湖南省师大附中2014-2015学年高二下学期期中考试(数学文) 扫描版含答案
2024-2025学年湖南师大附中高二上学期11月期中考试化学试卷含答案

2024-2025-1师大附中高二期中考试化学试卷(11月)时量:75分钟满分:100分得分:_________可能用到的相对原子质量:K~39Ca~40I~127一,选择题(本题包括14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.化学与生产,生活,环境等社会实际密切相关。
下列方程式错误的是()A.明矾用作净水剂的原理:()()323Al3H O Al OH 3H +++=+胶体B.铅酸蓄电池放电的原理:22442Pb PbO 2H SO 2PbSO 2H O++=+C.小苏打用作食用碱的原理:2323CO H O HCO OH ---++ D.工业生产金属钠的原理:()22NaCl 2Na Cl +↑电解熔融2.下列物质的水溶液因水解而呈酸性的是()A.3NaHSO B.3KHCO C.()43NH CO D.2FeCl 3.下列化学用语表述正确的是()A.NaCN 的电子式:[]Na:C N:-+B.Ba 在元素周期表中的位置:第六周期2A 族C.中子数为20的Cl :2017ClD.异丁醛的结构简式:()32CH CHCOH4.将3CaCO 溶解于同温度,同浓度的下列溶液中,溶解度最小的是()A.2CaCl B.23Na CO C.NaClD.3NaHCO 5.海洋电池大规模应用于灯塔等难以跨海供电的小规模用电场景,其结构可简化如下。
下列关于海洋电池的说法错误的是()A.Al 板是该电池的负极B.絮状沉淀X 是()3Al OH C.电池的正极发生的反应为22O 2H O 4e 4OH --++=D.该电池是一种二次电池6.下列实验装置能达到相应实验目的的是()A.除去2CO 中少量的HCl,2H OB.滴定未知物质的量浓度的2FeCl 溶液C.制备22TiO H Ox ⋅D.证明2SO 的漂白性7.化合物M 中含有A,X,Y,Z 四种短周期元素,其结构如图所示。
2024-2025学年湖南省长沙市湖南师大附中高二(上)入学数学试卷(含答案)

2024-2025学年湖南师大附中高二(上)入学数学试卷一、选择题:本题共11小题,第1-8小题每小题5分,第9-11小题每小题6分,共58分。
1.已知全集为U ,集合M ,N 满足M⫋N⫋U ,则下列运算结果为U 的是( )A. M ∪NB. (∁U N)∪(∁U M)C. M ∪(∁U N)D. N ∪(∁U M)2.已知α为锐角,且cosα−sinα=15,则下列选项中正确的有( )A. α∈(π4,π2)B. tanα=43C. sinαcosα=1225D. sinα+cosα=753.下列命题正确的是( )A. 若直线a//b ,a//平面α,则b//平面αB. 若直线a 与b 异面,则过空间任意一点与a 和b 都平行的平面有且仅有一个C. 三个平面两两相交于三条直线,则它们将空间分成7个或8个区域D. 已知直线a 与b 异面,不同的两点P ∈a ,Q ∈a ,不同的两点M ∈b ,N ∈b ,则直线PM 与QN 可能相交4.“函数f(x)=log 12(3−ax)在区间[1,2]上单调递增”的充分必要条件是( )A. a ∈(0,+∞) B. a ∈(0,1) C. a ∈(0,32) D. a ∈(0,32]5.2023年11月16日,据央视新闻报道,中国空间站近日完成了一项重要的科学实验——空间辐射生物学暴露实验装置的首批样品已经返回地面.这项实验旨在研究在太空中长时间存在的辐射对人体和微生物的影响.已知某项实验要在中国空间站进行,实验开始时,某物质的含量为1.2mg/cm 3,每经过1小时,该物质的含量都会减少20%,若该物质的含量不超过0.1mg/cm 3,则实验进入第二阶段,那么实验进入第二阶段至少需要( )小时?(结果取整数,参考数据:lg2≈0.30,lg3≈0.48)A. 12B. 8C. 10D. 116.已知M 是△ABC 所在平面内一点,满足AM =34AB +15AC ,则△ABM 与△BCM 的面积之比为( )A. 3B. 4C. 58D. 1257.已知5−a =lna ,b =log 43+log 917,7b +24b =25c ,则以下关于a ,b ,c 的大小关系正确的是( )A. b >c >aB. a >c >bC. b >a >cD. a >b >c8.已知函数f(x)={1+log a |x−2|,x ≤1,(x−1)2+4a,x >1(a >0且a ≠1)在R 上为单调函数,若函数y =|f(x)|−x−2有两个不同的零点,则实数a 的取值不可能是( )A. 116 B. 14 C. 12 D. 13169.下列命题为假命题的是( )A. 在复数集C 中,方程x 2+x +1=0有两个根,分别为−12+ 32i ,−12− 32i B. 若三个事件A ,B ,C 两两独立,则P(ABC)=P(A)P(B)P(C)C. 若OP =xOA +yOB +zOC ,则x +y +z =1是P ,A ,B ,C 四点共面的充要条件D. 复平面内满足条件|z +i|≤2的复数z 所对应的点Z 的集合是以点(0,1)为圆心,2为半径的圆10.已知函数f(x)=sin (ωx +φ),如图A ,B 是直线y =12与曲线y =f(x)的两个交点,若|AB|=π6,则( )A. f(0)=− 32B. 函数f(x)的最小正周期为7π12C. 若x 1+x 2=91π12,则f(x 1)=f(x 2)D. 若|x 1−x 2|=π24,则|f(x 1)−f(x 2)|的最大值大于1− 3211.如图,在三棱柱ABC−A 1B 1C 1中,AC ⊥BC ,B 1C ⊥BC ,AC ⊥B 1C ,BC =CB 1=A 1C 1=2,下列结论中正确的有( )A. 平面BCC 1B 1⊥平面ACC 1A 1B. 直线AA 1与BC 1所成的角的正切值是13C. 三棱锥C−A 1B 1C 1的外接球的表面积是12πD. 该三棱柱各侧面的所有面对角线长的平方和等于它所有棱长的平方和的3倍三、填空题:本题共3小题,每小题5分,共15分。
2024-2025学年高二上学期期中模拟考试化学试题(新八省通用)含解析

2024-2025学年高二化学上学期期中模拟卷(含解析)(考试时间:75分钟试卷满分:100分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第1~3章(人教版2019选择性必修1)。
5.难度系数:0.656.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1C 12N 14O 16Na23P 31S 32K 39Cl 35.5第Ⅰ卷(选择题共42分)一、选择题:本题共14个小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列生产生活中的应用与盐类水解原理无关的是()A .明矾净水B .草木灰去油污C .配制4FeSO 溶液时,加入一些铁粉D .氯化铵除铁锈【答案】C【解析】明矾是KAl(SO 4)2·12H 2O ,Al 3+发生水解生成氢氧化铝胶体,氢氧化铝胶体吸附悬浮在水中固体小颗粒,胶体聚沉,达到净水的目的,明矾净水与盐类水解有关,A 不符合题意;草木灰中含有K 2CO 3,CO 32-水解使溶液显碱性,油污在碱性溶液中水解成可溶于水的物质,草木灰去油污与盐类水解有关,B 不符合题意;Fe 2+易被O 2氧化为Fe 3+,向配制的FeSO 4溶液中加入铁粉是为了防止Fe 2+被氧化为Fe 3+,该现象和盐类水解无关,C 符合题意;氯化铵溶液因NH 4+水解使氯化铵溶液显酸性,铁锈为Fe 2O 3,能与H +反应,生成Fe 3+,氯化铵除铁锈与盐类水解有关,D 不符合题意;故选C 。
2.自然界中生成臭氧的反应为()()233O g =2O g ,其能量变化如图所示。
湖南师范大学附属中学2022-2023学年高二下学期期中数学试题

A. 1 < 1 a b ab
B. a b 0
C. a 1 b 1 ab
D. ln a2 ln b2
10.某计算机程序每运行一次都随机出现一个 n 位二进制数 A a1a2a3a4 L an ,其中 a
i 1,2,3,L ,n{0,1} ,若在 A 的各数位上出现 0 和 1 的概率均为 1 ,记 2
(3)现在有一个“单板滑雪”集训营,对“滑行、转弯、停止”这 3 个动作技巧进行集训,且
在集训中进行了多轮测试.规定:在一轮测试中,这 3 个动作中至少有 2 个动作达到“优
秀”,则该轮测试记为“优秀”.在集训测试中,小明同学 3 个动作中每个动作达到“优秀”
的概率均为 1 ,每个动作互不影响且每轮测试互不影响.如果小明同学在集训测试中要 3
四、解答题
17.已知关于 x 的函数 f (x) 2 4x 2x ,其中 R .
(1)当 1 时,求 f (x) 的值域; 2
(2)若当 x (, 2] 时,函数 f (x) 的图象总在直线 y= 2 的上方, 为整数,求 的值. 18.已知函数 f (x) ax2 (1 a)x a 2 .
(1)“自由式滑雪”参与人数超过 40 人的学校可以作为“基地学校”,现在从这 10 所学校中
随机选出 3 所,记 X 为可作为“基地学校”的学校个数,求 X 的分布列和数学期望;
(2)在这 10 所学校中随机选取 3 所来调查研究,求在抽到学校中恰有一所参与“自由式滑
雪”超过 40 人的条件下,抽到学校中恰有一所学校“单板滑雪”超过 30 人的概率;
m 量不变(即误差的概率分布不变),则单件产品的成本将会下降多少?
附:对于一组数据 (x1, y1), (x2, y2),, (xn, yn ), 其回归直线 yˆ ˆ x ˆ 的斜率和截距的最小
湖南省湖南师范大学附属中学2024-2025学年高二上学期入学考试数学试卷

湖南省湖南师范大学附属中学2024-2025学年高二上学期入学考试数学试卷一、单选题1.已知全集为U ,集合M ,N 满足M N U ,则下列运算结果为U 的是( ). A .M N ⋃ B .()() U UN M ⋃痧C .() U M N ⋃ðD .() U N M ⋃ð2.已知α为锐角,且1cos sin 5αα-=,则下列选项正确的有( )A .ππ,42α⎛⎫∈ ⎪⎝⎭B .4tan 3α=C .12sin225α=D .sin co 7s 5αα+=3.下列命题正确的是( )A .若直线//a b ,//a 平面α,则//b 平面αB .若直线a 与b 异面,则过空间任意一点与a 和b 都平行的平面有且仅有一个C .三个平面两两相交于三条直线,则它们将空间分成7个或8个区域D .已知直线a 与b 异面,不同的两点,P a Q a ∈∈,不同的两点,M b N b ∈∈,则直线PM 与QN 可能相交4.“函数()()12log 3f x ax =-在区间[]1,2上单调递增”的充分必要条件是( )A .()0,a ∈+∞B .()0,1a ∈C .30,2a ⎛⎫∈ ⎪⎝⎭D .30,2a ⎛⎤∈ ⎥⎝⎦5.2023年11月16日,据央视新闻报道,中国空间站近日完成了一项重要的科学实验——空间辐射生物学暴露实验装置的首批样品已经返回地面.这项实验旨在研究在太空中长时间存在的辐射对人体和微生物的影响.已知某项实验要在中国空间站进行,实验开始时,某物质的含量为31.2mg /cm ,每经过1小时,该物质的含量都会减少20%,若该物质的含量不超过30.1mg /cm ,则实验进入第二阶段,那么实验进入第二阶段至少需要( )小时?(结果取整数,参考数据:lg 20.30≈,lg30.48≈) A .12B .8C .10D .116.已知M 是ABC V 所在平面内一点,满足3145AM AB AC =+u u u u r u u u r u u u r ,则ABM V 与BCM V 的面积之比为( ) A .3B .4C .58D .1257.已知495ln ,log 3log 17,72425b b c a a b -==++=,则以下关于,,a b c 的大小关系正确的是( ) A .b c a >>B .a c b >>C .b a c >>D .a b c >>8.已知函数()21log 2,1,(0(1)4,1a x x f x a x a x ⎧+-≤=>⎨-+>⎩且)1a ≠在R 上为单调函数,若函数()2y f x x =--有两个不同的零点,则实数a 的取值不可能是( )A .116B .14C .12D .1316二、多选题9.下列命题为假命题的是( )A .在复数集C 中,方程210x x ++=有两个根,分别为12-,12-B .若三个事件,,A BC 两两独立,则()()()()P ABC P A P B P C =C .若OP xOA yOB zOC =++u u u r u u u r u u u r u u u r,则1x y z ++=是,,,P A B C 四点共面的充要条件D .复平面内满足条件i 2z +≤的复数z 所对应的点Z 的集合是以点()0,1为圆心,2为半径的圆10.已知函数()()sin f x x ωϕ=+,如图,A B 是直线12y =与曲线y =f x 的两个交点,若π6AB =,则( )A .()0f =B .函数()f x 的最小正周期为7π12C .若1291π12x x +=,则()()12f x f x =D .若12π24x x -=,则()()12f x f x -的最大值大于111.如图,在三棱柱111ABC A B C -中,11111,,,2AC BC B C BC AC B C BC CB AC ⊥⊥⊥===,下列结论中正确的有( )A .平面11BCCB ⊥平面11ACC AB .直线1AA 与1BC 所成的角的正切值是13C .三棱锥111C A B C -的外接球的表面积是12πD .该三棱柱各侧面的所有面对角线长的平方和等于它所有棱长的平方和的3倍三、填空题12.在平面直角坐标系xOy 中,已知角α的终边与以原点为圆心的单位圆相交于点34,55P ⎛⎫- ⎪⎝⎭,角β满足()cos 0αβ+=,则sin2cos21ββ+的值为.13.某高中有学生500人,其中男生300人,女生200人,现希望获得全体学生的身高信息,按照分层随机抽样的方法抽取了容量为50的样本.经计算得到男生身高样本均值为170cm ,方差为217cm ,女生身高样本均值为160cm ,方差为230cm .则每个女生被抽入到样本的概率均为,所有样本的方差为2cm .14.如图,棱长为3的正方体1111ABCD A B C D -中,P 为棱1CC 上一点,且12CP PC =u u u r u u u u r,M 为平面1BDC 内一动点,则MC +MP 的最小值为.四、解答题15.从一张半径为3的圆形铁皮中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为h 米的圆锥筒(如图2).若所裁剪的扇形铁皮的圆心角为2πrad 3.(1)求圆锥筒的容积;(2)在(1)中的圆锥内有一个底面圆半径为x 的内接圆柱(如图3),求内接圆柱侧面积的最大值以及取最大值时x 的取值.16.已为,,a b c 分别为ABC V 三内角,,A B C 的对边,且cos sin a C C b c =- (1)求A ;(2)若2c =,角B 的平分线BD =ABC V 的面积S .17.某高校的特殊类型招生面试中有4道题目,获得面试资格的甲同学对一~四题回答正确的概率依次是34,12,23,13.规定按照题号依次作答,并且答对一,二,三,四题分别得1,2,3,6分,答错1题减2分,当累计积分小于2-分面试失败,不少于4分通过面试,假设甲同学回答正确与否相互之间没有影响. (1)求甲同学回答完前3题即通过面试的概率; (2)求甲同学最终通过面试的概率.18.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,DCP V 是等边三角形,π4DCB PCB ∠∠==,点M ,N 分别为DP 和AB 的中点.(1)求证://MN 平面PBC ; (2)求证:平面PBC ⊥平面ABCD ; (3)求CM 与平面PAD 所成角的正弦值.19.已知()22,f x ax bx x =++∈R .定义点集A 与()y f x =的图象的公共点为A 在()f x 上的截点.(1)若(){}1,,3,,b L x y y x L =-==∈R ∣在()f x 上的截点个数为0.求实数a 的取值范围; (2)若()(){}1,,2,0,2,a S x y y x S ===∈∣在()21f x x +-上的截点为()1,2x 与()2,2x . (i )求实数b 的取值范围; (ii )证明:121124x x <+<.。
湖南省长沙市2024-2025学年高二上学期期中考试语文试卷含答案

2024年下学期高二期中考试语文(答案在最后)时量:150分钟满分:150分一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:孔子是个言行一致的人,他不仅注重“言必信,行必果”(《子路》),而且强调“君子欲讷于言而敏于行”(《里仁》)、“君子耻其言而过其行”(《宪问》)。
《论语》虽非孔子亲笔著述,但从弟子记载其话语中,仍能明显感到他是落实自己重视文采主张的力行者。
比喻作为文学的常用修辞法,孔子一出手就技惊四方。
“为政以德,譬如北辰,居其所而众星共之”(《为政》),以“北辰”比“为政以德”的统治者,以“众星”比诸侯国和大夫,譬喻形象而意蕴丰赡。
“逝者如斯夫,不舍昼夜”(《子罕》)、“岁寒,然后知松柏之后凋也”(《子罕》),前者由感慨河水川流不息而提醒珍惜宝贵时光,后者以松柏后凋景象喻人要经得起严酷环境的考验,言简意赅而启人深思。
“知者乐水,仁者乐山;知者动,仁者静;知者乐,仁者寿”(《雍也》),孔子由水的川流灵动,想到智者敏锐聪慧,由山的沉稳安静,想到仁者厚重不迁,设喻奇妙,表意隽永,且气象博大。
孔子擅于比喻,也妙于夸张。
“朝闻道,夕可死矣”(《里仁》),不这样夸饰,怎能凸显他把“闻道”看得比性命还重要!“子在齐闻《韶》,三月不知肉味”(《述而》),这是以婉曲夸张法,将他在齐国痴迷韶乐而难以自拔的情景,传达得惟妙惟肖而意蕴悠长。
“不义而富且贵,于我如浮云”(《述而》),此处的“浮云”,既是比喻又是夸张,把他作为百世圣哲“谋道不谋食”“忧道不忧贫”的高尚情操和洒脱情怀,刻画得栩栩如生又感人至深。
相对于上述显在的文学表现,我更欣赏《论语》处处隐含内蕴的文学意味。
请看似乎平淡无奇的开篇第一章:子曰:“学而时习之,不亦说乎?有朋自远方来,不亦乐乎?人不知而不愠,不亦君子乎?”(《学而》)且不说将此段分行排列,颇有诗的形式和意韵,就看三句话皆以亲切的反问语气出之,即为有意无意地运用文学笔法,活画出孔子作为师长对弟子循循善诱的情状。
湖南师大附中 2023-2024 学年度高二第一学期第一次大练习(月考)数学试卷
湖南师大附中2023-2024学年度高二第一学期第一次大练习(月考)数 学时量:120分钟 满分:150分得分:_________一、选择题:本大题共8个小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知1i22iz −=+,则z z −=( ) A .i −B .iC .0D .12.已知直线m ,n 和平面α,β,给出下列四个命题,其中正确的是( ) A .若m ∥α,n α⊂,则m ∥n B .若αβ⊥,m α⊂,则m β⊥ C .若m ∥n ,n β⊥,m α⊂,则αβ⊥D .若m α⊂,n β⊂,m ∥β,n ∥α,则α∥β 3.若()()21ln21x f x x a x −=++为偶函数,则a=( ) A .0B .12C .1D .24.如图,在四面体A -BCD 中,点O 为底面△BCD 的重心,P 为AO 的中点,设AB a = ,AC b = ,AD c =,则BP =( )A .511666a b c −− B .511666a b c −++ C .211333a b c −−D .211333a b c −++ 5.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b=c ,()2221sin a b A =−,则A=( ) A .34π B .3πC .4πD .6π6.将一枚骰子连续抛两次,得到正而朝上的点数分别为x ,y ,记事件A 为“x y +为偶数”,事件B 为“7x y +<”,则()P B A 的值为( ) A .12B .13C .79D .597.若tan 2tan 5πα=,则3cos 10sin 5παπα− =−( )A .1B .2C .3D .48.对实数a ,b ,定义运算“*”:,1,1a ab a b b a b −≤ ∗=−> ,设函数()()()212f x xx =+∗+,若函数()y f x c =−有两个零点,则实数c 的取值范围是( ) A .()()2,45,+∞ B .(](]1,24,5 C .()(],14,5−∞D .[]1,2二、选择题:本大题共4个小题,每小题5分,满分20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.2019年中国5G 建设有序推进,新型信息基础设施能力不断提升,有力支撑社会的数字化转型,电信业务发展迅速,下图是2010-2019年中国移动电话用户数及增速走势图.根据该图,下列说法正确的是( )A .2010-2019年中国移动电话用户数逐年增加B .2011-2019年中国移动电话用户数增速的中位数为7.2%C .2011-2019年中国移动电话用户数在2011年增速最快D .中国移动电话用户数在2011-2014年的增速逐年递减,因此期户数逐年减少10.已知直线l :()220a x ay ++−=与n :()2360a x y −+−=,下列选项正确的是( ) A .若l ∥n ,则a=6或1a =−B .若l n ⊥,则1a =C .直线恒过点(1,1−)D .若直线n 在x 轴上的截距为6,则直线n 的斜截式为123y x =−−11.已知函数()()cos 21f x A x ϕ=+−(0A >,0ϕπ<<),若函数()y f x =的部分图象如图所示,函数()()sin g x A Ax ϕ=−,则下列结论正确的是( )A .将函数()1y f x =+的图象向左平移6π个单位长度可得到函数()g x 的图象B .函数()y g x =的图象关于点(6π−,0)对称 C .函数()g x 在区间0,2πD .若函数()g x θ+(0θ≥)为偶函数,则θ的最小值为712π 12.如图ABCD -A 1B 1C 1D 1中,E 是棱CC 1上的动点(不含端点),点F 在侧面BCC 1B 1上运动,且满足A 1F ∥平面AD 1E ,则下列命题正确的有( )A .侧面BCC 1B 1上存在点F ,使役A 1F ⊥BC 1B .直线A 1F 与直线DC 所成角的正切值的范围为(0) C .当点E 固定时,三棱雉D 1-AEF 的体积为定值D .设正方体的棱长为1,当E 为棱CC 1上靠近C 1的三等分点时,则过点A ,D 1,E三、填空题:本大题共4小题,每小题5分,共20分.13.已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是__________.14.已知()()25,3log 1,3x e x f x x x − ≤ =−> ,则()()126f f =__________.15.设函数()sin 5f x x πω=+(0ω>),若()f x 在[]0,2π有且仅有5个零点,则ω的取值范围是__________.16.已知向量a ,b ,e 满足1=e ,1⋅=a e ,2⋅=b e ,2−=a b ,则⋅a b 的最小值是__________.四、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分) 已知直线l 经过点P (2,3),倾斜角为α.(1)若cos α=,求直线l 的斜截式方程; (2)若直线l 在两坐标轴上的截距相等,求直线l 的一般式方程. 18.(本小题满分12分)已知△ABC 的内角A ,B ,C 的对边分別为a ,b ,c ,且cos b a A A c++=. (1)求角C ;(2)设BC 的中点为D ,且,求2a b +的取值范围.如图,在四棱雉P-ABCD中,P A⊥平面ABCD,AD∥BC,AD⊥CD,且,BC=P A=2.(1)求证:AB⊥PC;(2)若点M为PD的中点,求直线BM与平而AMC所成角的正弦值.20.(本小题满分12分)为了调查某中学高一年级学生的身高情况,在高一年级随机抽取100名学生作为样本,把他们的身高(单位:cm)按照区间[160,165),[165,170),[170,175),[175,180),[180,185]分组,得到样本身高的频率分布直方图如图所示.(1)求频率分布直方图中x的值以及样本中身高不低于175cm的学生人数;(2)在统计过程中,小明与小张两位同学因事缺席,测得其余98名同学的平均身高为172cm,方差为29.之后补测得到小明与小张的身高分别为171cm与173cm.试根据上述数据求样本的方差.斜三棱柱ABC -A 1B 1C 1的体积为4,侧面ABB 1A 1上侧面BCC 1B 1,平行四边形BCC 1B 1的面积为.(1)求点A 到平面BCC 1B 1的距离;(2)如图,D 为BB 1的中点,,BB 1=BC ⊥BB 1,求二面角A -B 1C -B 的大小. 22.(本小题满分12分)已知函数()f x (0x >)满足:()()22f x f x a +=+,()12f =,且当(]2,4x ∈时,()2266f x x x −+.(1)求a 的值; (2)求()2f x ≥解集; (3)设()24log 231x g x=+ −,()2cos cos 2h x x m x =+(,22x ππ∈−),若()()f h x g h x ≥ ,求实数m 的值.。
湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)
湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。
湖南省长沙市2024-2025学年高二上学期期中考试数学试卷(含解析)
湖南省长沙市2024-2025学年高二上学期期中考试数学试卷时量:120分钟满分:150分得分______一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设直线的倾斜角为,则A. B. C. D.3.如图,在平行六面体中,为与的交点.若,则下列向量中与相等的是A.B. C. D.4.已知数列为等差数列,.设甲:;乙:,则甲是乙的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.假设一水渠的横截面曲线是抛物线形,如图所示,它的渠口宽AB 为2m ,渠深OC 为1.5m ,水面EF 距AB 为0.5m ,则截面图中水面的宽度EF)A.0.816mB.1.33mC.1.50mD.1.63m6.已知圆.与圆外切,则ab 的最大值为A.2B.C.D.37.若函数在区间上只有一个零点,则的1i2iz -=+z :80l x -+=αα=30︒60︒120︒150︒1111ABCD A B C D -M 11A C 11B D AB 1,,a AD b AA c ===BM1122a b c ++1122a b c -++1122a b c --+1122a b c -+{}n a *,,,p q s t ∈N p q s t +=+p q s t a a a a +=+ 2.448≈≈≈221:()(3)9C x a y -++=222:()(1)1C x b y +++=52)44()2sin cos sin cos (0)f x x x x x ωωωωω=+->π0,2⎛⎫⎪⎝⎭ω取值范围为A. B. C. D.8.已知分别为椭圆的左、右焦点,椭圆上存在两点A ,B 使得梯形的高为(为该椭圆的半焦距),且,则椭圆的离心率为B.D.二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是A.用简单随机抽样从含有50个个体的总体中抽取一个容量为10的样本,某个个体被抽到的概率是0.2B.已知一组数据1,2,m ,6,7的平均数为4,则这组数据的方差是5C.数据27,12,14,30,15,17,19,23的分位数是18D.若样本数据的平均值为8,则数据的平均值为1510.下列四个命题中正确的是A.过定点,且在轴和轴上的截距互为相反数的直线方程为B.过定点的直线与以为端点的线段相交,则直线的斜率的取值范围为或C.定点到圆D.过定点且与圆相切的直线方程为或11.在棱长为2的正方体中,点满足,则A.当时,点到平面B.当时,点到平面C.当时,存在点,使得D.当时,存在点,使得平面PCD 选择题答题卡题号1234567891011得分答案三、填空题:本题共3小题,每小题5分,共15分.12.假设,且与相互独立,则______.14,33⎛⎤ ⎥⎝⎦14,33⎡⎫⎪⎢⎣⎭17,66⎛⎤⎥⎝⎦17,66⎡⎫⎪⎢⎣⎭12,F F 2222:1(0)x y E a b a b+=>>E 12AF F B c c 124AF BF =E 4556m 50%1210,,,x x x 121021,21,,21x x x --- (1,1)P -x y 20x y --=(1,1)P -(3,1),(3,2)M N -k 12k - (32)k …(1,0)Q 22(1)(3)4x y ++-=2-(1,0)Q 22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -P 1,,[0,1]AP AC AD λμλμ=+∈0λ=P 11A BC 0μ=P 11A BC 34μ=P 1BP PC ⊥34λ=P 1BC ⊥()0.3,()0.4P A P B ==A B ()P AB =13.斜率为1的直线与椭圆相交于A ,B 两点,AB 的中点为,则______.14.已知公差不为0的等差数列的前项和为,若,则的最小值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知的三个内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求角;(2)若,点满足,且,求的面积.16.(15分)在四棱锥中,底面ABCD 是正方形,若.(1)求证:平面平面ABCD ;(2)求平面ABQ 与平面BDQ 所成夹角的余弦值.17.(15分)已知双曲线的左、右焦点分别为的一条渐近线方程为,且.(1)求的方程;(2)A ,B 为双曲线右支上两个不同的点,线段AB 的中垂线过点,求直线AB 的斜率的取值范围.18.(17分)已知是数列的前项和,若.(1)求证:数列为等差数列.(2)若,数列的前项和为.(ⅰ)求取最大值时的值;22143x y +=(,1)M m m ={}n a n n S 457,,{5,0}a S S ∈-n S ABC π22sin 6b aA c+⎛⎫+=⎪⎝⎭C 1a =D 2AD DB = ||CD = ABC Q ABCD -2,3AD QD QA QC ====QAD ⊥2222:1(0,0)x y E a b a b-=>>12,,F F E y =2c =E E (0,4)C n S {}n a n 1112n n n n S S a a ++-={}n a 12,13n n a c a =-=+{}n c n n T n T n(ⅱ)若是偶数,且,求.19.(17分)直线族是指具有某种共同性质的直线的全体,例如表示过点的直线,直线的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若圆是直线族的包络曲线,则m ,n 满足的关系式是什么?(2)若点不在直线族的任意一条直线上,求的取值范围和直线族的包络曲线.(3)在(2)的条件下,过曲线上A ,B 两点作曲线的切线,其交点为.若且,B ,C 不共线,探究是否成立?请说明理由.m 2(1)nn n b a=-21mi i b =∑1x ty =+(1,0)221:1C x y +=1(,)mx ny m n +=∈R ()00P x y ,2:(24)4(2)0()a x y a a Ω-++-=∈R 0y ΩE E E 12,l l P (0,1)C A PCA PCB ∠=∠长沙市2024-2025学年度高二第一学期期中考试数学参考答案一、二、选择题题号1234567891011答案DABADDACACDBDBD1.D 【解析】因为,对应点为,在第四象限.故选D.2.A【解析】由直线,可得直线的斜率为设直线的倾斜角为,其中,可得.故选A.3.B 【解析】.故选B.4.A 【解析】甲是乙的充分条件;若为常数列,则乙成立推不出甲成立.5.D 【解析】以为原点,OC 为轴,建立如图所示的平面直角坐标系,设扡物线的标准方程为,由题意可得,代入得,得,故抛物线的标准方程为,设,则,则,所以截面图中水面的宽度EF 约为,故选D.6.D 【解析】圆的圆心,半径,1i (1i)(2i)13i 2i (2i)(2i)55z ---===-++-13,55⎛⎫- ⎪⎝⎭:80l x +=l k =l α0180α︒︒<…tan α=30α︒=11111111111111222222BM BB B M AA B A B C AA AB AD a b c =+=++=-+=-++ {}n a O y 22(0)x py p =>(1,1.5)B 22x py =13p =13p =223x y =()()0000,0,0F x y x y >>0 1.50.51y =-=200221,0.81633x x =⨯===≈0.8162 1.63m ⨯≈221:()(3)9C x a y -++=1(,3)C a -13r =圆的圆心,半径,依题意,,于是,即,因此,当且仅当时取等号,所以ab 的最大值为3.故选D.7.A 【解析】由,令,则由题意知.8.C 【解析】如图,由,得,则为梯形的两条底边,作于点,由梯形的高为,得,在Rt 中,,则有,即,在中,设,则,,即,解得在中,,同理,又,所以,即,所以离心率.故选C.9.ACD 【解析】对于A ,一个总体含有50个个体,以简单随机抽样方式从该总体中抽取一个容量为10的样本,222:()(1)1C x b y +++=2(,1)C b --21r =12124C C r r =+=222()24a b ++=22122224a b ab ab ab ab =+++=…3ab …a b =)22π()sin 2sin cos sin 222sin 23f x x x x x x x ωωωωωω⎛⎫=-==-⎪⎝⎭πππ2π362k x k x ωωω-=⇒=+ππππ14,626233ωωωω⎛⎤<+⇒∈ ⎥⎝⎦…214AF BF =12//AF BF 12,AF BF 12AF F B 21F P AF ⊥P 12AF F B c 2PF c =12F PF 122F F c =1230PF F ︒∠=1230AF F ︒∠=12AF F 1AF x =22AF a x =-22221121122cos30AF AF F F AF F F ︒=+-222(2)4a x x c -=+-1AF x ==12BF F 21150BF F ︒∠=2BF =214AF BF = 4=3a =c e a ==则指定的某个个体被抽到的概率为,故A 正确;对于B ,数据1,2,m ,6,7的平均数是,这组数据的方差是,故B 错误;对于C ,,第50百分位数为,故C 正确;对于D ,依题意,,则,故D 正确;故选ACD.10.BD 【解析】对于A ,过点且在轴和轴上的截距互为相反数的直线还有过原点的直线,其方程为错误;对于B ,直线PM ,PN 的斜率分别为,依题意,或,即或,B 正确;对于C ,圆的圆心,半径,定点到圆C 错误;对于D ,圆的圆心,半径,过点斜率不存在的直线与圆相切,当切线斜率存在时,设切线方程为,解得,此切线方程为,所以过点且与圆相切的直线方程为或,D 正确;故选BD.11.BD 【解析】在棱长为2的正方体中,建立如图所示的空间直角坐标系,11100.2505⨯== 4,4512674m =⨯----=222222126(14)(24)(44)(64)(74)55s ⎡⎤=-+-+-+-+-=⎣⎦850%4⨯=1719182+=8x =2116115x -=-=(1,1)-x y ,A y x =-2(1)31(1)1,312312PN FM k k ----====----PMk k ...FN k k ...12k - (3)2k …22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)Q 2(1)x +2(3)4y +-=22,+=+22:(1)(3)4C x y ++-=(1,3)C -2r =(1,0)1x =C (1)y k x =-2=512k =-51250x y +-=(1,0)22(1)(3)4x y ++-=51250x y +-=1x =1111ABCD A B C D -则,,设平面的法向是为,则令,得,对于,当时,,点到平面的距离A 错误;对于B ,当时,,点到平面的距离B 正确;对于C ,当时,,则,当时,显然,方程无实根,即BP 与不垂直,C 错误;对于D ,当时,,则,显然,即,由,得,即当时,,而平面PCD ,因此平面PCD ,D 正确.故选BD.三、填空题12.0.12【解析】由,且与相互独立,得,13.【解析】设直线AB 的方程为,代入椭圆方程,1111(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,0,2),(2,0,2),(2,2;2),(0,2,2)A B C D A B C D 11(2,0,2),(0,2,2)BA BC =-=11A BC (,,)n x y z = 11220,220,n BA x z n BC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩1z =(1,1,1)n =- A 0λ=11(0,2,2),(0,2,2),(0,2,22)AP AD P A P μμμμμμμ===-P 11A BC 11||n A P d n ⋅=== 0μ=(2,2,0),(2,2;0),(22,2,0)AP AC P BP λλλλλλλ===-P 11A BC 2||||n BP d n ⋅===34μ=133333(2,2,0)0,,2,2,42222AP AC AD λλλλλ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 13333112,2,,22,2,,22,2,222222P BP C P λλλλλλ⎛⎫⎛⎫⎛⎫+=-+=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 2213135(22)228602242BP C P λλλλλ⎛⎫⎛⎫⋅=-++--=-+= ⎪⎪⎝⎭⎝⎭ 2564802∆=-⨯⨯<1PC 34λ=133333,,0(0,2,2),2,242222AP AC AD μμμμμ⎛⎫⎛⎫=+=+=+ ⎪ ⎪⎝⎭⎝⎭ 3331,2,2,,2,2,(2,0,0),(0,2,2)2222P DP DC BC μμμμ⎛⎫⎛⎫+=-== ⎪ ⎪⎝⎭⎝⎭10DC BC ⋅= 1BC DC ⊥1122402DP BC μμ⎛⎫⋅=-+= ⎪⎝⎭ 18μ=18μ=1BC DP ⊥,,DC DP D DC DP ⋂=⊂1BC ⊥()0.3,()0.4P A P B ==A B ()()()0.12P AB P A P B ==43-y x b =+22143x y +=可得,由韦达定理可得,则,则,则,所以.14.-6【解析】取得最小值,则公差或,①当时,,所以,又,所以,所以,故,令,得,所以的最小值为.②当,不合题意.综上所述:的最小值为-6.四、解答题15.【解析】(1),,,,,.…………………………………………………………………………………6分(2)由,,,分16.【解析】(1)证明:中,,22784120x bx b ++-=1287b x x +=-()121427M b x x x =+=-43177M M b y x b b b =+=-+==73b =474733M m x ==-⨯=-n S 40,5d a >=-10a =40a =7470S a ==55S =-535S a =31a =-4310a a d -==>4n a n =-0n a …4n …n S 346S S ==-4745,735a S a =-==-4570,5,0,n a S S S ==-=π2πsin 2sin 2sin 2sin 66sin b a B A A A c C ++⎛⎫⎛⎫+=⇒+=⎪ ⎪⎝⎭⎝⎭cos )sin sin()2sin A A C A C A ∴+=++sin cos sin sin cos cos sin 2sin A C A C A C A C A +=++sin sin cos 2sin ,(0,π),sin 0A C A C A A A =+∈∴≠ πππ5πcos 2sin 1,,6666C C C C ⎛⎫⎛⎫=+⇒-=-∈- ⎪ ⎪⎝⎭⎝⎭ ππ2π,623C C ∴-=∴=222()33AD DB CD CA AD CA AB CA CB CA =⇒=+=+=+-1212,||3333CD CA CB CD CA CB ∴=+∴=+== 22214474272b a ab b b ⎛⎫∴++⋅-=⇒+-= ⎪⎝⎭211230(1)(3)03,sin 1322b b b b b S ab C ∴--=⇒+-=⇒=∴==⨯⨯=QCD 2,3CD AD QD QC ====所以,所以.又平面平面QAD ,所以平面QAD.又平面ABCD ,所以平面平面ABCD .……………………………………………………5分(2)取AD 的中点,因为,所以,且,因为,平面平面ABCD ,平面平面,所以平面ABCD .在平面ABCD 内作,以OD 为轴,OQ 为轴,建立空间直角坐标系,如图所示,则,设平面ABQ 的法向量为,由,得令,得,所以平面ABQ 的一个法向量.设平西BDQ 的法向量为,由,得令,得,所以平面BDQ 的一个法向量.所以222CD QD QC +=CD QD ⊥,,CD AD AD QD D AD ⊥⋂=⊂QAD QD ⊂,CD ⊥CD ⊂QAD ⊥O QD QA =OQ AD ⊥2OQ ==OQ AD ⊥QAD ⊥QAD ⋂ABCD AD =OQ ⊥Ox AD ⊥y z O xyz -(0,0,0),(0,1,0),(2,1,0),(2,1,0),(0,1,0),(0,0,2)O A B C D Q --()111,,x y z α=(2,0,0),(0,1,2)AB AQ ==11120,20,AB x AQ y z αα⎧⋅==⎪⎨⋅=+=⎪⎩ 11z =-112,0y x ==(0,2,1)α=-()222,,x y x β=(2,2,0),(0,1,2)BD DQ =-=-2222220,20,BD x y DQ y x ββ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ 21z =222,2y x ==(2,2,1)β=|cos ,αβ〈〉所以平面ABQ 与平面BDQ分17.【解析】(1)由题得推出所以双曲线的方程为.……………………………………………………………………4分(2)由题意可知直线AB 斜率存在且,设,设AB 的中点为.由消去并整理得,则,即,,于是点为.由中垂线知,所以,解得:.所以由A ,B 在双曲线的右支上可得:,且,且或,所以,即,综上可得,.…………………………………………………………………………15分18.【解析】(1)因为,所以是以为首项,以为公差的等差数列,所以,即①,2222,,b a c c a b ⎧=⎪⎪=⎨⎪=+⎪⎩1,a b ==E 2213y x -=k ≠()()1122:,,,,AB y kx m A x y B x y =+M 22,33y kx m x y =+⎧⎨-=⎩y ()22223230,30k x kmx m k ----=-≠()()()22222(2)4331230km k m m k ∆-+-+-+-=223m k >-()21212121222222326,,223333km m km m x x x x y y k x x m k m k k k k ++==-+=++=⋅+=----M 2222234331243,,333M C MC M m y y km m m k k k km k k x kmk ---+⎛⎫-=== ⎪--⎝⎭-1MC AB k k ⋅=-231241m k km k-+=-23m k =-22221223303033m m x x m k k k m++=-=->⇒=-<⇒>-12222003km x x k k k +==>⇒>-()()()()()222222221230333403m k k k k k k ∆=+->⇒-+-=-->⇒<24k >24k >2k >(2,)k ∈+∞1112n n n n S S a a ++-=n n S a ⎧⎫⎨⎬⎩⎭111a a =12111(1)22n n S n n a +=+-=12n n n S a +=所以②,由②-①可得,即,所以,所以,所以数列为等差数列.………………………………………………………7分(2)(Ⅰ)由题意知在等差数列中,,故.可得,当时,取最大值.………………………………………………………………………………12分(Ⅱ).………………………………………………………………17分19.【解析】(1)由定义可知,与相切,则圆的圆心到直线的距离等于1,则,即.……………………………………………………4分(2)点不在直线族的任意一条直线上,所以无论取何值时,4)无解.将整理成关于的一元二次方程:.1122n n n S a +++=1122n n n n a a ++=11111n n a a a a n n +====+ 111(1),n n a n a a na +=+=11n n a a a +-={}n a {}n a 1(1)2n a a n d n =+-=-132n c n =-22(1)11(2)12(6)362n n n T n n n n -=+⨯-=-=--+∴6n =n T 222222212321234521m i m mi bb b b b a a a a a a ==++++=-+-+-++∑ ()()()()22222222123456212m m a a a a a a a a -=-++-++-+++-+ ()21232284m a a a a m m =-++++=+ 1mx ny +=221x y +=1C (0,0)1mx ny +=d 1==221m n +=()00,P x y 2:(24)4(2)0(R)a x y a a Ω-++-=∈a (2a -2004(2)0x y a ++-=200(24)4(2)0a x y a -++-=a ()()2000244440a x a y x +-++-=。
2014-2015下学期高二物理期中考试试题(含答案)
2014—2015学年度第二学期期中试卷高二物理第Ⅰ卷(选择题 共40分)一、选择题(本题共10小题,每小题4分,共40分.每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分)1. 绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与直流稳恒电源、电键相连,如图所示,线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则( )A .铝环不断升高B .铝环停留在某一高度C .铝环跳起到某一高度后将回落D .如果电源的正、负极对调,观察到的现象不变2. 一交变电流的电压表达式为u =100 sin120πt (V ),由此表达式可知( )A .用电压表测该电压其示数为100 VB .该交变电压的频率为60HzC .将该电压加在100Ω的电阻两端,则该电阻消耗的电功率为100 WD .t =1/480 s 时,该交流电压的瞬时值为50 V3.满载砂子的总质量为M 的小车,在光滑水平面上做匀速运动,速度为0v 。
在行驶途中有质量为m 的砂子从车上漏掉,则砂子漏掉后小车的速度应为:( )A .0vB .m M Mv -0 C .m M mv -0 D .Mv m M 0)(-4. 如图所示,在光滑的水平地面上有一辆平板车,车的两端分别站着人A 和B ,A 的质量为m A ,B 的质量为m B ,m A >m B .最初人和车都处于静止状态.现在,两人同时由静止开始相向而行,A 和B 对地面的速度大小相等,则车 ( )A .静止不动B .左右往返运动C .向右运动D .向左运动5.右图表示一交流电的电流随时间而变化的图像,此交流电流的有效值是 ( ) A .25 A B .5AC .25.3 AD .3.5A6.图是街头变压器通过降压给用户供电的示意图。
变压器输入电压是市电网的电压,不会有很大的波动。