二次根式的概念与性质
二次根式知识点总结

二次根式知识点总结二次根式是数学中的一种常见的根式表达式,它可以表示为$\sqrt{a}$ 的形式,其中 $a$ 是一个非负实数。
在学习二次根式时,常常会涉及到以下几个方面的知识点。
一、二次根式的性质:1. 非负性:对于任何非负实数 $a$,二次根式 $\sqrt{a}$ 都是非负实数。
2. 平方性:相对应的,对于任何非负实数 $a$,二次根式$\sqrt{a}$ 的平方等于 $a$,即 $(\sqrt{a})^2=a$。
3. 两个二次根式可以相等:如果两个二次根式 $\sqrt{a}$ 和$\sqrt{b}$ 相等,那么 $a$ 和 $b$ 必须相等,即$\sqrt{a}=\sqrt{b}$ 可推出 $a=b$。
二、二次根式的运算:1. 加减运算:两个二次根式可以进行加减运算,只要它们的被开方数相同即可。
即 $\sqrt{a} \pm \sqrt{b}=\sqrt{a \pm b}$。
2. 乘法运算:两个二次根式相乘,可以将它们的被开方数相乘并开方。
即 $\sqrt{a} \cdot \sqrt{b}=\sqrt{ab}$。
3. 除法运算:两个二次根式相除,可以将它们的被开方数相除并开方。
即 $\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$。
4. 有理化分母:当二次根式的分母不含二次根式时,可以通过有理化分母的方法将其转化为含有二次根式的形式。
有理化分母的基本方法是将分母有理化,即乘以一个适当的形式为 $\sqrt{x}$ 的分子与分母相等的有理数,从而使得分母成为没有二次根式的有理数。
三、二次根式的化简:1.合并同类项:当二次根式相加或相减时,可以合并同类项,即将其中具有相同被开方数的二次根式相加或相减,并保持其他二次根式不变。
2.分解因式:当一个二次根式的被开方数可以分解成互质因子的乘积时,可以利用分解因式的方法进行化简。
3.化简根式:当二次根式的被开方数可以开方时,可以进行化简,即将其转化为整数、分数或者更简单的二次根式的形式。
二次根式总结

二次根式总结一、引言二次根式是数学中一个重要的概念,涉及到对平方根的运算和性质。
掌握好二次根式的基本知识对于理解和解决数学问题至关重要。
本文将对二次根式进行总结,从定义、性质到应用方面进行探讨。
二、定义与基本性质二次根式可以表示为√a(其中a≥0),这里√a称为二次根,a称为被开方数。
在二次根式中,一些基本性质需要予以关注。
首先,二次根式满足乘法分配律。
对于任意的非负实数a和b,有√(ab)=√a × √b。
这个性质与平方根的性质一致,可以利用它对二次根式进行简化。
其次,二次根式可以进行合并化简。
如果a和b都是非负实数,则√a + √b可以合并成一个根式。
例如,√2 + √3 = √(2+3) = √5。
这一点在化简二次根式的过程中常常应用到。
另外,二次根式的乘法也有一定的规律。
对于任意非负实数a 和b,有(√a × √b) = √(ab)。
同样地,在乘法的过程中可以利用这一性质对二次根式进行化简。
三、进一步探讨与应用1. 二次根式的化简化简二次根式是使用二次根式的基本性质,将复杂的根式表示简化为更简洁的形式。
例如,√8可以化简为2√2,√5 × √3可以化简为√15。
化简二次根式有助于简化运算和解决数学问题。
在化简二次根式时,可以利用约束性质,并通过提取公因数的方式进行。
例如,对于√8,可以提取公因数2,即√(2 × 4) = 2√2。
2. 二次根式的加减运算二次根式的加减运算可以通过化简和合并根式进行。
对于√a + √b,如果a和b无法合并,则不能再继续进行简化。
例如,对于√2 + √3,不能再进行进一步的运算。
但是可以计算其近似值,如√2 ≈ 1.414,√3 ≈ 1.732,因此√2 + √3 ≈ 1.414 + 1.732 ≈ 3.146。
3. 二次根式的乘除运算二次根式的乘除运算可以利用乘法分配律和二次根式的乘法规律进行。
利用这两个性质,可以轻松地计算复杂的二次根式。
二次根式的概念及性质

二次根式的概念及性质对于大多数人来说,学习数学常常会遇到许多难题,其中包括二次根式。
在本文中,我们将会详细探讨二次根式的概念及性质,以便更深刻地理解这一数学概念。
一. 二次根式概念二次根式,也就是平方根式,是指表达式中含有平方根的式子。
例如,我们可以将$\sqrt{2}$看做二次根式。
二次根式是一种特殊的无理数,也就是说它不能写成分数形式。
二次根式具有以下一些重要特征:1. 二次根式中的数值通常是无理数,因此不能表示为分数形式。
对于非完全平方数,无法化约,只能用$\sqrt{a}$表示。
2. 满足乘方的指数法则:$\sqrt{i} \times \sqrt{j} = \sqrt{ij}$。
3. 满足加减的公式:$\sqrt{i} \pm \sqrt{j}$是不能合并的。
二. 二次根式性质在接下来的内容中,将讨论二次根式的乘法、开方以及化简。
乘法我们来看一下下面这个式子:$(a+b\sqrt{2})(c+d\sqrt{2})$。
这是二次根式的乘法公式,可以化简为$ac+2bd+(ad+bc)\sqrt{2}$。
简易的乘法公式可概述为:$$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$$同理,$$(a-b)\times \sqrt{c} = a\sqrt{c}-b\sqrt{c}$$开方当对一个平方根求值时,我们要找到它的平方是多少。
找到它的平方根就是简单的数学操作。
举个例子,如果是$\sqrt{9}$,平方是9,所以它的平方根就是3.而如果是$\sqrt{a^2 + b^2}$,则无法化简。
直接求这个平方根是十分困难的,所以我们往往采取近似求解或其他算法将其化简为另一个更容易求解的式子,在此不做详细讲解。
化简化简二次根式是化简至最简二次根式的过程。
例如,$\sqrt{8}$可以被化简为$2\sqrt{2}$。
我们可以通过合理运用乘法公式,将含有多个平方根的式子简化为最简的形式。
16.1.3二次根式的概念及性质(培优)

16.1二次根式的概念及性质(培优)一 知识要点1.二次根式:一般地,式子)0a (,a ≥叫做二次根式.注意:(1)若0a ≥这个条件不成立,则 a 不是二次根式;(2)a 是一个重要的非负数,即;a ≥0.2.重要公式:(1))0a (a )a (2≥=,(2)⎩⎨⎧<-≥==)0a (a )0a (a a a 2 ; 3.积的算术平方根:)0b ,0a (b a ab ≥≥⋅=积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则: )0b ,0a (ab b a ≥≥=⋅.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:)0b ,0a (ba b a >≥=, 商的算术平方根等于被除式的算术平方根除以除式的算术平方根.二 知识的拓广延伸1、 挖掘二次根式中的隐含条件一般地,我们把形如 a a ()≥0的式子叫做二次根式,其中0a ≥≥。
根据二次根式的定义,我们知道:被开方数a 的取值范围是 0a ≥ ,由此我们判断下列式子有意义的条件:1(1;2(4)++-+ 2、(0)a a =≥,在此我们可将其拓展为:a a a a a a 200==≥-<⎧⎨⎩||()() (1)、根据二次根式的这个性质进行化简:①数轴上表示数a的点在原点的左边,化简2a =②化简求值:1a a=15③已知,132m -<<,化简2m______=;⑤若为a,b,c ________=;___________=. (2)、根据二次根式的定义和性质求字母的值或取值范围。
①若1m =,求m 的取值范围。
4x =-,则x 的取值范围是___________.③若a =的值;④3,2xy 已知求的值。
三.二次根式a 的双重非负性质:①被开方数a 是非负数,即0≥a ②二次根式a 是非负数,即0≥a例1. 要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤3 例2(1)化简x x -+-11 =_______.(2)x +y )2,则x -y 的值为( )(A)-1. (B)1. (C)2. (D)3.例3(1)若a 、b 为实数,且满足│a -2│+2b -=0,则b -a 的值为( )A .2B .0C .-2D .以上都不是(2)已知y x ,是实数,且2)1(-+y x 与42+-y x 互为相反数,求实数x y 的倒数。
二次根式知识点总结

二次根式知识点总结王亚平1. 二次根式的概念二次根式的定义: 形如)0(≥a a 的式子叫二次根式,其中a 叫被开方数,只有当a 是一个非负数时,a 才有意义.2. 二次根式的性质1. 非负性:)0(≥a a 是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2.)0()(2≥=a a a注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:)0()(2≥=a a a 3. ⎩⎨⎧<-≥==)0()0(2a a a a a a 注意:(1)字母不一定是正数. (2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.3. 最简二次根式和同类二次根式1、最简二次根式:(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或2、同类二次根式(可合并根式):几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式,即可以合并的两个根式4. 二次根式计算——分母有理化1.分母有理化定义:把分母中的根号化去,叫做分母有理化。
2.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:①单项二次根式:利用a a a =⋅来确定,如:a 与a ,b a +与b a +,b a -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如b a +与b a -,b a +与b a -,y b x a +与y b x a -分别互为有理化因式。
3.分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式;5. 二次根式计算——二次根式的乘除1.积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。
)0,0(≥≥⋅=b a b a ab2.二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。
专题01 二次根式的有关概念和性质(知识点串讲)(解析版)

专题01 二次根式的有关概念和性质知识网络重难突破知识点一 二次根式的有关概念 二次根式概念:一般地,我们把形如(a ≥0)的式子叫做二次根式,“”称为二次根号。
【注意】 1.二次根式,被开方数a 可以是一个具体的数,也可以是代数式。
2.二次根式是一个非负数。
3.二次根式与算术平方根有着内在联系,(a ≥0)就表示a 的算术平方根。
二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
【典型例题】1.(2018·黔西县期中)下面式子是二次根式的是( A ) A 21a +B 333C 1-D .12a 2.(2019·朝阳市期中)下列各式中不是二次根式的是(B ) A 21x +B 4-C 0D 2()a b -3.(2018·48n n 是( B ) A .6B .3C .48D .24.(2018·26的值在( D ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间5.(2019·虹桥区期末)在平面直角坐标系中,点M (a ,b )的坐标满足(a ﹣3)22b -0,则点M 在( A )A .第一象限B .第二象限C .第三象限D .第四象限6.(2019·孝感市期中)已知三角形的三边长为a 、b 、c ,如果2(5)12130a b c -+--=,则△ABC 是( C )A .以a 为斜边的直角三角形 B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形7.(2019·滨州市期中)下列式子:①13;②3-;③﹣21x +;④327;⑤2(2)-,是二次根式的有(B )A .①③ B .①③⑤C .①②③D .①②③⑤8.(2019·汕头市期末)若211a aa a--=,则a 的取值范围是( D ) A .0a >B .1a ≥C .01a ≤≤D .01a <≤9.(2019·抚顺市期末)若二次根式51x -有意义,则x 的取值范围是( B ) A .x >15B .x≥15C .x≤15D .x≤510.(2018·德州市期末)使代数式34x x --有意义的自变量x 的取值范围是(C ) A .x≥3B .x >3且x≠4C .x≥3且x≠4D .x >311.(2017·东胜市期末)方程有两个实数根,则的取值范围(B )A .B .且C .D .且12.(2018·泉州市期中)若a ab+有意义,那么直角坐标系中点A(a,b)在( A ) A .第一象限B .第二象限C .第三象限D .第四象限知识点二 二次根式的性质 二次根式的性质:1.含有两种相同的运算,两者都需要进行平方和开方。
二次根式的概念和性质
2
0.04
0.04
2
( a ) a (a 0)
2
2 2 ( ) 7
2
面积 a
a
a
2 7
1 1 2 ( 2 ) 2 3 3
( 5) 5
2 2 2 ( ) 3 3
二次根式的性质(3)
算一算: 02 = 0 ; 22 = 2 ; (-2)2 = 2 ; 32 = 3 ; (-3)2 = 3 。
2
(1 x ) 1 x,则x的取值范围为
2
(
)
A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
与 (√ a ) 是一样的吗? 你的理由是什么,请小组讨论一下。
3.
1、什么叫做二次根式? 形如 a (a≥0)的式子叫做二次根式。 2、二次根式有哪两个形式上的特点? (1)根指数为 2;
课堂小结
(2)被开方数必须是非负数。 3、二次根式具有哪些性质? 性质 1: a ≥0 (a≥0) (双重非负性)
性质 2:( a )2 = a (a≥0)
性质 3:当 a≥0 时, a2 = 当 a<0 时, a2 = 也就是说: a2 = a -a |a| ; 。
。
a a
2
例2 计算:
(1)
2
我们已经得到:
根据等式的定义,可得
a
2
a , ( a 0)
a
a , (a 0。 )
2
利用这个式子,我们可以把任何一个非负数写 2 成一个数的平方的形式。如 4= 4 。
试一试(4)把下列各数写成平方的形式:
3=
3 ,
2
二次根式的概念和性质
页眉内容二次根式【目标】1.了解二次根式、最简二次根式、同类二次根式的概念,会辨别最简二次根式和同类二次根式.2.掌握二次根式的性质:ab =a ·b (a ≥0,b ≥0);b a =ba (a ≥0,b>0). 会根据它们熟练地化简二次根式.3.掌握二次根式(不含双重根号)的加、减、乘、除的运算法则,会用它们进行运算.4.会将分母含有一个二次根式的式子进行分母有理化.5.掌握二次根式的性质.2a =|a |=⎩⎨⎧<-≥)0()0(a a a a 会利用它化简二次根式. 【基础知识精讲】1.二次根式:式子a (a≥0)叫做二次根式.2.公式(a )2=a(a≥0).3.公式a =(a )2(a≥0). 【重点难点解析】重点 本节的重点是二次根式的意义.难点 本节的难点是二次根式的定义及性质的运用. 【典型例题解析】例 1 下列各式:38,327-,)4(-,42a ,4,122++a a ,12-a(a<21),22+a 中是二次根式的有 .分析:本题考查二次根式的定义,解题思路是根据二次根式的定义去判断. 解 ∵ 38,327-,42a 的根指数不是2,∴ 它们不是二次根式. ∵ 在)4(-中,被开方数-4<0,∴ )4(-不是二次根式.∵ 在12-a 中的被开方数2a-1有可能小于0,∴ 12-a 不是二次根式. ∵ 在4中,被开方数4>0,∴ 4是二次根式.∵ 在122++a a =2)1(+a 中被开方数(a+1)2≥0,∴ 122++a a 是二次根式. ∵ 在22+a 中被开方数a 2+2>0,∴22+a 是二次根式.总结 本题的易错点是忽视二次根式中被开方数是非负数的隐含条件,注意这个隐含条件是本题的解题关键.例2 x 为何值时,下列各式在实数范围内有意义.(1)32+x ; (2)x 31-; (3)2)5(-x .解 (1)2x+3≥0,即x ≥-23. ∴ 当x ≥-23时,32+x 有意义. (2)1-3x ≥0,即x ≤31.∴ 当x ≤31时,x 31-有意义.(3)∵ x 不论取何实数,总有(x-5)2≥0,∴ x 为任意实数,2)5(-x 有意义.例3 计算下列各式:(1)(15)2; (2)251⎪⎭⎫⎝⎛-; (3)(2x )2.分析:(1)由(a )2=a(a≥0)直接可得,(2)要注意应先计算251⎪⎭⎫⎝⎛-,然后再求算术平方根,(3)根据积的乘方法则,这里2也要平方.解 (1)(15)2=15;(2)251⎪⎭⎫⎝⎛-=251=51;(3)(2x )2=22×(x )2=4x.总结 本题的易错点是第(3)小题的2不平方,错成(2x )2=2x. 【难题巧解点拨】例 在实数范围内分解因式. (1)9a 2-7; (2)16x 4-25.解 (1)9a 2-7=(3a)2-(7)2=(3a+7)(3a-7);(2)16x 4-25=(4x 2)2-52=(4x 2+5)(4x 2-5)=(4x 2+5)[(2x)2-(5)2]=(4x 2+5)(2x+5)(2x-5).【难题解答】例 x 是怎样的实数时,下列各式在实数范围内有意义? (1)x 1; (2)11-x 解 (1)x>0时,x1有意义.(2)x-1>0,∴x>1,当x>1时,11-x 有意义.【命题趋势分析】(1)本节的中考热点是考查二次根式的被开方数的非负性.(2)本节内容在中考题中常以填空题、选择题的形式出现,着重考查对二次根式定义的理解能力.【典型考题】例1 当x 是什么实数时,下列各式在实数范围内有意义. (1)x 43-; (2)21+x .解 (1)由二次根式定义可知:3-4x ≥0,∴ x ≤43. 当x ≤43时,x 43-有意义; (2)由二次根式与分式的定义可知:x+2>0,∴ x>-2. 当x>-2时,21+x 有意义.【同步练习】 1.选择题 (1)把441写成一个正数的平方形式( ) A. (221)2B.(221)2或(-221)2 C.( 417)2D.(217)2或(-217)2(2)若ba是二次根式,则应满足的条件是( )A.a,b 均为非负数;B.a ≥0,且b>0;C. b a >0;D. ba ≥0 (3)下列各式中是二次根式的是( )A.7-B. 32mC. 12+xD. 3ab(4)x 为实数,下列各式中,不一定有意义的是( )A. 2x -B. 12-xC. 22+xD.21x (5)若m<0,n<0,则(m -)2+(n -)2的值是( )A.m-nB.-m-nC.m+nD.-m+n(6)能使式子-2)2(--x 有意义的实数x 有( )A.0个B.1个C.2个D.无数个(7)已知-1≤a ≤1,在实数范围内有意义的式子是( )A.aa+-11 B.11+-a a C. 2a -D. a11-2.填空题(1)式子(a )2=a 成立的条件是 .(2)2)31(-= ;231⎪⎪⎭⎫ ⎝⎛-= . (3)(13-x )2 (x≥31)= .(4)把下列非负数写成一个数的平方的形式.①0.5=( )2;②32=( )2;③10=( )2 ④3a(a≥0)=( )2;⑤1-2x(x≤21)=( )2.(5)当x 时,(1-x )2=1-x. 3.计算 (1)( 6)2(2)-2)6(- (3)(332)2 (4)2·(34)-24.在实数范围内分解因式(1)2x 2-3; (2)81-16b 2; (3)x 4-4x 2+4;(4)x 2-7x+12; (5)x 2(x -2)-2(x-2)【素质训练】5.已知a 、b 为实数,且满足a =3-b +b -3+2,求ab ·ba ab +-1的值.6.在实数范围内,设a =(13+x x-xxx --+-222)1999求:a 的个位数字是多少?参考答案 【同步练习】1.(1)C (2)D (3)C (4)C (5)B (6)B (7)C2.(1)a ≥0 (2)31;31 (3)3x -1 (4)①±5.0;②±36;③±10; ④±a 3;⑤±x 21- (5)=1 3.(1)6;(2)-6;(3)6;(4)234.(1)(2x+3)(2x -3);(2)(9+4b 2)(3+2b )(3-2b ); (3)(x+2)2(x -2)2;(4)(x -3)(x+4);(5)(x -2)2(x+2); 【素质训练】5.b =3,a =2 原式=32⨯·32132+-⨯=6;6.x =-2,a =61999,个位数字是6.。
二次根式的概念和性质
【答案】
2 ,9 5
【解析】
2a 2b c 2a 2b c 4 2 5b c 5a 5b c 5a 25 5
3
,
3 12 3 3 3 12 9 36 3 6 9
12、 (2013 初二上期末大兴区)若最简二次根式
a _________
1 1 5 1 5; 16 4 16 4
4
2
4, ;
7、估计 88 的大小应( ) A.在 9.1~9.2 之间 B.在 9.2~9.3 之间 C.在 9.3~9.4 之间 D.在 9.4~9.5 之间 【答案】 C 【解析】 设 88 9 x( x是小数部分) ;则有: 9 x 88 ,即: x2 18x 7 ,得 18x 7 , x 0.38 ,
二次根式比较大小的方法 (1) a b 0 a b (2)二次根式比较大小:能直接比较大小的直接比较;不能直接比较大小的,先平方再比 较. (3)估算法 (4)分子有理化 (5)倒数法 七、二次根式的乘除 二次根式的乘除法
第 2 页,共 17 页
二次根式
二次根式的乘法法则: a b ab ( a 0 , b 0 ) . 二次根式的除法法则:
3 2 2 a 4与 6a 2 1 是同类二次根式,则 2 3
【答案】 1 【解析】 该题考查的是二次根式. 满足下列两个条件的二次根式,叫做最简二次根式: (1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式. 几个二次根式化成最简二次根式后, 如果被开方数相同, 这几个二次根式叫做同类二次根式. 根据题意可列: a2 4 6a2 1 解得: a 1
专题01 二次根式及其性质
专题01 二次根式及其性质【考点剖析】1、二次根式概念:一般地,我们把形如(a≥0)的式子叫二次根式.2、二次根式有意义的条件:二次根式中的被开方数是非负数.(1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.3、二次根式的性质与化简(1)二次根式的基本性质:①;②;③(2)与要注意区别与联系:①a的取值范围不同,中a≥0,中为任意值;②a≥0时,;a<0时,无意义,二次根式的定义【典例】例1.下列式子:,,,,,,中,一定是二次根式的是( )A.3个B.4个C.5个D.6个【答案】B【解析】解:在所列式子中,一定是二次根式的是,,,这4个,故选:B.【点睛】根据二次根式的性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,逐一判断.本题考查了二次根式的定义.理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.【巩固练习】1.、、、、中二次根式有( )A.5个B.4个C.3个D.2个【答案】C【解析】解:、、是二次根式,、的被开方数不一定为非负数,故不一定是二次根式.故选:C.2.下列各式中①;②;③;④;⑤;是二次根式的有( )个.A.2个B.3个C.4个D.5个【答案】A【解析】解:①、②的被开方数是负数,不是二次根式;③;④符合二次根式的定义;⑤当﹣1<x<1时,被开方数是负数,不是二次根式.综上所述,二次根式的个数是2.故选:A.3.下列各式中:①;②;③;④.其中,二次根式的个数有( )A.1个B.2个C.3个D.4个【答案】A【解析】解:①;②;③;④.二次根式的只有①,故选:A.二次根式有意义的条件【典例】例1.式子中x的取值范围是( )A.x≥1且x≠2B.x>1且x≠2C.x≠2D.x>1【答案】A【解析】解:由题意得:x﹣1≥0且x﹣2≠0,解得:x≥1且x≠2.故选:A.【点睛】根据二次根式有意义的条件可得x﹣1≥0,再根据分式有意义的条件可得x﹣2≠0,再解出x的值.此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.例2.若已知a、b为实数,且2b+4,则a+b=______.【答案】1【解析】解:由题意得,a﹣5≥0,5﹣a≥0,解得,a=5,则b=﹣4,则a+b=1,故答案为:1.【点睛】根据二次根式中的被开方数必须是非负数解答即可.本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.【巩固练习】1.若二次根式有意义,则x的取值范围是( )A.x B.x C.x D.x≤5【答案】B【解析】解:由题意得,5x﹣1≥0,解得,x,故选:B.2.代数式有意义,则x应满足的条件是( )A.x≠3B.x C.x且x≠3D.x且x≠3【答案】C【解析】解:由题意得,1+3x≥0,x﹣3≠0,解得,x且x≠3,故选:C.3.如果代数式有意义,那么x的取值范围是( )A.x≥0B.x≠1C.x>1D.x≥0且x≠1【答案】C【解析】解:由题意得,x≥0,x﹣1>0,解得,x>1,故选:C.4.如果y3,那么y x的算术平方根是( )A.2B.3C.9D.±3【答案】B【解析】解:由题意得,x﹣2≥0,2﹣x≥0,解得,x=2,∴y=3,则y x=9,9的算术平方根是3.故选:B.5.若|2017﹣m|m,则m﹣20172=____________.【答案】2018【解析】解:∵|2017﹣m|m,∴m﹣2018≥0,m≥2018,由题意,得m﹣2017m.化简,得2017,平方,得m﹣2018=20172,m﹣20172=2018.故答案为:20186.已知a满足|2017﹣a|a,则a﹣20172的值是____________.【答案】2018【解析】解:∵|2017﹣a|a,∴a﹣2018≥0,故a≥2018,则原式可变为:a﹣2017a,故a﹣2018=20172,则a﹣20172=2018.故答案为:2018.二次根式的性质【典例】例1.下列各式中,一定能成立的是( )A.B.()2C.x﹣1D.•【答案】A【解析】解:A、,所以A选项正确;B、()2当a为负数是不成立,所以B选项错误;C、x﹣1当x<1时不成立,所以C选项错误;D、•当x<3时不成立,所以D选项错误.故选:A.例2.实数a,b在数轴上的位置如图,则化简|a﹣b|的结果为( )A.2a B.﹣2a C.2b D.﹣2b 【答案】B【解析】解:由题意得:a>b,|a|<|b|,a>0,b<0,∴a﹣b>0,a+b<0,∴|a﹣b|=﹣a﹣b﹣a+b=﹣2a,故选:B.例3.阅读下面的解题过程,判断是否正确?若不正确,请写出正确的解答.已知m为实数,化简:解:原式.【答案】见解析【解析】解:不正确,根据题意,m成立,则m为负数,=m=m=(m+1).【点睛】本题主要考查了二次根式的性质的灵活运用,关键是根据成立,则m为负数,要求熟练掌握负整数指数幂、二次根式、绝对值等考点的运算.【巩固练习】1.下列各式成立的是( )A.2B.()2=2C.a D.3【答案】D【解析】解:A、2,故此选项错误;B、()2=4,故此选项错误;C、|a|,故此选项错误;D、3,正确.故选:D.2.实数a在数轴上的位置如图所示,则化简后为( )A.8B.﹣8C.2a﹣18D.无法确定【答案】A【解析】解:由题意可知6<a<12,∴a﹣5>0、a﹣13<0.∴|a﹣5|+|a﹣13|=a﹣5+13﹣a=8.故选:A.3.如图所示,实数a、b在数轴上的位置化简的结果是( )A.﹣2a B.﹣2b C.0D.2a﹣2b 【答案】A【解析】解:由数轴可知:a<0,b>0,a﹣b<0,∴原式=﹣a﹣b﹣(a﹣b)=﹣a﹣b﹣a+b=﹣2a故选:A.4.把x根号外的因数移到根号内,结果是( )A.B.C.D.【答案】C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的概念与性质编稿:庄永春审稿:邵剑英责编:张杨一、目标认知1.学习目标:理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:,,,并利用它们进行计算和化简.2.重点:;,及其运用.3.难点:利用,,解决具体问题.二、知识要点梳理知识点一:二次根式的概念一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.要点诠释:二次根式的两个要素:①根指数为2;②被开方数为非负数.知识点二:二次根式的性质1.;2.;3.;4.积的算术平方根的性质:;5.商的算术平方根的性质:.要点诠释:二次根式(a≥0)的值是非负数,其性质可以正用亦可逆用,正用时去掉根号起到化简的作用;逆用时可以把一个非负数写成完全平方的形式,有利于在实数范围内进行因式分解.知识点三:代数式形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(a l g e b r a i c e x p r e s s i o n).三、规律方法指导1.如何判断一个式子是否是二次根式?(1)必须含有二次根号,即根指数为2;(2)被开方数可以是数也可以是代数式但必须是非负的,否则在实数范围内无意义.2.如何确定二次根式在实数范围内有意义?要使二次根式在实数范围内有意义必须满足被开方数为非负数.要确定被开方数中所含字母的取值范围,可根据题意列出不等式,通过解不等式确定字母的取值范围.当二次根式作为分母时要注意分母不能为零.经典例题透析类型一:二次根式的概念1、下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、、(x≥0,y≥0).思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、、(x≥0,y≥0);不是二次根式的有:、、、.2、当x是多少时,在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数.举一反三【变式1】x是怎样的实数时,下列各式实数范围内有意义?(1);(2);解:(1)由≥0,解得:x取任意实数∴当x取任意实数时,二次根式在实数范围内都有意义.(2)由x-1≥0,且x-1≠0,解得:x>1∴当x>1时,二次根式在实数范围内都有意义.【变式2】当x是多少时,+在实数范围内有意义?思路点拨:要使+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.类型二:二次根式的性质3、计算:(1)(2)(3)(4)(5)(b≥0) (6)思路点拨:我们可以直接利用(a≥0)的结论解题.解:(1)(2)=;(3);(4)=;(5);(6).举一反三【变式1】计算:(1);(2);(3);(4).思路点拨:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)2≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用的重要结论解题.解:(1)因为x≥0,所以x+1>0;(2)∵a2≥0,∴;(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1;(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴=4x2-12x+9.4、化简:(1);(2);(3);(4).思路点拨:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用去化简.解:(1)==3;(2)==4;(3)==5;(4)==3.5、填空:当a≥0时,=____;当a<0时,=______,•并根据这一性质回答下列问题.(1)若=a,则a可以是什么数?(2)若=-a,则a可以是什么数?(3)>a,则a可以是什么数?思路点拨:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0时,=,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知,而要大于a,只有什么时候才能保证呢?解:(1)因为,所以a≥0;(2)因为,所以a≤0;(3)因为当a≥0时,要使,即使a>a所以a不存在;当a<0时,,要使,即使-a>a,即a<0;综上,a<0.类型三:二次根式性质的应用6、当x=-4时,求二次根式的值.思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同.解:将x=-4代入二次根式,得=.7、(1)已知y=++5,求的值.(2)若+=0,求的值.解:(1)由可得,,(2)8、在实数范围内分解因式:(1)x2-5;(2)x3-2x;解:(1)原式.(2)原式.学习成果测评基础达标一、选择题1.下列式子中,不是二次根式的是()A.B.C.D.2.已知一个正方形的面积是5,那么它的边长是()A.5 B.C.D.以上皆不对3.(福建省福州市)若代数式在实数范围内有意义,则x的取值范围为()A.x>0 B.x≥0 C.x≠0 D.x≥0且x≠14.的值是()A.0 B.C.4D.以上都不对5.a≥0时,、、,比较它们的结果,下面四个选项中正确的是() A.B.C.D.6.(辽宁省大连市)如图,数轴上点N表示的数可能是( )A.B.C.D.二、填空题1.若,则x=____________.2.若有意义,则的取值范围是____________.3.-=________.4.=____________.5.=____________.6.若,则____________.7.若,则____________;若,则____________.8.化简:=__________.9.计算:(1)=_______;(2)=________;(3)=________。
10.(内蒙古鄂尔多斯市)如图,在数轴上,A、B两点之间表示整数的点有_______个.三、解答题1.求下列二次根式中字母a的取值范围:(1),(2);(3).2.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?能力提升一、选择题1.使式子有意义的未知数x有()个A.0 B.1 C.2 D.无数2.(山西省临汾市)若,则与3的大小关系是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.(福建省厦门市)下列四个结论中,正确的是()A. B. C. D.二、填空题1.若,则____________.2.若是一个正整数,则正整数m的最小值是________.3.已知实数在数轴上的对应点如图所示,则____________.三、解答题1.当x是多少时,+x2在实数范围内有意义?2.若+有意义,求的值.3.(北京市海淀区)已知实数x,y满足,求代数式的值.4.已知,求x+y的值.综合探究1.(福建省南安市)观察分析下列数据,寻找规律:0,,,3,2,,3,……那么第10个数据应是____________.2.(江苏省苏州市)等式中的括号应填入____________.3.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.4.若时,试化简.5.在实数范围内分解下列因式:(1);(2).答案与解析基础达标一、1.D 2.B 3.D 4.C 5.A 6.B二、1.16 2. 3.-0.02 4. 5.2-x6.7.8.9. (1);(2)6;(3)-6 10.4三、1.解:(1)由a+1≥0,得a≥-1∴字母a的取值范围是大于或等于-1的实数。
(2)>0,得1-2a>0,即a<∴字母a的取值范围是小于的实数。
(3)因为无论a取何值,都有,所以a取值范围是全体实数。
2.解:设底面边长为x,则0.2x2=1,解答:x=.能力提升一、1.B 2.B 3.B 4.D二、1. 2.5 3.b三、1.解:依题意得:,∴当x≥-且x≠0时,+x2在实数范围内有意义.2.解:,且+有意义3.解:4.解:综合探究1. 2.-4xy3.解:甲;甲没有先判定1-a是正数还是负数.4.解:5.解:(1);(2).。