方向控制阀与单缸直接控制回路-教案

方向控制阀与单缸直接控制回路-教案
方向控制阀与单缸直接控制回路-教案

液压与气压传动__课程教案

【教案正文】

气动门的动作要求为:开启(多媒体动画播放)气动门的自动开启和关闭是气缸通过变化运动方向实现的,工作关键在于利用控制回路中气流运动方向的元件控制气压缸的运动方向。

动方向的呢?

方向控制阀

a)手动控制b)机械控制c)电动控制d)气压传动控制

3/2阀的结构示意图3/2

方向控制阀有进气口、工作口和排气口。初始位置时,阀芯隔断进气口与工作口之间的通道,两口不相通。此时,工作口与排气口相通,压缩空气可以通过排气口排入大气中。当按下阀芯,这时进气口与工作口相通,压缩空气通过进气口进入从工作口输出,而排气口关闭。

2. 方向控制阀的控制方式和接口表示方式

阀芯动作的控制方式和复位方式,是选择阀的重要依据之一。

(2)方向控制阀接口表示方法

气压传动方向控制阀用数字或字母标出各个接口,并代表着不同的含义

方向控制阀在用字母符号表示时,一般把Z表示左边控制口,而Y表示右边控制口。实际使用中,常以数字符号表示的方式居多。

无气控信号有气控信号

单气控3/2换向阀实物及工作原理

单气控3/2换向阀处于常态(即气控信号口12没有压缩空气进入)时,在弹簧的作用下阀芯处于右端位置,使阀口2与3相通,阀口3排气,而阀口1封闭。当有气控信号(即气控信号口12有压缩空气进入)时,在压缩空气的作用下,阀芯克服弹簧与3断开,阀口1与阀口2接通,阀口2有压缩气体输出。

双气控阀a)实物b)图形符号c)工作原理

当控制阀口12有压缩空气输入,阀口1与阀口2、阀口4和阀口5分别连通,使得阀口2、阀口5有压缩空气输出。当控制阀口12的压缩空气断开时,双气控阀仍保持原有的连通状态,即阀口2阀口5仍然有压缩空气输出。这就是当前的位置被“记忆”了下来。直到控制阀口14

一、请回答下列问题

1、气缸有哪些主要类型?其功用如何?(提问学生)

2、与液压执行元件相比,气动执行元件有何特点?(学生作业)

3、在选用单活塞杆气缸时主要考虑哪些参数?(教师引导,学生讨论)

4、气动控制阀在气动系统中的功用是什么?有哪些类型?

(学生作业)

二、请判断下列说法的对错(正确画√,错误画×)(学生抢答)1.气动执行元件是将气体的压力能转换为机械能的装置。()2.气动马达具有较低的起动力矩,不能直接带动负载起动。()3.气动马达与液压马达相比,可长时间满载工作,且温升较小、效率高。()

4.气缸选用的主要依据是它的输出力和运动速度。()

5. 气缸与液压缸结构相似,一般缸筒也采用无缝钢管。()

三、请将正确的答案填入括号中:(学生自主练习,提问学生)

1.在要求双向速度相同的场合一般采用()较合适。

A、步进气缸

B、膜片式气缸

C、气-液阻尼气缸

D、双活塞杆气缸

2. 单作用气缸的回程一般是依靠()返回的。

A、负载推力

B、弹簧力

C、气缸自重

D、气体压力

3. 在选用气缸时,需要考虑的因素很多,但一般不优先考虑气缸的()。

A、结构形式

B、活塞缸径

C、工作行程

D、外观

4. 气缸与液压缸结构原理非常相似,但由于工作介质的不同,气缸中有而液压缸中没有的缸是()。

A、单活塞杆缸

B、弹簧复位缸

C、冲击缸

D、缓冲缸5.气缸的负载率反映了气缸运动状态对输出力的影响。若单活塞杆双作用气缸内径D=100mm,工作压力p=0.5MPa,负载率η=0.5。该气缸的理论推力和实际推力分别为( B )N。

A、3925和3925

B、3925和1962.5

C、1962.6和1962.5

D、3925和7850

方向控制回路教案

安岳县职教中心20XX年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:20XX年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

第五章 方向控制阀

第五章方向控制阀 方向控制阀(方向阀)是控制液压系统中的液流方向的阀,用来对系统中各个支路的液流进行通、断的切换,以适应工作的要求。一个液压系统所应用的各个控制阀中,方向阀占的数量相当多。 §5-1 方向阀的功能及分类 常规方向阀的基本作用是对液流进行通、断(开、关)切换。因此,工作原理比较简单,它的结构也并不复杂。但是,为了满足不同液压系统对液流方向的控制要求,方向阀的品种规格名目繁多。 一、分类 方向阀按其功能,大致可分成以下几种类型: 有时把压力表开关也归到方向控制阀中。 除了上述一般的方向控制阀外,还有可以进行阀芯位置连续控制的电液比例方向阀。 从阀芯的结构特征来区分,又有锥阀式、球阀式、滑阀式和转阀式等。 (一)单向阀 单向阀类似于电路中的二极管。在液压系统中单向阀只允许液流沿一个方向通过,反方向流动则被截止。它是一种结构最简单的控制阀。图5-1(图5-1省略p89)分别是钢球式直通单向阀和锥阀式直通单向阀。 液流从1P流入时,克服弹簧力而将阀芯顶开,再从2P流出。当液流反向流入时,由于阀芯被压紧在阀座密封面上,所以流动被截止。 钢球式单向阀的结构简单,但密封性不如锥阀式,并且由于钢球没有导向部分,所以工作时容易产生振动,一般用在流量较小的场合。锥阀式应用最多,虽然加工要求较钢球式高一些,但是它的导向性好,密封可靠。 图5-1所示单向阀是管式结构,尺寸小巧紧凑,可以直接安装在管路中。此外还有板式结构的单向阀(图5-2)(图5-2省略p90),它的装拆维修比较方便,不过需要另行设置安装底板。此外,由于板式单向阀内的流道有转弯,所以流动阻力损失较管式结构大。 单向阀中的弹簧主要是用来克服摩擦力、阀芯的重力和惯性力,使阀芯在液流反方向流动时能迅速关闭。但弹簧过硬会影响阀的开启压力并造成过大的流动损失。一般单向阀的开启压力大约0.03~0.05MPa,并可根据需要更换弹簧。例如,单向阀作为背压阀使用时,需要具有与系统工作相适应的开启压力,因此采用较硬的弹簧。 单独应用的单向阀,其符号见图5-3a(图5-3省略p90)。设置在阀块中或与其它元件组合应用的单向阀,其符号见图5-3b。 对单向阀的基本要求是:正向流动阻力损失小,反向时密封性好,动作灵敏。 液控单向阀是可以根据需要来实现逆向流动的单向阀。图5-4(图5-4省略p91)是具有卸载阀的外泄式液控单向阀。它除了进油口1p和出油口2p外,还有一个控制油口c p。在通常情况下,它的作用与一般单向阀相同,只允许液流从1p流向2p,反向时截止。当需要允许反向流动时,接通控制压力c p,控制活塞上移而顶开单向阀阀芯,使液流可以反向流动。采用具有卸载小阀芯的复式单向阀芯结构时,控制活塞

三相异步电动机正反转控制线路教学设计

《三相异步电动机正反转控制线路》 教学设计 姓名:张洪岩 单位:宽甸职教中心

课题:三相异步电动机的正反转控制线路授课班级:14秋船电 授课时间:2015年6月10日 授课教材: 中国劳动出版社《电力拖动控制线路与技能训练》 教材分析: 《三相异步电动机正反转控制线路》是教材第二章课题二的摘选内容,教材从学生刚刚学过的电动机正转控制入手,结合生活中的实例,从简单到复杂,层层推进的介绍了三相异步电动机接触器联锁控制线路的工作原理。从知识结构看,既是电动机单向启动控制线路安装的拓展和深化,又是学习典型机床控制线路的基础。在实际生活中应用广泛。 教学目标: 知识目标:掌握三相异步电动机正反转控制的设计思路,理解其工作原理。 技能目标:能够完成三相异步电动机正反转控制的接线。 情感目标:培养学生自主学习能力,树立互帮互助的团队合作意识。 教学重、难点: 设计三相异步电动机正反转控制线路是本节课的教学重点,分析正反转控制线路的工作原理是本节课的教学难点。 教法: 任务驱动法:给定任务,引导、启发学生循序渐进分步完成,培养学生自主学习和思维创新能力。 多媒体辅助教学法:在专业课教学中,利用课件的动态效果,使

其趣味化,形象直观的帮助学生更好的理解知识。 分层教学法:在教学中根据学生学习情况,实行分层教学,让不同层次的学生都能感受到成功的喜悦。 启发引导教学法:在教学过程中进行启发性讲授,引导学生进行探究性的学习。 学法: 自主学习:自主设计电路。 合作探究:以小组为单位讨论学习,树立团队合作意识。 成果展示:讲解控制过程,培养学生能思考能表达的综合素质。授课方法: 理论与实践一体化 教具准备 接线控制面板、电工工具10套、若干导线,电工实训台。

方向电路场联电路培训教案

四线制方向电路培训教案 一、控制台所设按钮和表示灯 1、表示灯 接车方向表示灯JD,黄色,点亮表示本站该方向为接车站。发车方向表示灯FD,绿色,点亮表示本站该方向为发车站。监督区间表示灯JQD,红色,点亮表示已向该口建立发车进路或列车正在区间运行(注:平时空闲灭灯)。辅助办理表示灯FZD,白色,点亮表示正在办理改变运行方向。允许改变运行方向灯YGFD,红色,点亮表示允许改变运行方向。 2、按钮 允许改变运行方向按钮YGFA,二位非自复式,带铅封。总辅助办理按钮ZFA,非自复式,带铅封。接车辅助办理按钮JFA,自复式,带铅封。发车辅助办理按钮FFA,自复式,带铅封。 3、计数器 记录辅助办理改变运行方向的次数。 二、组合排列 1、每一端的改变运行方向电路由15个继电器组成,分为两个组合,称改变运行方向主组合 2、继电器名称 FJ1、FJ2:方向继电器JQJ:监督区间继电器JQJF:监督区间复示继电器GFJ:改变运行方向继电器GFFJ:改变运行方向辅助继电器JQJ2F:监督区间第二复示继电器DJ:短路继电器FFJ:发车辅助继电器JFJ:接车辅助继电器FGFJ:辅助改变运行方向继电器FAJ:发车按钮继电器FSJ:发车锁闭继电器ZFAJ:总辅助按钮继电器KJ:控制继电器 FZG:硅整流器 3、平时状态 发车站:FJ1↓FJ2↓JQJ↑(空闲) JQJ↓(占用或办理了进路)JQJF↓JQJ2F↓GFJ↑GFFJ↓DJ↓JFJ ↓FFJ↓FGFJ↓FAJ↓FSJ↑(未向发车口办理进路) KJ↓ZFA J↓ 接车站:FJ1↑FJ2↑JQJ↑(空闲) JQJ↓(占用或办理了进路)JQJF↑JQJ2F↑GFJ↓GFFJ↑DJ ↓JFJ↓FFJ↓FGFJ↓FAJ↓FSJ↑(未向发车口办理进路) KJ↓ZFA J↓

电气控制线路的安装与维修(教学设计)

《电气控制线路的安装与维修》教案 授课教师侯庆友授课时间10月16日授课班级D2-1 课题工作台自动往返控制电路安装与检修总学时56-57 教材分析教学目标:掌握行程开关的原理及使用方法教学重点:行程开关的使用方法 教学难点:行程开关的使用方法 教学方法:讲授法 所用课时:2 时间分配教学内容及步骤 5′10′ 25′组织教学: 复习提问(或引入新课): 新课教学: 一、知识学习: (一)行程开关 行程开关又叫限位开关,它的种类很多,按运动形式可分为直动式、微动式、转动式等;按触点的性质分可为有触点式和无触点式。它用以反应工作机械行程,发出命令以控制其运动方向和行程大小的开关。其作用原理与按钮相同,区别在于它不是靠手指的按压而是利用生产机械运动部件的碰压使其触头动作,从而将将机械信号转变为电信号,用以控制机械或用作程序控制。 行程开关的主要参数有型式、动作行程、工作电压及触头的电流容量。目前国内生产的行程开关有LXK3、3SE3、LXl9、LXW和LX等系列。 常用的行程开关有LX19、LXW5、LXK3、LX32和LX33等系列。 1.型号及含义 (2)结构及工作原理 行程开关按其结构可分为直动式、滚轮式、微动式和组合式。 1)直动式行程开关其结构原理如图1-24所示,其动作原理与按钮开关相同,但其触点的分合速度取决于生产机械的运行速度,不宜用于速度低于0.4m/min 的场所。

图1-24 直动式行程开关 1-推杆 2-弹簧 3-动断触点 4-动合触点 2)滚轮式行程开关其结构原理如图1-25所示,当被控机械上的撞块撞击带有滚轮的撞杆时,撞杆转向右边,带动凸轮转动,顶下推杆,使微动开关中的触点迅速动作。当运动机械返回时,在复位弹簧的作用下,各部分动作部件复位。 图1-25 滚轮式行程开关 1-滚轮 2-上转臂 3、5、11-弹簧 4-套架 6-滑轮 7-压板 8、9-触点 10- 横板 滚轮式行程开关又分为单滚轮自动复位和双滚轮(羊角式)非自动复位式,双滚轮行移开关具有两个稳态位置,有“记忆”作用,在某些情况下可以简化线路。3)微动开关式行程开关其结构如图1-26所示。常用的有LXW-11系列产品

方向控制阀工作原理

第13章气动控制阀(Pneumatic control valves) 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 13.1常用气动控制阀(Common pneumatic control valves) 和液压控制阀类似,常用的基本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 13.1.1.1 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也基本相同。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯结构、控制方式等进行分类。 1.截止式方向控制阀 芯的关系如图13.1 阀口开启后气流的流动方向。 点: 1) 构紧凑的大口径阀。 2 胶等)密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3)因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4)比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1)阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式结构; 2)由于结构的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比较常用的具有记忆功能的阀; 3)换向时由于不受截止式密封结构所具有的背压阻力,换向力较小;

液压及电磁阀知识培训

液压及电磁阀应用培训教程 2009年1月21日 -24日

目录 第一章液压控制阀 (3) 第一节液压控制阀的分类 (3) 第二节压力控制阀 (4) 第三节方向控制阀 (9) 第四节流量控制阀 (12) 第五节比例控制阀(含高频响阀) (14) 第六节伺服控制阀 (22) 第二章液压原理图和基本回路分析 (25) 第一节TM区域液压原理图及阀件分布简介 (25) 第二节伺服控制回路 (25)

第一章液压控制阀 第一节液压控制阀的分类 1. 概述 在液压系统中,用于控制和调节工作压力的高低、流量大小以及改变流量方向的元件,统称为液压控制阀。液压控制阀通过对工作液体的压力、流量以及流液方向的控制与调节,从而可以控制液压执行元件的开启、停止和换向,调节其运动速度和输出扭矩(或力)。 2. 液压控制阀的分类 按功能分类 (1) 压力控制阀用于控制或调节液压系统或回路压力的阀,如溢流阀、减压阀、顺序阀压力继电器等; (2) 方向控制阀用于控制或调节液压系统或回路中方向及其通和断,从而控制执行元件的运动方向及其启动、停止的阀。如单向阀、换向阀等; (3) 流量控制阀用于控制或调节液压系统或回路中工作液体流量大小的阀。如节流阀、调速阀、分集流阀等 按阀的控制方式分类 液压控制阀按控制方式可分为: (1) 开关(或定值)控制阀:借助于通断型电磁铁及手动、机动、液动等方式,将阀芯位置或阀芯上的弹簧设定在某一工作状态,使液流的压力、流量或流向保持不变的阀。这类阀属于常见的普通液压阀 (2) 比例控制阀:采用比例电磁铁(或力矩马达)将输入信号转换成力或阀的机械位移,使阀的输出(压力、流量)也按照其输入量连续、成比例地进行控制的阀,比例控制阀一般属于开环控制阀,现在也很多用在闭环系统中。 (3) 伺服控制阀:其输入信号(电量、机械量)多为偏差信号(输入信号与反馈信号的差值),阀的输出量(压力、流量)也按照其输入量连续、成比例地进行控制的阀。这类阀的工作性能类似于比例控制阀,但具有较高的动态瞬应和静态性能,多用于要求较高的、响应快的闭环液压控制系统。 (4) 数字控制阀:用于数字信息直接控制的阀类。

方向控制阀与单缸直接控制回路-教案

液压与气压传动__课程教案

【教案正文】

气动门的动作要求为:开启(多媒体动画播放)气动门的自动开启和关闭是气缸通过变化运动方向实现的,工作关键在于利用控制回路中气流运动方向的元件控制气压缸的运动方向。 动方向的呢? 方向控制阀 a)手动控制b)机械控制c)电动控制d)气压传动控制 3/2阀的结构示意图3/2

方向控制阀有进气口、工作口和排气口。初始位置时,阀芯隔断进气口与工作口之间的通道,两口不相通。此时,工作口与排气口相通,压缩空气可以通过排气口排入大气中。当按下阀芯,这时进气口与工作口相通,压缩空气通过进气口进入从工作口输出,而排气口关闭。 2. 方向控制阀的控制方式和接口表示方式 阀芯动作的控制方式和复位方式,是选择阀的重要依据之一。 (2)方向控制阀接口表示方法 气压传动方向控制阀用数字或字母标出各个接口,并代表着不同的含义 方向控制阀在用字母符号表示时,一般把Z表示左边控制口,而Y表示右边控制口。实际使用中,常以数字符号表示的方式居多。

无气控信号有气控信号 单气控3/2换向阀实物及工作原理 单气控3/2换向阀处于常态(即气控信号口12没有压缩空气进入)时,在弹簧的作用下阀芯处于右端位置,使阀口2与3相通,阀口3排气,而阀口1封闭。当有气控信号(即气控信号口12有压缩空气进入)时,在压缩空气的作用下,阀芯克服弹簧与3断开,阀口1与阀口2接通,阀口2有压缩气体输出。 双气控阀a)实物b)图形符号c)工作原理 当控制阀口12有压缩空气输入,阀口1与阀口2、阀口4和阀口5分别连通,使得阀口2、阀口5有压缩空气输出。当控制阀口12的压缩空气断开时,双气控阀仍保持原有的连通状态,即阀口2阀口5仍然有压缩空气输出。这就是当前的位置被“记忆”了下来。直到控制阀口14

液压基本回路电子教案

【课题编号】 26—11.5 【课题名称】 液压基本回路 【教学目标与要求】 一、知识目标 了解组成液压传动系统的四大基本回路的结构、运动特点和应用场合。 二、能力目标 能够将液压传动系统分成几个基本回路,以便分析运动分析。 三、素质目标 能分析液压系统的传动过程。 四、教学要求 1.能够认识四个基本回路的组成,即各回路中不同类型的特点。 2.能够把液压传动系统图分成相应的基本回路,分析各个回路在传动中的作用。 【教学重点】 各典型回路的运动特点分析。 【难点分析】 1. 换向阀不同中位机能的作用。 2. 进油节流调速与回油节流调速比较。 3. 二次进给回路的应用。

【分析学生】 由于传动系统的图形符号不复杂,比较直观,难度不大,只要各种阀的动作机理清楚,各个典型回路应当比较容易理解。方向控制阀的各中位机能的作用对执行元件运动的影响,估计学生缺少感性认识,可能理解不深。 【教学思路设计】 重点是分析各种典型回路的特点,比较各回路对执行件的影响,所以要注意采用比较法来记住各种回路的特点。 【教学安排】 2学时(90分钟) 【教学过程】 对于任何一种液压传动系统,无论其结构有多么的复杂,总归是由一些基本回路组成的,只要熟悉这些基本回路,就能比较容易地分析传动的过程,正如分析机器时,先将它拆成各个机构一样。 一、方向控制回路 1.换向如图11—35的换向回路由手动三位四通阀来控制工作台的左右运动,图示位置换向阀处于左位,油液进入油缸左腔,执行元件右移;当换向改换成为右位时,油液进入油缸右腔,执行元件左移,实现左右移动。而换向阀处于中位时,由于进油口与回油口相通,油液全部流回油箱,油缸左右两腔油液被封闭,执行元件固定不动。图中溢流阀、压力表、液压泵和配件为基本配置元件。 2 .锁紧将执行元件锁紧在某个位置上不得左右窜动。常用的

方向控制阀的原理和区别

今天为大家带来多种方向控制阀的原理和区别。控制阀由两个主要的组合件构成,阀体组合件和执行机构组合件(或执行机构系统),分为四大系列:单座系列控制阀、双座系列控制阀、套筒系列控制阀和自力式系列控制阀。四种类型阀门的变种可导致许许多多不同的应用结构,每种结构有其特点和优、缺点。我们一起来看吧~ 液压阀是用来控制液压系统中油液的流动方向或调节其流量和压力的。 方向控制阀作为液压阀的一种,利用流道的更换控制着油液的流动方向。 单向型方向控制阀是只允许气流沿一个方向流动的方向控制阀,如单向阀、梭阀、双压阀等。 换向型方向控制阀是可以改变气流流动方向的方向控制阀,简称换向阀。 按照控制方式还可分为电磁阀,机械阀,气控阀,人控阀。

单向型方向控制阀1.单向阀

单向阀是气流只能朝一个方向流动,而不能反向流动的阀。单向阀常与节流阀组合,用来控制执行元件的速度。 组成:阀体、阀芯、弹簧等。 作用:只允许液流一个方向流动,反向则被截止。 工作原理:正向导通、反向截止。 应用:常被安装在泵的出口,一方面防止压力冲击影响泵的正常工作,另一方面防止泵不工作时系统油液倒流经泵回油箱。被用来分隔油路以防止高低压干扰。

2.液控单向阀 液控单向阀是依靠控制流体压力,可以使单向阀反向流通的阀。这种阀在煤矿机械的液压支护设备中占有较重要的地位。 液控单向阀与普通单向阀不同之处是多了一个控制油路K,当控制油路未接通压力油液时,液控单向阀就象普通单向阀一样工作,压力油只从进油口流向出油口,不能反向流动。 当控制油路有控制压力输入时,活塞顶杆在压力油作用下向右移动,用顶杆顶开单向阀,使进出油口接通。若出油口大于进油口就能使油液反向流动。 组成:普通单向阀+小活塞缸内泄式和外泄式。 工作原理: a. 无控制油时,与普通单向阀一样 b. 通控制油时,正反向都可以流动。 应用:a、保持压力。b、液压缸的“支承”。c、实现液压缸锁紧。d、大流量排油。 e、作充油阀。 f、组合成换向阀。

方向控制阀

.-方向控制阀

————————————————————————————————作者:————————————————————————————————日期:

教案首页课程名称液压与气动技术 课题 第5章液压控制元件5.1 液压控制元件的概述5.2 方向控制阀 课型理论 周次 学时 2 授课时间月日月日月日月日月日班级(人数) 教学目的【知识目标】了解液压控制阀的功用、分类和结构 掌握换向阀位通滑阀机能 【能力目标】掌握换向阀位、通、滑阀机能 【德育目标】培养学生用理论知识解决简单的实际问题的能力。 教学重点1、换向阀的位、通、滑阀机能的概念2、换向阀符号的含义 教学难点换向阀工作原理 教学方法讲授+练习 教具/设备 作业 教学后记 授课教师冯莉2012年月日审签年月日

组织教学:提示学生上课,集中学生注意力,检查学生出勤情况 复习旧课:1、液压缸的密封装置有哪些? 2、液压缸为什么要缓冲?缓冲方法有哪些? 讲授新课:第五章液压控制阀 5.1概述 一、定义:液压控制元件也叫液压控制阀(液压阀)。 二、功用:控制和调节液压系统中液体流动的方向、压力的高低、流量的大小,以满足执行元件的工作要求。 三、对液压控制阀的基本要求 ①动作灵敏、性能好、工作可靠、冲击振动和噪声小; ②油液通过阀时的液压损失要小;③密封性能好; ④结构简单、紧凑,体积小,重量轻,安装、维修方便,成本低。 四、分类 (1)按机能(用途)分类 压力控制阀:溢流阀、减压阀、顺序阀、卸荷阀、缓冲阀、限压切 断阀、压力继电器等 流量控制阀:节流阀、单向节流阀、调速阀、分流阀、排气节流阀 等 方向控制阀:单向阀、换向阀、行程减速阀、比例方向控制阀、快 速排气阀、脉冲阀等 (2)按连接方式分类 管式连接阀:将板式阀用螺钉固定在连接板(或油路板、集成块)上。 如:螺纹式联接、法兰式连接。 板式或叠加式连接:单层连接板式、双层连接板式、叠加阀、多路阀。 插装式连接:螺纹式插装(二、三、四通插装阀)、盖板式插装(二通)。 (3)按操纵方法分类: 手动阀:手把及手轮、踏板、杠杆 机动阀:档块及碰块、弹簧 液/气动阀:液动阀、气动阀 电液/气动阀:电液动阀、电气动阀 电动阀:普通/比例电磁铁控制、步进电动机控制、伺服电动机控制(4)按输出参数可调性分类: 开关控制阀:方向控制阀、顺序阀、限速切断阀、逻辑元件 输出参数连续可调的阀:溢流阀、减压阀、节流阀、调速阀、各类 电液控制阀(比例阀、伺服阀) 5.2 方向控制阀 作用:方向控制阀(简称方向阀),用来控制液压系统的油流方向,接通或断开油路,从而控制执行机构的启动、停止或改变运动方向。 分类:单向阀普通单向阀:只允许油液正向流动,不许反流。教学方法及授课要点随记

方向控制回路实验教案12

第12 次课教学整体设计

教学过程(教学设计实施步骤及时间分配) 步骤1:复习巩固、检查课后搜集的资料(10分钟) 一、复习液压系统设计概述 二、复习液压系统设计方法和步骤。 三、检查预习情况。 步骤2:本节课学习任务、情境设计(5分钟) 本节课主要学习方向控制回路实验,通过学习方向控制回路实验有关方面的知识,了解方向控制回路实验步骤和方法。 步骤3-1:讲授知识(30分钟) 实验一方向控制回路 一、实验目的 1.加深认识液控单向阀的工作原理、基本结构、使用方法和在回路中的作用。 2.学会利用液控单向阀的结构特点设计液压双向锁紧回路。 3.通过实验加深对锁紧回路性能的理解。 4.培养安装、联接和调试液压系统回路的实践能力。 二、实验设备 实验台一台;三位四通电磁换向阀一个;液压缸一个;溢流阀一个;油管若干;四通油路过渡底板;接近开关及其支架;压力表(量程:10MPa)一个;油泵一个。 三、实验原理 实验回路如下图所示,当有压力油进入时, 回油路的单向阀被打开,压力油进入工作液压 缸。但当三位四通电磁换向阀(Y型)处于中位 或液压泵停止供油时,两个液控单向阀把工作液 压缸内的油液密封在里面,使液压缸停止在该位 置上被锁住。(如果工作液压缸和液控单向阀都 具有良好的密封性能,即使在外力作用下,回路 也能使执行元件保持长期锁紧状态)。本实 验在图示位置时,由于Y型三位四通电磁换向阀 处于中位,A、B、T口连通,P口不向工作液压

缸供油,保持压力,缸两腔连通。此时,液压泵输出油液经溢流阀流回油箱,因无控制油液作用,液控单向阀A,B关闭,液压缸两腔均不能进排油,于是,活塞被双向锁紧。要使活塞向右运动,则需使换向阀1DT通电,左位接入系统,压力油经液控单向阀A进入液压缸,同时也进入液控单向阀B的控制油口K,打开阀B,使液压缸右腔回油经阀B及换向阀流回油箱,同时工作液压缸活塞向右运动。当换向阀右位接通,液控单向阀B开启,压力油打开阀A的控制口K,工作液压缸向左行,回油经阀A和换向阀T口流回油箱。 四、实验内容与步骤 (一)、实验内容: 根据已学液压传动知识利用液控单向阀的工作原理和基本性能设计双向锁紧回路,并在液压实验台上进行安装、联接、调试和运行。观察分析用液控单向阀的闭锁回路在工作过程中液压缸的锁紧精度及其可靠性。 本实验使用了一个Y型三位四通电磁换向阀和两个液控单向阀所组成的液压双向锁紧回路,在工作液压缸的进、出油路上接入液控单向阀A和B,通过三位四通电磁换向阀对液控单向阀的换向控制,可以在行程的任何位置将液压缸活塞锁紧。其锁紧精度仅受液压缸少量内泄漏的影响。 (二)、实验步骤 1) 设计利用两个液控单向阀的双向液压闭锁回路; 2) 安装回路所需元器件,用透明油管连接回路。经检查确定无误后接通电源,连接三位四通电磁换向阀,启动电气控制面板上的电源开关; 3)启动液压泵开关,调节液压泵的转速使压力表达到预定压力,利用三位四通电磁换向阀的换向功能使活塞进行往复运动; 4) 观察并分析系统压力与液控单向阀控制口压力之间的关系。 五、注意事项 1、因实验元器件结构和用材的特殊性,在实验的过程中务必注意稳拿轻放防止碰撞;在回路实验过程中确认安装稳妥无误后才能进行加压实验。 2、做实验之前必须熟悉元器件的工作原理和动作的条件,掌握快速组合的方法,绝对禁止强行拆卸,不能强行旋扭各种元件的手柄,以免造成人为损坏。

方向控制回路

理论课课堂教学安排教学过程主要教学内容及步骤 复习回顾: (5`) 提问 新课:1、常见的液压辅助元件有哪些,七对液压系统的性能有何影响? 2、油箱、过滤器、蓄能器、管接头有何作用? 第一节压力控制回路 定义: 利用压力控制阀来控制系统整体或局部压力,以使执行元件获得所需的力或转矩、或者保持受力状态的回路。 类型: 一、调压回路二、减压回路三、增压回路四、卸荷回路五、保压回路六、平衡回路 一、调压回路 功能:使液压系统整体或某一部分的压力保持恒定或者不超过某个数值。主要元件:溢流阀 方法:液压泵出油口处并联溢流阀 常用回路: (一)单级调压回路 (二)多级调压回路 (一)单级调压回路 说明:系统压力只有一种 特点: 1、由溢流阀和定量泵组合在一起构成; 2、当系统压力小于溢流阀调整压力时,溢流阀关闭不溢流,系统压力 保持不变。 3、当系统压力大于溢流阀调整压力时, 溢流阀开启溢流,系统压力保持为溢 流阀的调整压力不变。 应用: 如图所示,在液压泵的出口处并联溢流 阀来控制回路的最高压力。在该过程中,由 于系统压力超过溢流阀的调整压力,所以溢 流阀是常开的,液压泵的工作压力保持为溢 流阀的调整压力不变。 (二)多级调压回路 说明:系统压力有两种或两种以上。 应用: 单级调压回路

引导读书 提问 1、两级调压回路 如图所示,在图示状态下,当两位 两通电磁换向阀断电时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当两位两通电磁换向阀通电后,液压泵 工作压力由远程调压阀2(溢流阀)调 定为较低压力。(其中,远程调压阀2 的调整压力必须小于溢流阀1的调整压 力。) 2、三级调压回路 如图所示,在图示状态,当电磁换 向阀4断电中位工作时,液压泵的工作 压力由先导溢流阀1调定为最高压力; 当电磁换向阀4右边电磁铁通电右位 时,液压泵工作压力由远程调压阀2(溢 流阀)调定为较低压力。当电磁换向阀 4左边电磁铁通电左位时,液压泵工作 压力由远程调压阀3(溢流阀)调定为 较低压力。(其中,远程调压阀2和3 的调整压力必须小于溢流阀1的调整压 力。) 二、减压回路 功能:使液压系统中的某一部分油路具有较低的稳定压力。 应用场合:控制油路、夹紧回路、润滑油路主要元件:定值 减压阀方法:在需要减压的油路前串联一个减压阀常用回路: (一)单向 减压回路 (二)二级减压回路 三、增压回路 功能:使液压系统中的某一部分支路的压力高于系统压力。主要元件: 增压器方法:在需要增压的油路前串联一个增压器常用回路: (一)单作 用增压器的增压回路(二)双作用增压器的增压回路 四、卸荷回路 【设置原因】液压系统在工作循环中短时间间歇时,为减少功率损耗, 降低系统发热,避免因液压泵频繁启停影响液压泵的寿命,需设置卸荷回 路 【液压泵卸荷的概念】指液压泵以很小的输出功率(接近于零)运转。 即液压泵以很低的压力(接近于零)运转或输出很少流量(接近于零)的 压力油。 两级 三级调压回路

方向控制阀的拆装训练

3.方向控制阀的拆装训练 一、本项目知识点与能力点 本项目知识点与能力点见表1.1-1。 表1.1-1 方向控制阀的拆装训练 能力点知识点 1、会根据拆装流程示意图 2、会根据注意事项进行无图拆装 3、拆装液压元件常用工具的使用方法1、三位四通换向阀内部结构 2、三位四通换向阀的工作原理 3、拆装液压元件注意事项 二、所需元件及器具 实训所需液压元件、器具见表1.1-2。 表1.1-2 实训所需液压元件、器具 序号元件、器具名称规格数量备注 1 三位四通换向阀8 2 钳工台虎钳150mm 8 3 内六角扳手 6 mm 8 4 内六角扳手8 mm 8 5 内六角扳手10 mm 8 6 活口扳手200mm 8 7 螺丝刀200mm 8 8 游标卡尺150mm 8 9 润滑油32﹟适量 化纤布料适量 三、实训内容及操作注意事项 1、拆装34DO-B10-H-T型电磁换向阀。 34DO-B10-H-T型电磁换向阀主要参数见(表1.1-3) 表1.1-3 34DO-B10-H-T型电磁换向阀主要参数 规格型号额定压力MPa 额定流量L/min质量kg 34DO-B10-H-T 21 30 1.6 2、参考:3 WE6型电磁换向阀内部结构图(图1.1-1)

3、参考:拆装流程见1-2示意图 4、拆装注意事项: (1)有拆装流程示意图时,请参考图进行拆与装; (2)无图拆装时,请记录解体零件的拆装顺序和方向; (3)拆下的零件按次序摆放,不应落地、划伤、锈蚀等; (4)拆、装螺栓组时应对角依次拧松或拧紧; (5)需顶出零件时,应使用铜棒适度击打,切忌用钢、铁棒; (6)安装前的零件清洗后应晾干,切忌用棉纱擦拭; (7)应更换老化的密封; (8)安装时应参照图或拆卸记录,注意定位零件; (9)安装完毕,推动应急按钮,检查阀芯滑动是否顺利; (10)请检查现场有无漏装零件。 四、思考题 (1)试分析在电磁铁工作情况下,电磁换向阀阀芯的动作过程和油路沟通状况。 (2)电磁换向阀阀体内有几个沉割槽?阀体上有几个通向外部的油口?各口一般应连接什么液压元件? (3)电磁换向阀阀芯的结构是怎样的?这种设计有何特点? (4)你拆装的阀采用了什么样的电磁铁?其特点是什么?

第五章方向控制阀 习题答案

习题解答 5.1 如何判断稳态液动力的方向? 解答:(1)作用在圆柱滑阀上的稳态液动力指向阀口关闭的方向。 (2)作用在锥阀上的稳态液动力: ①外流式锥阀稳态液动力指向阀口关闭方向。 ②内流式锥阀态液动力指向阀口开启方向。 5.2 液压卡紧力是怎样产生的?它有什么危 害?减小液压卡紧力的措施有哪些? 解答:由于阀芯和阀孔的几何形状及相对位置均有误差,使液体在流过阀芯与阀孔间隙时,产生了径向不平衡力,从而引起阀芯移动时的轴向摩擦力,称之为卡紧力。 危害:卡紧力加速阀件的磨损,当阀芯的驱动力不足以克服这个阻力时,会发生卡死现象。影响阀芯运动。

减小液压卡紧力的措施: (1)严格控制阀芯和阀控的锥度; (2)在阀芯凸肩上开均压槽; (3)采用顺锥; (4)在阀芯的轴向加适当频率和振幅的颤振; (5)精密过滤油液。 5.3 O型机能的三位四通电液换向阀中的先导电磁阀一般选用何种中位机能?由双液控单向阀组成的锁紧回路中换向阀又选用什么机能? 为什么? 解答:O型中间位置时:P、A,B、O四口全封闭,液压缸闭锁,可用于多个换向阀并联工作。 M型中间位置时:P、O口相通,A与B口均封闭,活塞闭锁不动,泵卸荷,也可用多个M型换向阀串联工作。 P型中间位置时:P、A、B口相通,O封闭,泵与缸两腔相通,可组成差动回路。

H型中间位置时:P、A,B、O口全通,活塞浮动,在外力作用下可移动,泵卸荷,不能用于多个换向阀并联工作。 5.4 球式换向阀与滑阀式换向阀相比,具有哪些优点? 解答:球形阀结构简单。滑阀式换向阀结构复杂,加工精度要求高,否则容易出现卡死现象。 5.5 O型机能的三位四通电液换向阀中的先导电磁阀一般选用何种中位机能?由双液控单向阀组成的锁紧回路中换向阀又选用什么机能? 为什么? 解答:O型机能的三位四通电液换向阀中的先导电磁阀一般选用Y型中位机能。因为Y型中位机能在中位时可以使液换向阀的阀芯两端控制油回油箱,便于弹簧使阀芯复位。 由双液控单向阀组成的锁紧回路中换向阀可选用H、M、O型中位机能,这些机能滑阀在中位时不给液控单向阀提供控制油,使液控单向阀可靠地关闭。

气动阀门的控制常识

气动阀门的控制常识 点击次数:360发布时间:2009-12-6 11:33:52 气动阀门的控制常识 概述 一、气动控制阀的分类 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。控制和调节压缩空气流量的元件称为流量控制阀。改变和控制气流流动方向的元件称为方向控制阀。 除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。在结构原理上,逻辑元件基本上和方向控制阀相同,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。 从控制方式来分,气动控制可分为断续控制和连续控制两类。在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进行连续控制。气动控制阀分类如图4.1。 二、气动控制阀和液压阀的比较

(一)使用的能源不同 气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。液压阀都设有回油管路,便于油箱收集用过的液压油。气动控制阀可以通过排气口直接把压缩空气向大气排放。 (二)对泄漏的要求不同 液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。对气动控制阀来说,除间隙密封的阀外,原则上不允许内部泄漏。气动阀的内部泄漏有导致事故的危险。 对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境 的污染。 (三)对润滑的要求不同 液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。 (四)压力范围不同 气动阀的工作压力范围比液压阀低。气动阀的工作压力通常为10bar以内,少数可达到40bar以内。但液压阀的工作压力都很高(通常在50Mpa以内)。若气动阀在超过最高容许压力下使用。往往会发生严重事故。 (五)使用特点不同 一般气动阀比液压阀结构紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。气动阀正向低功率、小型化方向发展,已出现功率只有0.5W的低功率电磁阀。可与微机和PLC可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气动工业机械手、复杂的生产制造装配线等场合 三、气动控制阀的结构特性 气动控制阀的结构可分解成阀体(包含阀座和阀孔等)和阀心两部分,根据两者的相对位置,有常闭型和常开型两种。阀从结构上可以分为:截止式、滑柱式和滑板式三类阀。 (一)截止式阀的结构及特性 截止式阀的阀心沿着阀座的轴向移动,控制进气和排气。图4.2所示为二通截止式阀的基本结构。图4.2a中,在阀的P口输入工作气压后,阀芯在弹簧和气体压力作用下紧压在阀座上,压缩空气不能从A口流出;图4.2b为阀杆受到向下的作用力后,阀芯向下移动,脱离阀座,压缩空气就能从P口流向A口输出。

方向控制阀知识

方向控制阀知识 方向控制阀简称方向阀,主要用来通断油路或切换油流的方向,以满足对执行元件的启、停和运动方向的要求。按其用途可分为两大类:单向阀和换向阀。 (1)单向阀 单向阀又称止回阀,它的功用是使油液只能单向流过。根据阀芯结构不同,单向阀可分为球阀式和锥阀式两种。图5—1所示出为两种单向阀的结构及单向阀的符号。球阀式阀芯结构简单,但容易因摩擦而使密封性变差,只用于低压场合。锥阀式应用较多,且密封性较好。根据阀中通道情况,又可分为直通式和直角式。直通式液流阻力小,更换弹簧也较方便,一般采用管式连接;而直角式则即可采用管式连接。又可采用板式连接或法兰连接。 单向阀中弹簧的主要作用是在没有油流通过或油液倒流时可帮助阀迅速关闭。但它同时也增加阀开启时的阻力,并成为油液流过单向阀时产生压力损失的主要部分。在不影响阀灵敏可靠的同时,就应把弹簧做得软些。’一般单向阀开启压力是0.035~0.05MPa,全部流量通过时的压力损失大约是0.1~0.3MPa。

图5—1单向阀 1—阀体;2—弹簧;3—阀芯;4—阀座 (要求:动画显示两种单向阀正向导通,反向截至的工作过程,动画可参见第五章动画资源“5-1直通式单向阀(动画按钮可去掉)及5-2直角式单向阀”) 在某些场合,需要单向阀允许油流反向通过,这时即采用液控式单向阀。液控式单向阀结构和符号如图5—2所示。它主要由直角单向阀和控制活塞两部分组成。当下盖7上的控制油口元压力油时,它仅是一个普通单向阀,只允许油液从A流向B;当控制油口通人压力油时,则控制活塞就被顶起,通过顶杆使阀芯1强制打开,允许油液由B向A反向流过。

图5—2液控单向阀 1—单向阀阀芯;2—弹簧;3—上盖;4—阀体;5—单向阀阀座;6—控制活塞;7—下盖 (二)换向阀 换向阀的作用是利用阀芯和阀体的相对运动来接通、关闭油路或变换油液通向执行元件的流动方向,以使执行元件启动、停止或变换运动方向。 (1)换向阀分类 换向阀按结构分有转阀式和滑阀式;按阀芯工作位置数分有二位、三位和多位等;按进出口通道数分有二通、三通、四通和五通等;按操

REXROTH力士乐方向阀常用型号和工作原理讲解

REXROTH力士乐方向阀常用型号和工作原理讲 解 REXROTH力士乐方向阀是具有两种以上流动形式和两个以上油口的方向控制阀。是实现液压油流的沟通、切断和换向,以及压力卸载和顺序动作控制的阀门。靠阀芯与阀体的相对运动的方向控制阀。有转阀式和滑阀式两种。按阀芯在阀体内停留的工作位置数分为二位、三位等;按与阀体相连的油路数分为二通、三通、四通和六通等;操作阀芯运动的方式有手动、机动、电动、液动、电液等型式。 REXROTH力士乐方向阀工作原理: 六通方向阀主要由阀体、密封组件、凸轮、阀杆、手柄和阀盖等零部件组成(图1)。阀门由手柄驱动,通过手柄带动阀杆与凸轮旋转,凸轮具有定位驱动与锁定密封组件的开启与关闭功能。手柄逆时针旋转,两组密封组件分别在凸轮的作用下关闭下端的两个通道,上端的两个通道分别与管道装置的进口相通。反之,上端的两个通道关闭,下端两个通道与管道装置的进口相通,实现了不停车换向。 REXROTH力士乐方向阀特点: 1、先导式2级比例方向控制阀,无集成电子元件(OBE) 2、控制体积流量的方向和大小 3、通过带中心螺纹和可拆卸线圈的比例电磁阀驱动 4、用于板结构:根据ISO 4401的连接位置 5、辅助驱动装置,可选 6、以弹簧为中心的阀芯 REXROTH力士乐方向阀分类: 1、机动方向阀,机动方向阀又称行程阀。 2、电磁方向阀,电磁方向阀是利用电磁吸引力操纵阀芯换位的方向控制阀。 3、电液方向阀,电液方向阀是由电磁方向阀和液动方向阀组成的复合阀。 4、手动方向阀,手动方向阀是用手推杠杆 REXROTH力士乐方向阀优点: 动作准确、自动化程度高、工作稳定可靠,但需附设驱动和冷却系统,结构较为复杂;阀瓣式结构则较简单,多用于流量较小的生产工艺上。 在石油、化工、矿山和冶金等行业中,六通方向阀是一种重要的流体换向设备。

方向控制回路教案

方向控制回路教案

安岳县职教中心2015年上期公开课 教案 学科名称:汽车机械基础 课题名称:液压基本回路之方向控制回路授课教师:安岳县职教中心李晓林授课时间:2015年04月18日 授课地点:2014春11班

【课题名称】方向控制回路 【教学目标】 掌握方向控制回路的工作原理及应用。 【教学重点】 换向回路和锁紧回路的工作原理。 【教学难点】 分析换向回路和锁紧回路。 【教学教具准备】 电脑多媒体 【课时安排】 1节课 【教学流程设计】 复习巩固→新课引入→新课讲解→课堂总结→课后练习【教学过程设计】 一复习巩固 教师:1、液压系统的四大组成部分? 学生:动力、执行、控制、辅助部分。 教师:2、画出三位四通换向阀H、O、M型。 学生:

二导入新课 请同学们观察图片,找出图片中哪些地方运用了液压系统知识。然后请同学们思考登车桥支腿、车载升降平台支架和起重机支腿是如何实现升、降及停止的? 三课程的讲解 方向控制回路 概念:指控制液压油通、断或流动方向的回路统称。 功能:控制执行元件的启动、停止及换向(进、退)。 分类:一般分为换向回路和锁紧回路。 (一)换向回路 二位四通电磁换向阀的换向回路。如图(详) 回路构成:(学生) 核心元件:二位四通电磁换向阀 工作原理(教师分析):当换向阀电磁铁断电时 换向阀3右位工作 进油路:泵→换向阀右位→液压缸无杆腔,活塞向左移动。 回油路:液压缸有杆腔→换向阀右位→油箱。

当换向阀电磁铁通电时 换向阀3左位工作 进油路:泵→换向阀左位→液压缸有杆腔,活塞向右移动。 回油路:液压缸无杆腔→换向阀左位→油箱 换向回路特点及应用:使用方便,易于实现自动化,但换向时间短,冲击大,一般用于小流量、平稳性要求不高的场合。 (二)锁紧回路 锁紧:是指液压缸活塞两端的压力油被封住不能流动。 作用:使执行元件能停留在任意位置上,且停留后不会因外力作用而移动位置。 锁紧回路如何实现? 1、最常用的是采用液控单向阀(又称双向液压锁)的锁紧回路。 2、换向阀中位机能为O形或M组成锁紧回路。 1)、采用液控单向阀的锁紧回路。(详)如图: 学生分析:回路构成 教师分析:锁紧回路工作原理

相关文档
最新文档