高中生物学中常见同位素示踪法实验.docx
高中生物学中常见同位素示踪法实验精编版

高中生物学中常见同位素示踪法实验精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
总之,同位素示踪法正在更大规模地应用于生物研究领域。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1 研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
?2 研究分泌蛋白的合成和运输?用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
?3 研究细胞的结构和功能?用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
?4 探究光合作用中元素的转移?利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
(完整word版)同位素示踪法在高中生物中的应用归类盘点

同位素示踪法在高中生物中的应用归类盘点一、同位素示踪法,是利用放射性核素作为示踪剂对研究对象进行标记的微量分析的方法。
常用的标记元素有:(1)14C:常用于标记CO2,葡萄糖,生长素等物质中的C,也可用与标记生长素的运输方向(2)18O:常用于标记光合作用和呼吸作用过程中的H2O,CO2,O2,葡萄糖等,(3)3H:经常用于标记核苷酸示踪DNA,RNA的分布(4)15N:常用于标记无机盐,示踪在自然界中的N循环,也可用来标记氨基酸等(5)32P:常用于标记核酸,标记含P的无机盐可示踪无机盐在植物体内的利用状况,也可用来标记DNA的复制情况(6)35S:标记蛋白质,在研究遗传的物质基础实验中标记噬菌体例析同位素示踪法在高中生物学中的应用学术研究2011-03-11 09:51:52 阅读9 评论0 字号:大中小订阅.同位素用于追踪物质运行和变化过程时,叫示踪元素。
用示踪元素标记的化合物,化学性质不变。
人们可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。
这种科学研究方法叫同位素示踪法。
生物学上常用放射性同位素作为示踪元素,来研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
用于示踪的放射性元素一般是构成细胞化合物的重要元素,如H、N、O、P、S等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳例析。
1 光合作用和呼吸作用过程中特征元素的示踪例1 一个密闭的透明玻璃容器内,放有绿色植物和小白鼠(小白鼠以植物为食),容器内供应O,每天给予充足的光照,一段时间后,绿色植物和小白鼠体内的有机物含O的情况是()A.只在植物体内 B.植物和小白鼠体内均含有C.只在小白鼠体内 D. 植物和小白鼠体内均无解析O在绿色植物体内的转移途径如下:OHOCOCHO绿色植物体内的CHO被动物摄食,通过同化作用转变成自身的有机物。
元素周期表中的同一族元素的同位素的同位素示踪技术实验

元素周期表中的同一族元素的同位素的同位素示踪技术实验元素周期表是化学中的一个重要工具,它按照元素的原子序数和元素性质的周期性,将化学元素排列成表格。
在元素周期表中,同一族元素具有相似的化学性质,但不同元素之间的同位素是不同的。
然而,通过同位素示踪技术,我们可以追踪同一族元素的同位素,从而更深入地了解元素的性质和行为。
本文将介绍同位素示踪技术在元素周期表中的应用和实验方法。
同位素示踪技术是一种利用同位素标记物质进行研究的方法。
同位素是具有相同原子序数但质量数不同的同一元素的不同形式。
不同同位素具有相同的化学性质,但由于质量数不同,它们在物理性质上存在一些微小的差异。
这些微小的差异使得我们能够利用同位素示踪技术追踪和研究元素的变化和迁移过程。
对于元素周期表中的同一族元素的同位素示踪技术实验,我们可以选择同一族元素中的某一个元素进行标记,然后观察其同位素在物质中的转移。
以同位素标记典型的同一族元素氢为例,我们可以使用氘(重氢,质量数为2)来标记氢这个元素。
通过给氢原子替换成氘原子,我们可以追踪氢在化学反应或生物过程中的变化和迁移。
实验中,首先我们需要准备一些含有氢的样品。
这些样品可以是化学物质,如水或气体,也可以是生物样品,如植物体内的水分。
接下来,我们将氘标记的物质与待研究的系统进行接触或反应。
在这个过程中,氢和氘的转移和交换将会发生。
通过使用各种分析技术,如质谱仪或同位素比较分析仪,我们可以检测和测量待研究系统中的氢和氘的含量,并确定它们的转移和变化情况。
同位素示踪技术在化学、生物学和地球科学等领域中具有广泛的应用。
通过追踪元素和同位素的转移和变化过程,我们可以研究酶催化反应、元素循环、生物活性物质的合成和代谢,以及水循环等重要过程。
同位素示踪技术还可以用于食物链和生态系统的研究,以及地质和环境科学中的水文循环和污染追踪等方面。
总结起来,元素周期表中的同一族元素的同位素的同位素示踪技术实验是一种重要的研究方法。
高中生物中用到同位素标记法的实验

高中生物中用到同位素标记法的实验有放射性的同位素标记
追踪分泌蛋白的合成与分泌过程的实验
(囊泡)(囊泡)
(核糖体--->内质网--->高尔基体--->细胞膜)(线粒体提供能量)
证明光合作用中释放的氧全部来自于水的实验
鲁宾和卡门
证明光合作用中CO2中的碳元素的转化途径
(CO2--->C3----->(CH2O)+C5)
卡尔文
噬菌体侵染大肠杆菌的实验(证明DNA是遗传物质)
赫尔希和蔡斯
思路:设法将DNA与蛋白质区分开来,单独考察各自在遗传中的作用无放射性的同位素标记
证明DNA是半保留复制的实验
思路:设法将亲子与子代DNA分子区分开来。
化学反应中的同位素示踪实验方法探讨研究

化学反应中的同位素示踪实验方法探讨研究同位素示踪实验方法在化学反应研究中发挥着重要的作用。
通过替代化学反应物中的同位素,科学家们可以追踪反应过程中同位素的移动和转化,从而揭示出化学反应的机理和动力学。
本文将探讨几种常见的同位素示踪实验方法,并介绍其原理和应用。
一、同位素标记法同位素标记法是一种常见的同位素示踪实验方法。
它通过将待反应的化合物中的某个原子或官能团替换成同位素标记的化合物,来追踪同位素在反应中的转换和分配。
同位素标记法可以通过不同的同位素选择来实现对不同反应过程的研究。
例如,在有机合成化学中,常用的同位素标记法是将13C或2H等稳定同位素标记到化合物的特定位置。
这种方法能够提供有关化合物的结构、构象和反应动力学的重要信息。
另外,同位素标记法在药物代谢研究中也有广泛的应用,可以追踪药物在体内的代谢途径和消除速率。
二、同位素交换法同位素交换法是另一种常见的同位素示踪实验方法。
它通过使用标记同位素与待反应的化合物进行同位素交换,实现对反应过程中原子转移的研究。
同位素交换法可以提供有关反应机理和催化剂的信息,对于理解复杂的化学反应有着重要的作用。
一种常见的同位素交换方法是氢氘交换法。
在氢氘交换法中,氢原子会与氘原子交换位置,通过质子核磁共振技术等手段可以观察到交换过程的动力学和热力学参数。
这种方法在有机化学和生物化学中有广泛的应用,可以揭示化学反应的具体机制和过渡态的形成。
三、同位素示踪法同位素示踪法是一种直接追踪同位素在反应中的移动和转化的方法。
通过在化学反应物中引入同位素示踪剂,可以追踪同位素在反应过程中的转化情况。
同位素示踪法在研究底物的转化率、反应速率和发生路径等方面具有重要价值。
例如,在环境科学领域,同位素示踪法可以用于追踪有害物质在土壤或水体中的迁移和转化。
通过标记同位素的示踪剂,科学家们可以准确测定有害物质的分布和迁移速率,为环境保护和资源管理提供重要依据。
总结起来,同位素示踪实验方法是化学反应研究中的一项重要工具。
高中生物中用到同位素标记法的实验

高中生物中用到同位素标记法的实验
高中生物中用到同位素标记法的实验有放射性的同位素标记
追踪分泌蛋白的合成与分泌过程的实验
(囊泡)(囊泡)
(核糖体--->内质网--->高尔基体--->细胞膜)(线粒体提供能量)
证明光合作用中释放的氧全部来自于水的实验
鲁宾和卡门
证明光合作用中CO2中的碳元素的转化途径
(CO2--->C3----->(CH2O)+C5)
卡尔文
噬菌体侵染大肠杆菌的实验(证明DNA是遗传物质)
赫尔希和蔡斯
思路:设法将DNA与蛋白质区分开来,单独考察各自在遗传中的作用无放射性的同位素标记
证明DNA是半保留复制的实验
思路:设法将亲子与子代DNA分子区分开来。
高考生物总复习 同位素示踪法学案

高考生物总复习同位素示踪法学案堂探究案【高频考点突破】1、同位素示踪法同位素示踪法是利用放射性同位素作为示踪剂对研究对象进行标记的微量分析方法。
由于放射性元素能不断地发射具有一定特征的射线,因此通过放射性探测方法,可以随时追踪含有放射性元素的标记物在体内或体外的位置及其数量的变化情况。
常用放射性同位素有3H、14C、15N、18O、32P、35S、131I等。
2、应用实验目的标记物标记物转移情况实验结论研究分泌蛋白的合成和分泌过程3H核糖体→内质网→高尔基体→细胞膜各种细胞器既有明确的分工,相互之间又协调配合研究光合作用过程中物质的利用HOHO→18O2在光合作用反应物HO中的O以O2的形式放出,CO2中的C用于合成有机物14CO214CO2→14C3→(14CH2O)探究生物的遗传物质亲代噬菌体中的32P(DNA)、35S(蛋白质)子代噬菌体检测到放射性32P,未检测到35SDNA是遗传物质验证DNA的复制方式亲代双链用15N标记亲代DNA→子一代DNA的一条链含15NDNA的复制方式为半保留复制【针对性练习1】蚕豆根尖细胞在含3H标记的胸腺嘧啶脱氧核苷酸培养基中完成一个细胞周期,然后在不含放射性标记的培养基中继续分裂至中期,其染色体的放射性标记分布情况是A、每条染色体的两条单体都被标记B、每条染色体中都只有一条单体被标记C、只有半数的染色体中一条单体被标记D、每条染色体的两条单体都不被标记【针对性练习2】用同位素标记技术追踪研究物质的转移变化途径是生物科学研究的重要手段之一。
下列相关的应用及结果错误的是( )A、小白鼠吸入18O2后呼出的CO2不会含有18O,但尿液中会含有HOB、用含有3H标记的胸腺嘧啶脱氧核苷酸的营养液培养洋葱的根尖,可以在细胞核和线粒体内检测到较强的放射性,而在核糖体处检测不到C、将15N标记的DNA置于含14N标记的脱氧核苷酸的培养液中进行复制,经密度梯度离心后可以分析得出DNA具有半保留复制的特点D、要得到含32P的噬菌体,必须先用含32P的培养基培养细菌3、判断基因位置的实验设计①细胞核基因与细胞质基因的判断实验设计:正交与反交法结果预测及结论:(1)若正、反交结果相同,则说明性状是由细胞核基因控制的。
高中生物学中常见同位素示踪法实验

高中生物学中常见同位素示踪法实验同位素示踪法是一种微量分析方法,利用放射性同位素作为示踪剂对研究对象进行标记,通过放射性探测仪器进行追踪,可以了解放射性原子的运动路径和分布情况。
在生物学实验中,同位素示踪法经常被应用于研究细胞内元素或化合物的来源、组成、分布和去向,以及细胞的结构和功能、化学物质的变化、反应机理等。
放射性同位素一般用于构成细胞化合物的重要元素,如H、C、N、O、P、S、I等。
下面是高中生物学教材中涉及到同位素示踪法的应用:1.研究蛋白质或核酸合成的原料及过程。
将放射性原子标记在合成蛋白质或核酸的原料(氨基酸或核苷酸)中,通过追踪放射性原子的运动路径和分布情况,可以了解其通过的路径、运动到哪里以及分布情况。
2.研究分泌蛋白的合成和运输。
用H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
通过观察细胞中放射性物质在不同时间出现的位置,可以明确细胞器在分泌蛋白合成和运输中的作用。
3.研究细胞的结构和功能。
用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
4.探究光合作用中元素的转移。
利用放射性同位素O、C、H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,科学家XXX和卡门用氧的同位素O分别标记H2O和CO2,进行两组光合作用实验,结果表明第一组释放的氧全部是O2,第二组释放的氧全部是O2.标记噬菌体的DNA,将其注入大肠杆菌内,并发现放射性物质。
而使用S标记噬菌体的蛋白质,则在大肠杆菌35内未发现放射性物质。
这证明了噬菌体在侵染细菌的过程中,进入细菌体内的是噬菌体的DNA,而不是噬菌体的蛋白质。
这进一步证明了DNA是噬菌体的遗传物质。
通过放射性标记,可以“区别”亲代与子代的DNA。
例如,放射性标记N可以用于区分DNA分子的两条链是否都是15N。
如果是,则在离心时会出现重带;如果一条链是N,一条链是N,则会出现中带;如果两条链都是N,则会出现轻带。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
总之,同位素示踪法正在更大规模地应用于生物研究领域。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18 O、32P、35S、131I 等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
?2 研究分泌蛋白的合成和运输?用3H 标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
?3 研究细胞的结构和功能?用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
?4 探究光合作用中元素的转移?利用放射性同位素18O、14C、3H 作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
例如,美国的科学家鲁宾和卡门研究光合作用中释放的氧到底是来自于水,还是来自于二氧化碳。
他们用氧的同位素18O分别标记22218HO和 CO,使它们分别成为H O 18,然后进行两组光合作用实验:第一组向绿色植物提供18和 C O H O和 CO,第二组向同种绿色植222物提供 H2O和 C18 O2。
在相同条件下,他们对两组光合作用释放的氧进行了分析,结果表明第一组释放的氧全部是18 O2,第二组释放的氧全部是O2,从而证明了光合作用释放的氧全部来自水。
另外,卡尔文等用14C 标记的 CO2,供小球藻进行光合作用,追踪检测其放射性,探明了CO2中的碳在光合作用中转化成有机物中碳的途径。
?5 研究细胞呼吸过程中物质的转变途径?利用18O作为示踪原子研究细胞呼吸过程中物质的转变途径,揭示呼吸作用的机理。
例如,用18O标记的氧气(18O),生成的水全部有放射性,生成的二氧化碳全部无放射性,即18O→ H218 O。
用18612186生成的水全部无放射性,612186 O标记的葡萄糖( C H O),生成的二氧化碳全部有放射性,即 C H O 182182182→C O。
例如将一只实验小鼠放入含有放射性O 气体的容器内,O 进入细胞后,最先出现的放射性化合物是水。
?6 研究某些矿质元素在植物体内的吸收、运输过程?研究矿质元素的吸收部位时,常用放射性同位素32P 等来做实验,发现根毛区是根尖吸收矿质离子最活跃的部位。
研究矿质离子在茎中的运输部位时,用不透水的蜡纸将柳树的韧皮部和木质部隔开,并在土壤中施用含42K的肥料, 5 小时后测定42K在柳茎各部位的分布;有蜡纸隔开的木质部含有大量42 K,韧皮部几乎无42K,说明运输42K 的是木质部;柳茎在用蜡纸隔开韧皮部和木质部的以下区段以及不插入蜡纸的对照实验中,韧皮部中也有很多42K,说明42K 可从木质部横向运输到韧皮部。
?7 研究有丝分裂过程中染色体的变化规律?在处于连续分裂的细胞的分裂期用3H 标记胸腺嘧啶脱氧核苷酸,根据胸腺嘧啶被利用的情况,可以确定 DNA合成期的起始点和持续时间,以研究有丝分裂过程中染色体的变化规律。
例如为了验证促进有丝分裂的物质对细胞分裂的促进作用,将小鼠的肝细胞悬浮液分成等细胞数的甲、乙两组,在甲组的培养液中加入3H 标记的胸腺嘧啶脱氧核苷(3H-TdR);乙组中加入等剂量的3H-TdR,加入促进有丝分裂的物质。
培养一段时间后,分别测定甲、乙两组细胞的总放射性强度。
再如,有人为确定DNA合成期的时间长度,在处于连续分裂的细胞的分裂期加入用3H 标记的胸腺嘧啶,根据胸腺嘧啶被利用情况,可以确定DNA合成期的起始点和持续时间。
?8 证明 DNA是遗传物质 ?在研究蛋白质和DNA在遗传中的作用时,分别放射性标记蛋白质和DNA的特征元素,用32P 标记噬菌体的 DNA,大肠杆菌内发现放射性物质,用35 S 标记噬菌体的蛋白质,大肠杆菌内未发现放射性物质;从而验证噬菌体在侵染细菌的过程中,进入细菌体内的是噬菌体的DNA,而不是噬菌体的蛋白质,进而证明了DNA是噬菌体的遗传物质。
?9探究DNA分子半保留复制的特点?通过放射性标记来“区别”亲代与子代的DNA,如放射性标记15 N,因为放射性物质15N的原子量和14N的原子量不同,因此DNA的相对分子质量不同。
如果DNA分子的两条链都是15N,则离心时为重带;如果DNA分子的一条链是15 N,一条链是14 N,则离心时为中带;如果DNA分子的两条链都是14N,则离心时为轻带。
因此可以根据重带、中带、轻带DNA出现的比例,判断DNA复制是全保留复制还是半保留复制。
?10 探究基因的转录和翻译?用放射性同位素标记尿嘧啶核糖核苷酸(RNA的特征碱基为U)、氨基酸,则在基因转录、翻译的产物中就会含有放射性同位素,还可以用来确定转录、翻译的场所。
?11 基因探针在基因诊断中的应用?在基因诊断中可利用放射性同位素15N、32 P 等标记的DNA分子做基因探针,将某一致病基因放到含放射性15 N或32P 的培养基中进行扩增,加热得到被标记的致病基因单链即基因探针,利用DNA分子杂交原理,将待测者的DNA分子加热处理形成DNA分子单链并与基因探针混合,让其杂交,检测是否形成双链,若完全形成双链,证明该待测者患有该病,否则不患。
该基因诊断的方法可迅速地检测出肝炎病毒、肠道病毒等多种病毒,以及镰刀型细胞贫血症、苯丙酮尿症、白血病等。
根据杂交带情况可检测生物亲缘关系或转基因生物是否插入目的基因,应用同样的原理还可检测饮用水中病毒的含量。
例如我国科学工作者利用DNA分子杂交的原理,利用基因工程研制出“非典”诊断盒,快速诊断“非典”。
?12 在生物诱变育种方面的应用?诱变育种是利用?X?射线、γ射线、β射线或中子去辐照农作物的种子,植株或者某些器官,使它们产生的遗传性发生改变,产生各种各样的突变,在较短时间内获得有利用价值得突变体,然后从中选择出对人类有用的突变,经过培育而成的新品种。
诱变育种常用的放射性同位素有35S、32P、45Ca(β射线)65Zn、60Co(γ射线)等,主要方法有浸泡种子、施入土壤、涂抹幼苗、注入植物组织内等。
如是典型的γ放射源,可用于诱变育种。
我国应用该方法培育出了许多农作物新品种。
如棉花高产品种“鲁棉 1 号”,年种植面积曾达到3000 多万亩,在我国自己培育的棉花品种中栽培面积最大。
?13 探究大脑皮层的功能 ?科学家们常用PET技术对大脑皮层的高级功能进行定位。
PET技术是指正电子反射型计算机断层造影成像技术,是一种直接对脑功能造影的技术,运用该技术,科学家可以通过特制的探测元件测定大脑不听区域物质的消耗情况,进而定位大脑皮层的不同功能区。
将葡萄糖的基本元素(C、H、O)用超短“寿命”的放射性同位素标记(如F18、C11 等),制成放射性示踪剂,然后把这种示踪剂注射到受试者的血管中,通过特制的探测元件,就可以获取示踪剂在受试者大脑中的三维分布及其随时间变化的情况。
如让受试者进行思维、语言、聆听、书写等高级机能活动,皮层中相应的中枢将处于高度兴奋状态,此时,通过观察这些中枢对示踪剂的消耗情况,就可以得出大脑皮层各功能区的位置和分布。
例如让受试者进行书写时,大脑皮层中关于书写的中枢将大量消耗葡萄糖,该神经中枢的位置就可以通过探测进行定位。
目前该技术已广泛用于多种疾病的诊断与鉴别诊断、病情判断、疗效评价、脏器功能研究和新药开发等方面。
?14 研究反馈调节机制?在生物的反馈调节中,某一种物质的变化会引起一系列的调节反应,也会引起其他物质的相应变化。
标记某一物质,用一定方法处理,通过检测放射性物质在某器官中的变化量,研究反馈调节的机制。
例如在研究甲状腺腺体与甲状腺激素、促甲状腺激素的分泌时,一般选用131I进行同位素原子的示踪标记。
因为人体从食物中吸收的碘元素几乎全部集中在甲状腺腺体,用于合成甲状腺激素。
?15 在免疫调节中的应用?给动物以高剂量的同位素标记的抗原,结果动物不但不发生免疫反应,而且以后对同样的、但不同同位素标记的抗原也不再发生免疫反应。
此时如给其他抗原,动物仍能发生正常免疫反应。
这一实验表明,同位素标记的抗原与带有互补抗体的淋巴细胞结合,这种淋巴细胞全被射线杀死,因此不发生免疫反应。
第二次给正常的同样抗原时,由于带有互补抗体的淋巴细胞已全被杀死,其他种类的淋巴细胞虽对其他抗原能正常反应,但不能对此种抗原发生反应,即不能转变为与此种抗原互补的淋巴细胞。
因此,动物就失去对此种抗原的免疫能力。
由此可见,淋巴细胞的特异性是先天存在的,而不是由抗原的“教导”而产生的。
?16 研究生长素的极性运输?证明植物生长素的极性运输时,用同位素14 C 标记茎形态学上端的生长素(吲哚乙酸),可在茎的形态学下端探测到放射性同位素14 C,而标记茎形态学下端的生长素,则在茎的形态学上端探测不到放射性同位素,说明植物生长素只能从形态学的上端运输到形态学的下端。
?17 研究物质循环和能量流动等方面的问题?在生态系统中,组成生物体的C、 H、 O、 N、 P、 S 等元素,不断进行着从无机环境到生物群落,又从生物群落到无机环境的循环过程。
如果用放射性同位素标记参与物质循环的这些元素,就可以追踪物质的转移途径。
例如用35 S 标记 SO2、用14C 标记 CO2追踪硫循环和碳循环中S 和 C 的转移途径。
?。