的展开式中不含有x 的一次项,则a 的值为( )A .0B .5C .-5D .5或-59.若M =(a +3)(a -4),N =(a +2)(2a -5),其中a 为有理数,则M ,N 的大小关系是( )A .M >NB .M <NC .M =ND .无法确定10.一个长方形的长为x ,宽为y ,若将其长增加1,宽减少1,则得到的新长方形的面积为____________.11.(1)若(x -2)(x +a )=x 2+bx -2,则a +b =________.(2)若a 2-a -3=0,则a 2(a -4)的值是____________________________.12.已知三角形的底边长为(2x +1)cm ,高为(x -2)cm ,若把底边和高各增加5 cm ,那么三角形的面积增加了多少?并求出当x =3时三角形增加的面积.13.如图8-4-3,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.图8-4-314.小思同学用若干张A ,B ,C 三类卡片(如图8-4-4)拼出了一个长为2a +b 、宽为 a +b 的长方形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出拼图示意图.图8-4-415.阅读下列解答过程,并回答问题.在(x 2+ax +b )(2x 2-3x -1)的积中,x 3项的系数为-5,x 2项的系数为-6,求a ,b 的值.解:(x 2+ax +b )(2x 2-3x -1)=2x 4-3x 3+2ax 3+2bx 2-3ax 2-3bx ①=2x 4-(3-2a )x 3+(3a -2b )x 2-3bx .②根据对应项系数相等,有⎩⎨⎧3-2a =-5,3a -2b =-6,③ 解得⎩⎪⎨⎪⎧a =4,b =9.回答:(1)上述解答过程是否正确?________;(2)若不正确,从第_____步开始出现错误,其他步骤是否还有错误?________________;(3)写出正确的解答过程.【详解详析】1.(1)2x (-x ) x 2+x -2(2)2x 2 (-4xy ) 3xy (-6y 2) 2x 2-xy -6y 22.B [解析] (a -2)(a +3)=a 2+3a -2a -6=a 2+a -6.故选B.3.C [解析] ①(a -2b )(3a +b )=3a 2-5ab -2b 2,故①正确;②(2x +1)(2x -1)=4x 2-1,故②错误;③(x -y )(x +y )=x 2-y 2,故③正确;④(x +2)(3x +6)=3x 2+12x +12,故④错误.故正确的有2个.4.解:(1)(2x +3y )(3x -2y )=6x 2+5xy -6y 2 .(2)(a +3)(a -1)+a (a -2)=a 2+2a -3+a 2-2a=2a 2-3.(3)(2x -3)(x +4)-(x +5)(x +6)=2x 2+8x -3x -12-(x 2+5x +6x +30)=2x 2+5x -12-x 2-5x -6x -30=x 2-6x -42.5.解:(1)原式=8x 2-(3x 2+x -6x -2)-2(x 2-5x +x -5)=8x 2-3x 2+5x +2-2x 2+8x +10=3x 2+13x +12.把x =-2代入上式,得3×(-2)2+13×(-2)+12=-2.(2)原式=x (x 2-x -6)+(x -1)(-x 2-x +1)=x 3-x 2-6x -x 3-x 2+x +x 2+x -1=-x 2-4x -1.把x =-13代入上式,得-⎝ ⎛⎭⎪⎫-132-4×⎝ ⎛⎭⎪⎫-13-1=29. [点评] 注意此题考查的是多项式乘多项式、合并同类项和计算.6.A7.D [解析] (a -2)·(b -2)=ab -2a -2b +4=ab -2(a +b )+4,利用整体代入法,将a +b =m ,ab =-4代入原式计算,可得原式=-4-2m +4=-2m .8.C [解析] (x -a )·(x -5)=x 2-5x -ax +5a =x 2+(-5-a )x +5a .∵(x -a )(x -5)的展开式中不含有x 的一次项,∴-5-a =0,解得a =-5.9.B [解析] ∵M -N =(a +3)(a -4)-(a +2)(2a -5)=a 2-a -12-2a 2+a +10=-a 2-2≤-2<0,∴M <N . 故选B.10.xy -x +y -1[解析] S =(x +1)(y -1)=xy -x +y -1.11.(1)0 (2)-9[解析] (1)∵(x -2)(x +a )=x 2+bx -2,∴x 2+(-2+a )x -2a =x 2+bx -2,∴-2+a =b ,-2a =-2,解得a =1,b =-1,∴a +b =0.(2)∵a 2-a -3=0,∴a 2=a +3,a 2- a =3,∴a 2(a -4)=(a +3)(a -4)=a 2-a -12=3-12=-9.12.解:根据题意,得三角形增加的面积为12(2x +1+5)(x -2+5)-12(2x +1)(x -2)=12(2x 2+6x +6x +18)-12(2x 2-4x +x -2)=x 2+6x +9-(x 2-32x -1)=⎝ ⎛⎭⎪⎫152x +10cm 2.当x =3时,原式=152×3+10=32.5. 故当x =3时,三角形增加的面积为32.5 cm 2.13.解:绿化的面积为(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=(5a 2+3ab )米2.当a =3,b =2时,原式=5×32+3×3×2=63.所以当a =3,b =2时的绿化面积为63平方米.14.解:根据题意得(2a +b )(a +b )=2a 2+2ab +ab +b 2=2a 2+3ab +b 2.因为A ,B ,C三类卡片的面积分别为ab ,b 2,a 2,所以所用A ,B ,C 三类卡片的张数分别为3张、1张、2张.(图略)15.解:(1)不正确(2)① 第②③步还有错误(3)(x 2+ax +b )(2x 2-3x -1)的展开式中,含x 3的项为-3x 3+2ax 3=(2a -3)x 3,含x 2的项为-x 2+2bx 2-3ax 2=(-3a +2b -1)x 2. 又∵x 3项的系数为-5,x 2项的系数为-6,∴⎩⎨⎧2a -3=-5,-3a +2b -1=-6,解得⎩⎪⎨⎪⎧a =-1,b =-4.。
多项式乘多项式专项练习30题选择解答(有答案)ok

多项式乘多项式专项练习30题选择解答(有答案)ok1.若 $(x-1)(x+3)=x+mx+n$,则 $m$,$n$ 的值分别为()。
A。
$m=1$,$n=3$ B。
$m=4$,$n=5$ C。
$m=2$,$n=-3$ D。
$m=-2$,$n=3$2.下列各式中,计算结果是 $x+7x-18$ 的是()。
A。
$(x-1)(x+18)$ B。
$(x+2)(x+9)$ C。
$(x-3)(x+6)$ D。
$(x-2)(x+9)$3.若 $(x-a)(x+2)$ 的展开项中不含 $x$ 的一次项,则$a$ 的值为()。
A。
$a=-2$ B。
$a=2$ C。
无法确定4.如果 $(x-3)(2x+4)=2x-mx+n$,那么 $m$,$n$ 的值分别是()。
A。
$m=2$,$n=12$ B。
$m=-2$,$n=12$ C。
$m=2$,$n=-12$ D。
$m=-2$,$n=-12$5.已知$m+n=2$,$mn=-2$,则$(1-m)(1-n)$ 的值为()。
A。
$1-3$ B。
$-1$ C。
$5$6.先化简,再求值:$5(3xy-xy)-4(-xy+3xy)$,其中$x=-2$,$y=3$。
7.计算:1)$3-2+(-3)-(\frac{3}{2})$2)$(-2ab)+(-a)\cdot(2b)$3)$x(2x+1)(1-2x)-4x(x-1)(1-x)$4)$(2a-b+3)(2a+b-3)$5)$\frac{x^2-1}{2}(2x+1)$8.计算:1)$(-7x-8y)\cdot(-x+3y)$2)$(3x-2y)(y-3x)-(2x-y)(3x+y)$9.计算:$a(a+2)(a-3)$10.计算:$(a+b)(a-ab+b)$11.计算:$(2x-3y)(x+4y)$12.计算:1)$(2x+3y)(3y-4x)$2)$(-4x-3y)(3y-4x)$13.计算:$(2x+5y)(3x-2y)-2x(x-3y)$14.$5x-(x-2)(3x+1)-2(x+1)(x-5)$15.已知多项式$6x-7xy-3y+14x+y+a=(2x-3y+b)(3x+y+c)$,试确定 $a$,$b$,$c$ 的值。
2017-2018学年度9.3多项式乘多项式练习及答案(较难)

3.如图,有长方形面积的四种表示法:
①
②
③
④ 其中( )
A.只有①正确B.只有④正确C.有①④正确D.四个都正确
4.若把多项 因式后含有因式 ,则 为( )
A.-1B.1C. D.3
5.如图是用4个相同的小矩形与1个小正方形密铺而成的正方形图案,已知该图案的面积为 ,小正方形的面积为4,若用 表示小矩形的两边长,请观察图案,指出以下关系式中不正确的是( )
7.先化简,再求值: ,其中 ,
8.先化简,再求值:(2x+1)(2x﹣1)﹣(x+1)(3x﹣2),其中x= .
9.将4个数abcd排成两行,两列,两边各加一条竖直线记成 ,定义 =ad﹣bc.上述记号叫做2阶行列式,若 =8.求x的值.
10.已知(x2+px+8)与(x2﹣3x+q)的乘积中不含x3和x2项,求p、q的值.
(3)利用(2)猜想的结论计算:
①29+28+27+…+22+2+1;
②210-29+28-…-23+22-2.
13.计算: .
14.小亮房间窗户的窗帘如图1所示,它是由两个四分之一圆组成(半径相同)
⑴请用代数式表示装饰物的面积:________,用代数式表示窗户能射进阳光的面积是______(结果保留π)
⑵当a= ,b=1时,求窗户能射进阳光的面积是多少?(取π≈3)
⑶小亮又设计了如图2的窗帘(由一个半圆和两个四分之一圆组成,半径相同),请你帮他算一算此时窗户能射进阳光的面积是否更大?如果更大,那么大多少?
15.计算题:
(1)
(2)
16.计算:(1)
(2) ,
17.解方程:2x(3x-5)-(2x-3)(3x+4)=3(x+4)
9.3多项式乘多项式(原卷版)

9.3多项式乘多项式多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
题型1:多项式乘多项式1.计算:(x﹣2)(x+3)=.题型2:图形面积问题2.如图:已知长方形纸片ABCD长为3a+1,宽为b+3,裁去一个长为2a+1,宽为b+1的长方形AEFG,则剩余部分面积为.形的面积分别表示为S1,S2,若S=S1﹣S2,且S为定值,则a,b满足的数量关系:.【变式2-2】用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为a+b的矩形,需要B 类卡片张.【变式2-3】如图,某中学校园内有一块长为(3a+2b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块长为(2a﹣b)米、宽为2b米的小长方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求长方形地块的面积;(用含a,b的代数式表示)(2)求修建雕像的小长方形地块的面积;(用含a,b的代数式表示)(3)当a=3,b=1时,求绿化部分的面积.题型3:项的存在问题3.若x+m与x2+2x﹣1的乘积中不含x的二次项,则实数m的值为.题型4:规律题4.观察下列各式:(1)(x+2)(x+3)=x2+5x+61.若(x﹣1)(x+m)=x2+2x﹣3,则常数m的值为()A.3B.2C.﹣3D.﹣22.若(y﹣3)(y+2)=y2+my+n,则m,n的值分别为()A.m=1,n=﹣6B.m=﹣1,n=﹣6C.m=5,n=6D.m=﹣5,n=63.有足够多张如图所示的A类、B类正方形卡片和C类长方形卡片,若要拼一个长为(3a+2b)、宽为(a+b)的大长方形,则需要C类卡片的张数为()A .3B .4C .5D .64.下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是( )A .﹣x 2+5xB .x (x +3)+6C .3(x +2)+x 2D .(x +3)(x +2)﹣2x5.如图,用代数式表示阴影部分面积正确的是( )A .ac +bc ﹣c 2B .(a ﹣c )(b ﹣c )C .abD .ac +bc二.填空题(共5小题)6.如果(x +3)(x ﹣4)=x 2﹣kx ﹣12成立,则k 的值为 .7.对于实数a ,b ,c ,d ,规定一种运算|a b c d|=ad ﹣bc ,如|102(−2)|=1×(﹣2)﹣0×2=﹣2,那么当|(x +1)(x +2)(x −3)(x −1)|=27时,则x = . 8.已知(x +p )(x +q )=x 2+mx +36,p ,q 均为正整数,则m 的可能值有 个.9.若(5x ﹣3b )(ax +1)=20x 2﹣7x ﹣c ,则(a +c )b = .10.如图,请根据图中标的数据,计算大长方形的面积.通过面积不同的计算方法,可以得到的等式关系是: .三.解答题(共6小题)11.计算:(x﹣1)(2x+1)﹣(x﹣5)(x+2).12.已知:﹣x2y1+a与x b y2是同类项.(1)求a、b的值;(2)计算a3+b3和(a+b)(a2﹣ab+b2)的值.13.在计算(2x+a)(x+b)时,甲错把b看成了6,得到结果是:2x2+8x﹣24;乙错把a看成了﹣a,得到结果:2x2+14x+20.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.14.如图,某小区有一块长为(2a+4b)米,宽为(2a﹣b)米的长方形地块,角上有四个边长为(a﹣b)米的小正方形空地,开发商计划将阴影部分进行绿化.(1)用含有a、b的式子表示绿化的总面积(结果写成最简形式);(2)物业找来阳光绿化团队完成此项绿化任务,已知该队每小时可绿化8b平方米,每小时收费200元,则该物业应该支付绿化队多少费用?(用含a、b的代数式表示)15.已知甲、乙两个长方形纸片,其边长(m>0)如图中所示,面积分别为S甲和S乙.(1)①用含m的代数式表示S甲=,S乙=;②填空S甲S乙(填>”,“<”或“=”).(2)若一个正方形纸片的周长与乙的周长相等,其面积设为S正.①该正方形的边长是(用含m的代数式表示);②S正与S乙的差是否为定值?如果不是,请说明你的理由;如果是,请求出值.16.如图所示,直角△ABD是“阳光小区”内一块空地,已知∠A=90°,AB=(2a+6b)米,AD=(8a+4b)米,若E为AB边的中点,DF=14AD,现打算在阴影部分种植一片草坪,则这片草坪的面积是多少平方米?。
多项式乘多项式基本题30道填空题附详细答案解析

9.3 多项式乘多项式基础题汇编(2)一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= .2.(2014秋•花垣县期末)计算:(2x﹣1)2= ;(2x﹣2)(3x+2)= .3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= ;(﹣2x﹣3)(﹣2x+3)= .4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= .5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= ,n= .6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= .7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= .8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为.9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= ,m= .10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为.11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z张,则x+y+z= .12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= .13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b的值为.14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k 的值为.15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是.16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= .17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= .19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m=n= .20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= .21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ,b= .22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m 的值为.23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= ,n= .24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ,(x+1)(x﹣3)= .25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是.26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= ,n= .27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片张.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= .30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ;= ;2xy•()=﹣6x2yz;(5﹣a)(6+a)= .9.3 多项式乘多项式基础题汇编(2)参考答案与试题解析一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= 2a2+a﹣6 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:(a+2)(2a﹣3)=2a2﹣3a+4a﹣6=2a2+a﹣6.故答案为:2a2+a﹣6.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.2.(2014秋•花垣县期末)计算:(2x﹣1)2= 4x2﹣4x+1 ;(2x﹣2)(3x+2)= 6x2﹣2x﹣4 .考点:多项式乘多项式;完全平方公式.分析:根据根据完全平方公式和多项式乘多项式的法则分别进行计算即可求出答案.解答:解:(2x﹣1)2=4x2﹣4x+1;(2x﹣2)(3x+2)=6x2+4x﹣6x﹣4=6x2﹣2x﹣4;故答案为:4x2﹣4x+1,6x2﹣2x﹣4.点评:本题主要考查了多项式乘多项式和完全平方公式,熟记公式结构和多项式乘多项式的法则是解题的关键.3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= x2+x﹣6 ;(﹣2x﹣3)(﹣2x+3)= 4x2﹣9 .考点:多项式乘多项式;平方差公式.分析:(x﹣2)(x+3)根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可;(﹣2x﹣3)(﹣2x+3)根据平方差公式计算即可.解答:解:(x﹣2)(x+3)=x2+3x﹣2x﹣6=x2+x﹣6;(﹣2x﹣3)(﹣2x+3)=(2x+3)(2x﹣3)=4x2﹣9.故答案为:x2+x﹣6;4x2﹣9.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.同时考查了平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差.即(a+b)(a﹣b)=a2﹣b2.4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= 5 .考点:多项式乘多项式.专题:计算题.分析:将等式的左边展开,由对应相等得答案.解答:解:∵(x+a)(x+b)=x2+5x+ab,∴x2+(a+b)x+ab=x2+5x+ab,∴a+b=5,故答案为5.点评:本题考查了多项式乘以多项式,是基础知识要熟练掌握.5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= 5 ,n= 10 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.解答:解:∵(x+2)(x﹣m)=x2﹣mx+2x﹣2m=x2+(﹣m+2)x﹣2m=x2﹣3x﹣n,∴﹣m+2=﹣3,n=2m,∴m=5,n=10;故答案为:5,10.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= 1﹣4m .考点:多项式乘多项式;平方差公式.分析:先运用平方差公式和多项式乘多项式的法则进行计算,再合并同类项.解答:解:(m+2)(m﹣2)﹣(m﹣1)(m+5)=m2﹣4﹣m2﹣4m+5=1﹣4m.故答案为:1﹣4m.点评:本题主要考查了平方差公式和多项式乘多项式.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= ﹣1 .考点:多项式乘多项式.分析:先展开式子,找出所有x3项的系数,令其为0,即可求a的值.解答:解:∵(x2+ax+1)(3x2+3x+1)=4x4+3x3+x2+3ax3+3ax2+ax+3x2+3x+1,=4x4+(3a+3)x3+(1+3a+3)x2+(a+3)x+1,又∵展开式中不含x3项∴3a+3=0,解得:a=﹣1.故答案为:﹣1.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,注意各项符号的处理.8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为 1 .考点:多项式乘多项式.分析:根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,再代入计算即可.解答:解:∵m+n=2,mn=﹣2,∴(1+m)(1+n)=1+n+m+mn=1+2﹣2=1;故答案为:1.点评:本题主要考查多项式乘以多项式,掌握多项式乘以多项式的法则是本题的关键.注意不要漏项,漏字母,有同类项的合并同类项.9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= 12 ,m= 15 .考点:多项式乘多项式.分析:利用多项式乘以多项式法则,直接去括号,进而让各项系数相等求出即可.解答:解:∵(x+3)(x+p)=x2+mx+36,∴x2+(p+3)x+3p=x2+mx+36,∴3p=36,p+3=m,解得:p=12,m=15,故答案为:12,15.点评:此题主要考查了多项式乘以多项式,正确计算得出对应系数相等是解题关键.10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为1、6 .考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.解答:解:∵(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴y2+my+n=y2+y﹣6,∴m=1,n=﹣6.故答案为:1、6.点评:本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z张,则x+y+z= 6 .考点:多项式乘多项式.分析:根据多项式乘多项式的法则得出需要用的卡片数,再把它们相加即可得出答案.解答:解:∵(2a+b)(a+b)=2a2+3ab+b2,∴需要用1号卡2张,2号卡1张,3号卡3张,∴x+y+z=2+1+3=6;故答案为:6.点评:此题考查了多项式乘以多项式,掌握多项式乘多项式的法则是本题的关键,多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn.12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= ﹣.考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘多项式法则计算,根据乘积中不含x的一次项,求出m的值即可.解答:解:原式=x2+(m+)x+m,由结果不含x的一次项,得到m+=0,解得:m=﹣,故答案为:﹣点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b的值为﹣3 .考点:多项式乘多项式.分析:直接利用多项式乘以多项式运算法则求出a,b的值,进而得出答案.解答:解:∵x2+ax+b=(x+1)(x﹣2),∴x2+ax+b=x2﹣x﹣2,∴a=﹣1,b=﹣2,∴a+b=﹣3.故答案为:﹣3.点评:此题主要考查了多项式乘以多项式,正确掌握运算法则是解题关键.14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k 的值为﹣1.5 .考点:多项式乘多项式.分析:先展开式子,找出所有x2项的系数,令其为0,即可求k的值.解答:解:∵(x2+kx+5)(x3+2x+3)=x5+2x3+3x2+kx4+2kx2+3kx+5x3+10x+15,=x5+kx4+7x3+(3+2k)x2+(3k+10)x+15,又∵展开式中不含x2项,∴3+2k=0,解得:k=﹣1.5.故答案为:﹣1.5.点评:本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0,注意各项符号的处理.15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是 2 .考点:多项式乘多项式.分析:先根据多项式乘多项式的运算法则(a+b)(m+n)=am+an+bm+bn,先展开,再根据题意,二次项的系数等于0列式求解即可.解答:解:(x2+mx﹣1)(x﹣2)=x3+(﹣2+m)x2+(﹣1﹣2m)x+2,∵不含x2项,∴﹣2+m=0,解得m=2.故答案为:2.点评:本题主要考查单项式与多项式的乘法,掌握运算法则和不含某一项就让这一项的系数等于0是解题的关键.16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= ﹣31 .考点:多项式乘多项式.专题:计算题.分析:已知等式左边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出m与n的值,即可求出m+n的值.解答:解:∵(x﹣4)(x+9)=x2+5x﹣36=x2+mx+n,∴m=5,n=﹣36,则m+n=5﹣36=﹣31.故答案为:﹣31.点评:此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片 2 张,B类卡片 3 张,C类卡片 1 张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!考点:多项式乘多项式.专题:计算题.分析:①利用多项式乘以多项式法则计算(2a+b)(a+b),得到结果,即可做出判断;②利用多项式乘以多项式法则计算(a+3b)(a+b),得到结果,即可做出判断.解答:解:①长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为ab,C图形面积为b2,则可知需要A类卡片2张,B类卡片3张,C类卡片1张.故本题答案为:2;3;1;②∵现有长为a+3b,宽为a+b的长方形,∴(a+3b)(a+b)=a2+4ab+3b2,∵A图形面积为a2,B图形面积为ab,C图形面积为b2,∴可知需要A类卡片1张,B类卡片4张,C类卡片3张;(2a+b)(a+b)=2a2+3ab+b2,则拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片2张,B类卡片3张,C类卡片1张.点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= x3+y3.考点:多项式乘多项式.专题:规律型.分析:根据所给的多项式乘多项式的运算法则以及得出的规律,即可得出(x+y)(x2﹣xy+y2)=x3+y3.解答:解:∵(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27,∴(x+y)(x2﹣xy+y2)=x3+y3;故答案为:x3+y3;点评:此题考查了多项式乘多项式,掌握多项式乘多项式的法则和得出的规律是本题的关键,注意不要漏项,漏字母,有同类项的合并同类项.19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m= 3 n= 1 .考点:多项式乘多项式.分析:先把原式进行变形为x2+(m﹣2)x﹣2m,再根据原式等于x2+nx﹣6,求出m的值,从而求出n的值.解答:解:∵(x﹣2)(x+m)=x2+mx﹣2x﹣2m=x2+(m﹣2)x﹣2m又∵(x﹣2)(x+m)=x2+nx﹣6,∴x2+(m﹣2)x﹣2m=x2+nx﹣6,∴m﹣2=n,2m=6,解得:m=3,n=1.故答案为:3,1.点评:此题考查了多项式乘多项式,根据项式乘多项式的运算法则先把原式进行变形是解题的关键,注意不要漏项,漏字母.20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= ﹣2 .考点:多项式乘多项式.分析:把式子展开,找到所有x项的系数,令其和为0,求解即可.解答:解:∵5(x+a)(x+2)=5(x2+ax+2x+2a)=5x2+5(a+2)x+5a,又∵乘积中不含x一次项,∴a+2=0,解得a=﹣2.故答案为:﹣2.点评:本题主要考查了多项式乘多项式,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ﹣,b= ﹣.考点:多项式乘多项式.分析:首先利用多项式乘法法则计算出(ax2+bx﹣3)(x2﹣x+8),再根据积不含x3和x项,可得含x3的项和含x的项的系数等于零,即可求出a与b的值.解答:解:(ax2+bx﹣3)(x2﹣x+8)=ax4﹣ax3+8ax2+bx3﹣bx2+8bx﹣3x2+x﹣24=ax4+(﹣a+b)x3+(8a﹣b﹣3)x2+(8b+)x﹣24,∵积不含x3的项,也不含x的项,∴﹣a+b=0,8b+=0,解得:b=﹣,a=﹣,故答案为:﹣,﹣.点评:此题主要考查了多项式乘以多项式,关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m 的值为 2 .考点:多项式乘多项式.专题:计算题.分析:原式利用多项式乘以多项式法则计算,根据结果中x的二次项系数为零,求出m的值即可.解答:解:原式=x3+(2﹣m)x2﹣(2m﹣1)x+2,由结果中x的二次项系数为0,得到2﹣m=0,解得:m=2,故答案为:2点评:此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= 5 ,n= 2 .考点:多项式乘多项式.分析:首先把(x+m)(x﹣3)利用多项式的乘法公式展开,然后根据多项式相等的条件:对应项的系数相同即可得到关于m、n的方程,从而求解.解答:解:(x+m)(x﹣3)=x2+(m﹣3)x﹣3m,则,解得:.故答案是:5,2.点评:本题考查了多项式的乘法法则以及多项式相等的条件,理解多项式的乘法法则是关键.24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ﹣3x4y5,(x+1)(x﹣3)= x2﹣2x﹣3 .考点:多项式乘多项式;单项式乘单项式.分析:分别利用单项式乘以单项式、多项式乘以多项式的运算法则进行计算即可.解答:解:﹣3x2y3•x2y2=﹣3x2+2y3+2=﹣3x4y5(x+1)(x﹣3)=x2﹣3x+x﹣3=x2﹣2x﹣3 故答案为:﹣3x4y5,x2﹣2x﹣3点评:本题考查了整式的有关运算,单项式乘以单项式时,系数和系数相乘作为结果的系数,相同字母和相同字母按同底数幂的乘法计算即可.25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是a <0 .考点:多项式乘多项式;解一元一次不等式.分析:先将条件变形为b=a﹣2,然后代入不等式,最后解一个关于a的不等式就可以得出结论.解答:解:∵a﹣b=2,∴b=a﹣2,∴(a﹣1)(a﹣2+2)<a(a﹣2),∴a2﹣a<a2﹣2a,∴a<0.故答案为:a<0点评:本题考查了单项式乘以多项式的运用,一元一次不等式的解法的运用,在解答过程中对不等式的性质3要正确理解.26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= 0 ,n= 4 .考点:多项式乘多项式.分析:首先利用平方差公式计算(x+2)(x﹣2),然后根据对应项的系数相同即可求得m、n 的值.解答:解:(x+2)(x﹣2)=x2﹣4=x2﹣mx﹣n,则m=0,n=4.故答案是:0,4.点评:本题考查了平方差公式,理解多项式相等的条件是关键.27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片 3 张.考点:多项式乘多项式.专题:计算题.分析:根据长乘以宽表示出大长方形的面积,即可确定出C类卡片的张数.解答:解:根据题意得:(2a+b)(a+b)=2a2+3ab+b2,∵一张C类卡片面积为ab,∴需要C类卡片3张.故答案为:3.点评:此题考查了多项式乘多项式,弄清题意是解本题的关键.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.考点:多项式乘多项式.专题:计算题.分析:根据乘法公式:(x+a)(x+b)=x2+(a+b)x+ab得到(x+m)(x+)=x2+(m+)x+m,然后根据题意得到m+=0,解方程即可得到m的值.解答:解:(x+m)(x+)=x2+(m+)x+m,∵的结果不含关于字母x的一次项,∴m+=0,∴m=﹣.故答案为﹣.点评:本题考查了多项式乘多项式:把一个多项式的每一项与另一多项式相乘,即多项式乘多项式转化为单项式乘多项式,再进行单项式乘多项式,然后进行合并同类项;记住乘法公式:(x+a)(x+b)=x2+(a+b)x+ab.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= 1 .考点:多项式乘多项式.分析:先根据多项式乘以多项式的法则计算(x﹣2)(x+1),再比较等式两边,得出x的一次项系数为a,常数项为﹣b,然后将a,b的值代入计算即可.解答:解:∵(x﹣2)(x+1)=x2﹣x﹣2,∴x2+ax﹣b=x2﹣x﹣2.比较两边系数,得a=﹣1,b=2,∴a b=(﹣1)2=1.故答案为1.点评:本题考查了多项式乘以多项式的法则,用到的知识点为:(x+a)(x+b)=x2+(a+b)x+ab.30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ﹣p5;= ﹣a6b3;2xy•(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .考点:多项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方;单项式乘单项式.分析:根据同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则求出每个式子的值即可.解答:解:(﹣p)2•(﹣p)3=(﹣p)5=﹣p5,(﹣a2b)3=(﹣)3•(a2)3b3=﹣a6b3,∵﹣6x2yz÷2xy=﹣3xz,∴2xy•(﹣3xz)=﹣6x2yz,(5﹣a)(6+a)=30+5a﹣6a﹣a2=30﹣a﹣a2=﹣a2﹣a+30,故答案为:﹣p5,﹣a6b3,﹣3xz,﹣a2﹣a+30.点评:本题考查了同底数幂的乘法、积的乘方和幂的乘方、单项式除以单项式法则、多项式乘以多项式法则的应用.。
苏科版七年级数学下册9.3 多项式乘多项式 同步练习(包含答案解析)

9.3多项式乘多项式一、选择题1.计算的结果为( )A. B. C. D.2.若,则( )A. B.C. D.3.若,则的值是( )A. B. C. D. 14.已知,,那么的值为( )A. B. C. 0 D. 55.设,,则A、B的大小关系为( )A. B. C. D. 无法确定6.下列各式中,计算正确的是( )A. B.C. D.7.若与的乘积中不含x的一次项,则n的值为( )A. B. 2 C. 0 D. 18.如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为,宽为的大长方形,则需要A类、B类和C类卡片的张数分别为( )A. 2,3,7B. 3,7,2C. 2,5,3D. 2,5,79.如图,边长为的正方形纸片剪出一个边长为的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,则另一边长为( )A. B. C. D.10.若a,b,k均为整数,则满足等式的所有k值有( )个.A. 2B. 3C. 6D. 8二、填空题11.计算:_________________.12.若矩形的面积为,长为,则宽为______.13.已知,则c的值为_____________.14.把化成的形式后为__________.15.已知多项式恰等于两个多项式和的积,则______.16.已知,则代数式的值为______ .17.小青和小红分别计算同一道整式乘法题:,小青由于抄错了一个多项式中a的符号,得到的结果为,小红由于抄错了第二个多项式中的x的系数,得到的结果为,则这道题的正确结果是______.18.若,那么________.三、计算题19.计算:四、解答题20.欢欢与乐乐两人共同计算,欢欢抄错为,得到的结果为;乐乐抄错为,得到的结果为.(1)式子中的a、b的值各是多少?(2)请计算出原题的正确答案.21.某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是米的正方形雕像.(1)请用含a,b的代数式表示绿化面积S;(2)当,时,求绿化面积.22.如图,有多个长方形和正方形的卡片,图甲是选取了2块不同的卡片,拼成的一个图形,借助图中阴影部分面积的不同表示可以用来验证恒等式成立.(1)根据图乙,利用面积的不同表示方法,写出一个代数恒等式______;(2)试将等式______补充完整,并用上述拼图的方法说明它的正确性.答案和解析1.【答案】B【解析】【分析】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.了多项式乘多项式,熟练掌握运算法则是解本题的关键.原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:原式,故选:B.2.【答案】D【解析】解:,而,,,,,.故选D.首先根据多项式的乘法法则展开,然后利用根据对应项的系数相等列式求解即可.此题主要考查了多项式的乘法法则,利用多项式的乘法法则展开多项式,再利用对应项的系数相等就可以解决问题.3.【答案】A【解析】解:,,解得:,,.故选:A.直接利用多项式乘以多项式运算法则计算得出m,n,再代入计算可得答案.此题主要考查了多项式乘以多项式运算,正确掌握运算法则是解题关键.4.【答案】C【解析】【分析】此题考查了整式的混合运算化简求值,涉及的知识有:多项式乘多项式,去括号合并,以及合并同类项法则,熟练掌握法则是解本题的关键.所求式子利用多项式乘多项式法则计算,整理后将与xy的值代入计算即可求出值.【解答】解:当、时,,故选C.5.【答案】A【解析】解:,,,;故选:A.根据多项式乘以多项式的法则,先把A、B进行整理,然后比较即可得出答案.本题主要考查多项式乘以多项式的法则,注意不要漏项,漏字母,有同类项的合并同类项.6.【答案】B【解析】【分析】本题考查了单项式与多项式相乘的法则、平方差公式、完全平方公式、多项式乘以多项式法则;熟记公式和法则是解决问题的关键.根据单项式与多项式相乘的法则得出选项A不正确;根据平方差公式得出选项B正确;根据完全平方公式得出选项C不正确;根据多项式乘以多项式法则得出选项D不正确;即可得出结论.【解答】解:,选项A不正确;B.,选项B正确;C.,选项C不正确;D.,选项D不正确;故选B.7.【答案】A【解析】解:,又与的乘积中不含x的一次项,,;故选:A.根据多项式乘以多项式的法则,可表示为,再根据与的乘积中不含x的一次项,得出,求出n的值即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.8.【答案】A【解析】解:长为,宽为的长方形的面积为:,类卡片的面积为,B类卡片的面积为,C类卡片的面积为ab,需要A类卡片2张,B类卡片3张,C类卡片7张.故选:A.根据长方形的面积长宽,求出长为,宽为的大长方形的面积是多少,判断出需要A类、B类、C类卡片各多少张即可.此题主要考查了多项式乘多项式的运算方法,熟练掌握运算法则是解题的关键.9.【答案】B【解析】【分析】此题主要考查了多项式乘法,正确利用图形面积关系是解题关键.首先求出大正方形面积,进而利用图形总面积不变得出等式求出答案.【解答】解:,拼成的长方形一边长为m,.故另一边长为:.故选:B.10.【答案】C【解析】解:,,,,,b,k均为整数,,,;,,;,,;故k的值共有6个,故选:C.先把等式左边展开,由对应相等得出,;再由a,b,k均为整数,求出k的值即可.本题考查了多项式乘以多项式,是基础知识要熟练掌握.11.【答案】【解析】【分析】此题主要考查多项式乘多项式直接利用平方差公式计算解答即可.【解答】解:,故答案为.12.【答案】a【解析】解:矩形的宽,故答案为:a.根据多项式除以多项式的运算法则计算即可.本题考查的是整式的除法,掌握多项式除以多项式的运算法则、因式分解是解题的关键.13.【答案】【解析】【分析】本题考查了多项式乘多项式,已知等式右边利用多项式乘以多项式法则计算,再利用多项式相等的条件求出c的值即可【解答】解:已知等式整理得:,则,故答案为.14.【答案】【解析】【分析】本题考查了二次函数的三种形式:一般式:b,c是常数,,该形式的优势是能直接根据解析式知道抛物线与y轴的交点坐标是;顶点式:h,k是常数,,其中为顶点坐标,该形式的优势是能直接根据解析式得到抛物线的顶点坐标为,熟练掌握二次函数的一般式是解题的关键,根据二次函数的一般式形式把整理即可.【解答】解:,把化成的形式后为.故答案为.15.【答案】【解析】解:,由题意知,,则,所以,故答案为:.先计算出,根据得出n、a的值,代入计算可得.本题主要考查多项式乘多项式,解题的关键是掌握多项式乘多项式的运算法则.16.【答案】【解析】【分析】此题主要考查了多项式乘以多项式以及代数式求值,正确利用整体思想代入是解题关键.直接利用已知得出,再利用多项式乘法去括号进而求出答案.【解答】解:,,.故答案为.17.【答案】【解析】解:根据题意可知小青由于抄错了一个多项式中a的符号,得到的结果为,那么,可得,小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知,即,可得,解关于的方程组,可得,,.故答案为:.根据小青由于抄错了一个多项式中a的符号,得到的结果为,可知,根据等于号的性质可得;再根据小红由于抄错了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得,解关于的方程组即可求a、b的值,进而可求一次项系数.本题考查了多项式乘以多项式的法则、解方程组,解题的关键是理解题目表达的意思.18.【答案】1【解析】【分析】本题考查了多项式的乘法,完全平方公式等有关知识,先用完全平方公式计算出,再确定,、、、的值,得结论.【解答】解:,,,,,.故答案为1.19.【答案】解:原式;原式【解析】原式利用多项式乘以多项式法则计算,去括号合并即可得到结果;原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘以多项式法则计算即可得到结果.此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.20.【答案】解:根据题意可知,由于欢欢抄错了第一个多项式中的a的符号,得到的结果为,那么,可得乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知即,可得,解关于的方程组,可得,;正确的式子:【解析】根据由于欢欢抄错了第一个多项式中的a符号,得出的结果为,可知,于是;再根据乐乐由于漏抄了第二个多项式中的x的系数,得到的结果为,可知常数项是,可知,可得到,解关于的方程组即可求出a、b的值;把a、b的值代入原式求出整式乘法的正确结果.本题主要是考查多项式的乘法,正确利用法则是正确解决问题的关键.21.【答案】解:根据题意得:长方形地块的面积,正方形雕像的面积为:,则绿化面积,即用含a,b的代数式表示绿化面积,把,代入,得,即绿化面积为87平方米.【解析】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.根据绿化面积长方形地块的面积正方形雕像的面积,列式计算即可,把,带入所求结果,计算后可得到答案.22.【答案】;;如图所示:恒等式是.故答案为:.【解析】【分析】本题主要考查对多项式乘多项式的理解和掌握,能表示各部分的面积是解此题的关键.根据图形是一个长方形求出长和宽,相乘即可;正方形的面积是2个长方形的面积加上2个正方形的面积,代入求出即可.【解答】解:观察图乙得知:长方形的长为:,宽为,面积为:;故答案为:.见答案.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9章《整式乘法与因式分解》9.3 多项式乘多项式
选择题
1.已知:a+b=m,ab=-4,化简:(a-2)(b-2)的结果是()
A.6 B.2m-8 C.2m D.-2m
2.下列多项式相乘结果为a2-3a-18的是()
A.(a-2)(a+9)B.(a+2)(a-9)C.(a+3)(a-6)D.(a-3)(a+6)3.已知(x+a)(x+b)=x2-13x+36,则a+b的值是(B)
A.13 B.-13 C.36 D.-36
4.(x-a)(x2+ax+a2)的计算结果是()
A.x3+2ax+a3 B.x3-a3 C.x3+2a2x+a3 D.x2+2ax2+a3 5.若(x-1)(x+3)=x2+mx+n,那么m,n的值分别是()
A.m=1,n=3 B.m=4,n=5 C.m=2,n=-3 D.m=-2,n=3 6.计算(a+m)(a+1
2)的结果中不含关于字母a的一次项,则m等于()
A.2 B.-2 C.1
2D.-
1
2
7.利用形如a(b+c)=ab+ac的分配性质,求(3x+2)(x-5)的积的第一步骤是
()
A.(3x+2)x+(3x+2)(-5)B.3x(x-5)+2(x-5)
C.3x2-13x-10 D.3x2-17x-10
8.若(x+4)(x-3)=x2+mx-n,则()
A.m=-1,n=12 B.m=-1,n=-12 C.m=1,n=-12 D.m=1,n=12 9.如果(x+a)(x+b)的结果中不含x的一次项,那么a、b满足()A.a=b B.a=0 C.a=-b D.b=0
10.已知m+n=2,mn=-2,则(1-m)(1-n)的值为()
A.-3 B.-1 C.1 D.5
11.如果多项式4a4-(b-c)2=M(2a2-b+c),则M表示的多项式是()A.2a2-b+c B.2a2-b-c C.2a2+b-c D.2a2+b+c 12.下列运算中,正确的是()
A.2ac(5b2+3c)=10b2c+6ac2
B.(a-b)2(a-b+1)=(a-b)3-(b-a)2
C.(b+c-a)(x+y+1)=x(b+c-a)-y(a-b-c)-a+b-c
D.(a-2b)(11b-2a)=(a-2b)(3a+b)-5(2b-a)2
13.下面的计算结果为3x2+13x-10的是()
A.(3x+2)(x+5)B.(3x-2)(x-5)C.(3x-2)(x+5)D.(x-2)(3x+5)14.已知(5-3x+mx2-6x3)(1-2x)的计算结果中不含x3的项,则m的值为()
A.3 B.-3 C.- 1
2D.0
15.下列多项式相乘的结果是a2-3a-4的是()
A.(a-2)(a+2)B.(a+1)(a-4)C.(a-1)(a+4)D.(a+2)(a+2)
填空题
16.有若干张如图所示的正方形和长方形卡片,如果要拼一个长为(2a+b),宽为(a+b)的矩形,则需要A类卡片张,B类卡片张,C类卡片张,请你在右下角的大矩形中画出一种拼法.(标上卡片名称)
17.若(x+p)与(x+2)的乘积中,不含x的一次项,则p的值是.18.若(x+1)(2x-3)=2x2+mx+n,则m= ,n= .19.(x-2)(x+3)= .
20.若计算(-2x+a)(x-1)的结果不含x的一次项,则a= .21.若(x-2)(x-n)=x2-mx+6,则m= ,n= .
22.如果(x+1)(x2-5ax+a)的乘积中不含x2项,则a为.
23.已知a2-a+5=0,则(a-3)(a+2)的值是.
答案:
选择题
1、D .
2、故选C .
解:A 、(a-2)(a+9)=a 2+7a-18,故本选项错误;
B 、(a+2)(a-9)=a 2-7a-18,故本选项错误;
C 、(a+3)(a-6)=a 2-3a-18,正确;
D 、(a-3)(a+6)=a 2+3a-18,故本选项错误.
3、故选B
解:(x+a )(x+b )=x 2+(a+b )x+ab ,
又∵(x+a )(x+b )=x 2-13x+36,
所以a+b= -13.
4、故选B .
解:(x-a )(x 2+ax+a 2),
=x 3+ax 2+a 2x-ax 2-a 2x-a 3,
=x 3-a 3.
5、C
6、故选D .
解:∵(a+m )(a+12 )=a 2+(m+12 )a+12 •m ,
又∵不含关于字母a 的一次项,
∴m+12 =0,
∴m= -12
7、A 8、D 9、C 10、A 11、C
12、故选D .
分析:根据多项式乘以多项式的法则.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
解:A 、应为2ac (5b 2+3c )=10ab 2c+6ac 2,故本选项错误;
B 、应为(a-b )2(a-b+1)=(a-b )3+(b-a )2,故本选项错误;
C 、应为(b+c-a )(x+y+1)=x (b+c-a )-y (a-b-c )-a-b-c ,故本选项错误;
D 、(a-2b )(11b-2a )=(a-2b )(3a+b )-5(2b-a )2.
13、C
14、故选B .
分析:把式子展开,找到所有x 3项的所有系数,令其为0,可求出m 的值. 解:∵(5-3x+mx 2-6x 3)(1-2x )=5-13x+(m+6)x 2+(-6-2m )x 3+12x 4. 又∵结果中不含x 3的项,
∴-2m-6=0,解得m=-3.
15、B
填空题
16. 分析:首先分别计算大矩形和三类卡片的面积,再进一步根据大矩形的面积应等于三类卡片的面积和进行分析所需三类卡片的数量.
解:长为2a+b,宽为a+b的矩形面积为(2a+b)(a+b)=2a2+3ab+b2,A图形面积为a2,B图形面积为b2,C图形面积为ab,
则可知需要A类卡片2张,B类卡片3张,C类卡片1张.
故本题答案为:2;1;3.
17、-2 18、-1,-3 19、x2+x-6
20、解:(-2x+a)(x-1)=-2x2+(a+2)x-a,
因为积中不含x的一次项,则a+2=0,
解得a=-2.
21、解:∵(x-2)(x-n)=x2-(n+2)x+2n
=x2-mx+6,
∴n+2=m,2n=6,
解得m=5,n=3.
22、解:原式=x3-5ax2+ax+x2-5ax+a,
=x8+(1-5a)x2-4as+a,
∵不含x2项,
∴1-5a=0,
解得a=1 5
23、解:(a-3)(a+2)=a2-a-6,∵a2-a+5=0,
∴a2-a=-5,
∴原式=-5-6=-11.。