自由陀螺仪的视运动

合集下载

航海仪器-第1节 陀螺罗经1

航海仪器-第1节  陀螺罗经1

T=0 T=6h
T=12h
地球自转角速度的分解
Z。 We S E 以 北 纬 点 为 例 (We:地球自转角速度 We
•We分解为: W1=Wecosφ(水平分量) W2=Wesinφ (垂直分量)
φ :地理纬度)
W2 φ W O W1
φ
N
PN
•W1:在北纬使水平面 SENW的东半平面不断 下沉,西半平面不断上 升。(南纬相同) •W2:在北纬使子午面S Z。N的N点不断向W移 动。(南纬反之)
2、陀螺仪的特性
1)陀螺仪的定轴性(也称稳定性) 不受外力矩作用时,陀螺仪的主轴保持 其空间的初始方向不变。
定轴性实验录像
2、陀螺仪的特性
1.陀螺仪的定轴性(也称稳定性)
实验一:自由陀螺仪转子不转,转动陀螺仪基 座,主轴随基座一起转动。 实验二:自由陀螺仪转子高速旋转,转动陀螺 仪基座,主轴不随基座一起转动。 自由陀螺仪表现为定轴性的条件是:陀螺转子 高速旋转;陀螺仪不受外力矩作用。
1.人坐车前进时感觉到路两旁的树在不 断地向后运动,为什么? 2.地球的运动规律?地球上的人看到 太阳东升西落,是太阳的运动吗? 3.将陀螺仪的主轴初始指向地球上 某一方位,人会看到它的指向始终 不变吗?
自由陀螺仪在地球上的视运动
北半球,若将自由陀螺仪 放在A点,使其主轴位于 子午面内并指恒星S,由 于地球自西向东转,经 过一段时间后,它转到B 点,因定轴性,陀螺仪 主轴仍将指恒星S方向但 相对子午面来说,主轴 指北端已向东偏过了α 角。 北纬看自由陀螺仪视运动
三、发展历史
两千多年前,我国劳动人民在生活和生产实践中发现了陀螺 的基本特性。 1852年,法国科学家福科第一个利用陀螺特性并与地球自转 相联系,它利用三自由度陀螺仪的定轴性来观测地球自转; 并提出了创见性的理论。 1878年,美国科学家霍布金发明了用电机推动的陀螺罗经。 1908年,德国人安许茨创造了世界上第一台实用陀螺罗经。 成为一个罗经系列。陀螺罗经也由此开始出现。 1909年,美国人斯伯利也创造了单转子弹性支承的陀螺罗经, 并且也逐步发展成为一个罗经系列。 二十世纪五十年代,一个新的罗经系列逐渐形成,即美英两 国合作生产的阿玛勃朗型——电磁控制式陀螺罗经。

陀螺罗经指北原理

陀螺罗经指北原理

三、进动角速度与进动公式
进动角速度 :
MY ωP = H
My H ;
进动公式:
ω pz =
ω py
Mz =− H
四、赖柴尔定理(P6): 外力矩 = 动量矩矢端的线速度 即:M=up 结论:表示为当外力矩作用的方向与 动量矩的方向垂直时,在动量矩矢端 将产生一个线速度,该线速度的大小 与外力矩相等,方向与外力矩的方向 相同
阻尼的目的 将等幅运动变为减幅运动,最后衰减 至子午面上的某个稳定位置,以实现 稳定指北。 阻尼的方法 压缩长轴法——水平轴阻尼法 压缩短轴法——垂直轴阻尼法
水平轴阻尼法
1.定义:由阻尼设备产生水平轴的阻尼力矩以实 现阻尼的方法。 2.原理: •要求阻尼力矩引起的进动线速度(u3)总是指向 子午面 •在第1和第3象限内,主轴指北端抵达子午面时高 度角θ减幅<θ等幅 ;在第2和第4象限内,主轴指北端 到达水平面时α减幅<α等幅。渐次衰减至稳定位置r
二、陀螺仪的两个特性
1.定轴性:不受任何外力矩作用 的自由陀螺仪的主轴将保持其 初始空间方位不变。(即惯性 空间) 2.进动性:在外力矩M的作用 下,3自由度陀螺仪主轴动量矩 H矢端将以捷径趋向外力矩M矢 端作进动。(H→M) ¾角速度ω ¾动量矩H=Jω ¾外力矩M=r*F ¾右手定则
FHale Waihona Puke F1图1-14图1-15
主轴在方位上的变化
主轴在高度上的变化
地球自转角速度的水平分量和垂直分量 在北纬任意纬度处,可以将地球自转角速 度分解到ON轴和OZ0轴上,得到两个 分量ω1和ω2,在ON轴上的ω1称为水 平分量,在OZ0轴上的ω2称为垂直分 量。 ⎧ω1 = ω e cos ϕ 显然,在北纬 ⎨ω = ω sin ϕ

陀螺仪理论及应用

陀螺仪理论及应用

第二节 自由陀螺的视运动及其应用
一、 自由陀螺的视运动
将自由陀螺放在地球的北极,并使转子轴水平, 将自由陀螺放在地球的北极,并使转子轴水平,这时转子轴与 地球极轴互相垂直。 地球极轴互相垂直。站在地球北极上的观察者就会看到陀螺的 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 自转轴自东向西转动(从上方看H轴顺时针方向旋转),并且 ), 转动周期与地球自转周期相同,即每24小时旋转一周。 24小时旋转一周 转动周期与地球自转周期相同,即每24小时旋转一周。
陀螺相对动参考系的运动
哈尔滨工程大学自动化学院
刘繁明
前面,我们都是假定陀螺直接安装在惯性基座上,建 前面,我们都是假定陀螺直接安装在惯性基座上, 立了以绕内、外环的转角为广义坐标的运动微分方程, 立了以绕内、外环的转角为广义坐标的运动微分方程,讨 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 论陀螺在外力矩作用下相对惯性空间的运动规律,但是, 如果计及地球的自转, 如果计及地球的自转,并且考虑实际的陀螺仪总是安装在 运动物体如飞机、舰船上, 运动物体如飞机、舰船上,那么绝对静止的基座是不存在 在这种情况下, 的。在这种情况下,我们就不仅要了解陀螺相对惯性空间 的运动规律, 的运动规律,更重要的是要了解陀螺相对运动基座的运动 规律,进而掌握飞行器、舰船运动的各种参数。 规律,进而掌握飞行器、舰船运动的各种参数。 根据一般运动学原理, 根据一般运动学原理,我们把陀螺相对惯性空间的运 动看成两种运动, 动看成两种运动,即运动基座相对惯性空间的牵连运动和 陀螺相对运动基座的相对运动的合成, 陀螺相对运动基座的相对运动的合成,所以在讨论实际陀 螺的运动时,不仅要考虑陀螺本身的运动情况, 螺的运动时,不仅要考虑陀螺本身的运动情况,还必须要 考虑基座的运动。例如, 考虑基座的运动。例如,当利用安装在载体内的陀螺仪来 测量载体的航向和姿态时, 测量载体的航向和姿态时,就必须考虑载体相对地球的运 以及地球相对惯性空间的运动。 动,以及地球相对惯性空间的运动。

陀螺罗经指北原理综述

陀螺罗经指北原理综述

U2
X
在哪个轴上? N ?只能加于水平
轴(oY )上。
E
V2
?原则:必须人为施加水平轴控制力矩(M y),产生一个u2
使其与v2大小相等,方向相反,才能克服? 2影响。
陀螺罗经指北原理概述
(一)下重式罗经的控制力矩
1. 下重式罗经灵敏(指北)部分的结构:
陀螺转子
Z
核心-液浮、双转子陀螺球
(252mm )
量矩H 矢端以捷径趋向外力矩 M 矢端,作进动运动或
旋进运动。( H →M ) z
例: 1 - 1
M
?p? H
? py M y
P4 Fig1-4
? pz M z
o
y
My
F
H
进动方向: 右手定则
xF
二、 陀螺仪及其特性
陀螺罗经指北原理概述
?
pz
?
My H
;
?
py
?
?
Mz H
陀螺罗经指北原理概述
(一)地球自转产生的影响
液体连通器式:
My 产生方式: 重心下移
液体连通器某端 容器多余液体
M y 指向: 总是指北
总是指南
H指向: X轴正方向
X轴负方向
M y算式: M y ? ? M?
M y ? M?
u2 ? M y ? ? M?
u2 ? ? My ? ? M?
u2 ? ? M?
陀螺罗经指北原理概述
1 )主轴指北端投影图: (下重式罗经为例 )
4 )椭圆运动轨迹的特征:
Z。N的N点不断向W移 动。 南纬?反之
PS
陀螺罗经指北原理概述
?
e
? ?

1-2-自由陀螺仪的视运动

1-2-自由陀螺仪的视运动
V2 M y H z H 2
1-2自由陀螺仪的视运动
陀螺罗经的指北原理
四.自由陀螺仪产生视运动旳根源 定轴性;e旳存在
例1:位于南纬某处旳自由陀螺仪,若动量矩指OX
轴负方向并水平指北,问初始瞬间陀螺仪指北端
旳视运动趋势怎样?
(水平西偏)
例2:影响自由陀螺仪主轴不能稳定指北旳最主要原
因是:

A
陀螺罗经的指北原理
陀螺仪主轴相对地球运动:
• 方位角:主轴相对 子午面旋转旳偏角。 偏西为正。
• 高度角:主轴相对 水平面旋转旳偏角。 偏下为正。
1-2自由陀螺仪的视运动
方位角、高度角和纬度角图示
陀螺罗经的指北原理
1-2自由陀螺仪的视运动
主轴指北端投影图:
W θ
陀螺罗经的指北原理
M
P(α, θ)
1-2自由陀螺仪的视运动
陀螺罗经的指北原理
自由陀螺仪主轴指北端旳视运动规律:
北纬东偏 南纬西偏 东升西降 全球一样
W
N
E
M
M’ 投影面
α
P

E M’
西ห้องสมุดไป่ตู้



1-2自由陀螺仪的视运动
陀螺罗经的指北原理
地球旳自转产生旳影响:
(e:地球自转角速度 , :地理纬度) •e分解为:
A
e
1= e cos (水平分量)
PN
2 = e sin (垂直分量)
以北纬A点为例
• 1 :在北纬,使水平
面SENW旳东半平面不
cos
;
py相对
d
dt
3. 陀螺仪连同地球一起在空间旳运动(牵连运动)

陀螺仪基本知识惯性导航

陀螺仪基本知识惯性导航

电子信息工程学院
30
将大地水准体用 一个有确定参数的 旋转椭球体来逼近 代替(如椭球面与 真实大地水准面之 间的高度差的偏差 平方和最小),这 种旋转椭球体称为 参考椭球体,简称 参考椭球。
电子信息工程学院
31
国际通用参考椭球体
电子信息工程学院
32
WGS-84坐标系基本参数
(1)椭球长半径 (a) 6378137 2m;
电子信息工程学院
38
5.机体坐标系 OX BY(BMZBobile Frame,Body Frame )
机体坐标系与飞机固连,
用表示OX BYB,Z坐B 标原点 机O纵与轴飞一机致重,心重O与合Z飞,B 机O竖X与B轴飞
一致, O与Y飞B 机横轴一致。Fra bibliotekZB YB
XB
电子信息工程学院
39
6.平台坐标系OX pYpZ(pPlatform frame )
电子信息工程学院
33
二、惯性系统中常用的坐标系
在地球上进行导航,所定义的坐标系要将惯导系统 的测量值与地球的主要方向联系起来。因此涉及到了 各种不同的坐标系,主要有以下几类:
陀螺坐标系 地理坐标系 惯性坐标系 地球坐标系 载体坐标系
电子信息工程学院
34
1.陀螺坐标系oxyz
x轴:与陀螺内环轴一致,固连于内环上; z轴:与陀螺转子轴一致,固连于内环上;但不随转子转动; y轴:与oxy平面平行,大方向与外环一致,但一般不与外环轴一致
2.传感器:输出与被测量参数成一定关系的电信号 。如陀螺航向传感器,角速度传感器。
3.本身作为一个元部件,与其它自动控制元部件 组成各种陀螺装置。如陀螺稳定平台,惯性导 航系统等。

浅析SPERY-37E型电罗经的指向原理和误差消除

OCCUPATION131 2010 12第五步:文件和目录权限的设置。

 F T P站点中共设三个目录,其具体功能见表1。

表1 FTP站点功能本地文件夹设置具体功能备注作业上交学生将作业上传到该目录中,可以续传,但不可以修改和删除教师只需在教师机(即FTP服务器)的本地目录上进行资料的存放。

学生每次上课时必须使用相应的账户和密码正确登录FTP站点才可以进行下载和上交作业共享向学生提供资源的下载,学生可从该目录中浏览、下载,而不能进行其他操作题目下发教师在此目录存放作业题目,学生可从该目录中下载,但不能删除和修改其中,学生用户访问F T P站点资源的权限见表2。

表2 学生用户访问FTP站点资源的权限FTP站点目录Serv-U服务器上的目录权限设置文件目录子目录读取写入追加删除执行列表创建移除继承09JAVAtech√√作业上交√√√√√共享√√√题目下发√√√电罗经又叫陀螺罗经,它能自动、连续地提供船舰的航向信号,并能通过其分罗经把航向信号发送到船舶需要航向的各个部门,满足全船导航及系统的需要。

一、SPERY-37E型陀螺罗经从自由陀螺仪到指向罗经的转变1.自由陀螺仪由于地球自转而产生视运动地球上自由陀螺仪主轴在方位和高度上的视运动规律为北纬偏东,南纬偏西,东升西降,全球一样。

地球自转角速度可分解为垂直分量ω2和水平分量ω1,在OY 轴上投影ω2的影响使位于地球上的自由陀螺仪主轴产生视运动,因而不能直接作为航海陀螺经使用。

自由陀螺仪之所以偏离子午面是由于角速度ω2=ω0sinΦ存在,它使主轴在北纬时东偏,南纬时西偏,因此ω2是使自由陀螺仪不能稳定指北的重要成因,可以利用陀螺仪的进动性解决。

置于北纬的自由陀螺仪其主轴端点具有向东偏的视运动速度v 2,若在其水平轴上施加一外力矩M Y,使陀螺仪绕在OZ 轴以ωPZ 的角速度进动,主轴端点具有向西进动的线速度v 2,若满足ωPZ =ω2,则主轴便始终停留在子午面内而稳定指北。

陀螺定义 基本特性及分类

第五章陀螺仪基本理论主要内容陀螺仪的定义、基本特性及分类陀螺仪的定义基本特性及分类陀螺力学基础陀螺仪基本特性的力学解释自由陀螺仪的视运动两自由度陀螺仪的运动方程、基本分析 单自由度陀螺仪的基本特性51陀螺仪的定义基本5.1 陀螺仪的定义、基本特性及分类本节主要内容陀螺仪的定义陀螺仪的分类陀螺仪的基本特性玩具陀螺地陀螺转碟抖空竹一陀螺仪的定义一、陀螺仪的定义凡是绕回转体的对称轴作高速旋转的刚体都称为陀螺。

主轴或极轴赤道轴、赤道平面赤道轴赤道平面陀螺仪是陀螺及悬挂装置的总称。

转陀螺仪由转子、内环、外环和基座组成。

悬挂装置称为万向支架。

万向支架陀螺仪具有保持给定方位并能反映载体角位移或角速度的能力称为陀螺效应。

凡是能够产生陀螺效应的装置都可称为陀螺仪。

陀螺仪陀螺仪坐标系——OX轴与转子轴重合,OY轴与内环轴重合,OX和OY轴的交点O为坐标原点,而OZ轴垂直轴重合为坐标原点而于XOY平面。

二、陀螺仪的分类1、根据主轴自由度数目分:(1)两自由度陀螺仪(2)单自由度陀螺仪(2)单自由度陀螺仪固定内、、外环中固定内任意一个2、根据陀螺仪重心与支架中心的位置分):无定位陀螺仪)平衡陀螺仪((1)平衡陀螺仪(无定位陀螺仪陀螺仪的重与支架中重合自由陀陀螺仪的重心与支架中心()螺仪)螺仪):(2)重力陀螺仪(定位陀螺仪定位陀螺仪)陀螺仪的重心偏离支架中心()沿主轴水平偏移(a)沿主轴水平偏移(b )沿赤道轴偏移(c)沿主轴垂直偏移3、根据陀螺仪的支承方式不同可分为:方式分为(1)框架陀螺仪用万向支架悬挂陀螺转子傅仪¾转子陀螺的起源18521852年年,法国科学家傅科首次提出法国科学家傅科首次提出““陀螺仪陀螺仪””概念概念,,并利用其定轴性设计了一种最早的陀螺概并用其螺仪,用于观察地球自转现象用于观察地球自转现象。

50年年未制造实用的陀螺仪此后此后5050年,未制造实用的陀螺仪年,未制造实用的陀螺仪制约因素:转子的高速旋转和支承方式¾转子陀螺的发展安休兹利用框架式1908安休兹利用1908异步电动机陀螺仪,研制陀螺罗盘,研制陀螺罗盘,滚珠轴承陀螺仪实用的开端机械轴承支承¾转子陀螺的发展机械轴承存在摩擦力矩,不可能使陀螺。

陀螺罗经


五、视运动基本知识
1.坐标系
参考坐标系:以陀螺仪支架点O为公共原点
(1)地理坐标系(航海学上常用的)ONWZ。
(2)陀螺坐标系(动坐标)OXYZ
(3)惯性坐标系Oξηζ(不常用) 上述三个座标系之间的运动关系是:
(1)陀螺座标系相对地理座标系之间的运动为相对运动 (2)地理座标系的运动代表地球自转运动及船舶运动在内的 牵连运动 (3)陀螺座标系相对于惯性空间的运动为绝对运动,实际上 是相对运动与牵连运动的矢量和。即书上所讨论的陀螺仪的运 动都是指相对于惯性空间的绝对运动!
重心下移后如何使主轴自动找北
图1-23
液体连通器罗经灵敏(指北)部分的结构
动量矩 指南(ox轴负向 ) 连通器内装水银或硅油
图1-24
液体连通器如何使主轴指北端自动找北
M Y 2R2Sg sin
下重式罗经与上重式罗经的比较
液体连通器产生的重力控制力矩与下重式陀螺 球产生的重力控制力矩指向刚好相反,而二 者的动量矩H指向正好相反,所以两者陀螺仪 主轴指北端(OX轴正向)进动的规律相同
M C
{ 物理意义 : u2= V2+ u3 V1=0
(4)罗经的稳定时间:罗经从起动到其指向精 度满足航海精度要求(土1°)所需的时间。 大约为2.5 TD=3h 45min
垂直轴阻尼法
定义:由阻尼设备产生的阻尼力矩作用于罗经的垂直轴OZ上以实 现阻尼的方法,称为垂直轴阻尼法。
图1-30
液体连通器式罗经的减幅摆动
不受任何外力矩作用的陀螺仪。
二、陀螺仪的两个特性
1.定轴性:不受任何外力矩作 用的自由陀螺仪的主轴将保持 其初始空间方位不变。(即惯 性空间)
2.进动性:在外力矩M的作用下, 3自由度陀螺仪主轴动量矩H矢 端将以捷径趋向外力矩M矢端 作进动。(H→M) ➢角速度ω ➢动量矩H=Jω ➢外力矩M=r*F ➢速度(u3)总是指向 子午面

陀螺罗经指北原理综述


(二)摆式罗经的减幅摆动
◆获得减幅摆动的方法:
1)长轴阻尼法(水平轴阻尼法)
--安许茨系列
u32M来自u31r(W)
(E)
特点:
3
4
随u3着总方是位指角向的子增午大面而;增大;u3
M’
u3
表现为在方位角衰减的同时高度角也相应衰减;
r 0 但 r略增。
陀螺罗经指北原理概述
2.短轴阻尼法(垂直轴阻尼法) --Sperry和Arma-Brown系列
陀螺罗经指北原理概述
下重式和液体连通器式产生控制力矩方法的异同点: 相同点: 1、都是依靠重力产生水平方向的控制力矩;
2主、轴按具进有动自特动性找,北主的轴性的能。H,My
不同点: 下重式:
液体连通器式:
M y 产生方式: 重心下移
液体连通器某端 容器多余液体
M y 指向: 总是指北
总是指南
H指向: X轴正方向
二、 陀螺仪及其特性
陀螺罗经指北原理概述
2.基本特性:
(1)定轴性:在不受任何外力矩作用时,自由陀螺仪的 主轴将保持它的空间的初始方向不变。(即惯性空间)
(2)进动性:在外力矩M的作用下,陀螺仪主轴的动
量矩H矢端以捷径趋向外力矩M矢端,作进动运动或
旋进运动。(H→M) z
例:1-1
M
p H
py M y
➢液体连通器罗经的等幅运动分析同下重式罗经
陀螺罗经指北原理概述
C.稳定位置 ( r ) :

00 时, 解方程 H(12
) 0
M

r r
0
H2
M
主轴在r点获得稳定的物理意义 :
(1)相对于水平面达到平衡: (2)相对于子午面达到平衡:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自由陀螺仪的
视运动
东南大学微惯性系统及器件研究所
东南大学微惯性系统及器件研究所
由于自由陀螺仪的主轴相对惯性空间保持
ω
方位不变,而地球以自转角速度相对方位不变而地球以自转角速度
e
惯性空间转动,因此在地球上的人们将观察到陀螺仪主轴相对地球的运动。

这种以地球为参考基准所看到的相对运动,称为陀螺仪的视运动。

东南大学微惯性系统及器件研究所
1. 与导航有关的地理知识
过地球表面上任意一点并
垂直于地垂线的平面叫做。

地平面
过地极轴作地球的纵切面,
该平面叫做子午面。

过地球表面上任意一点作
子午线的切线该切线叫
子午线的切线,该切线叫
做南北线。

东南大学微惯性系统及器件研究所
东南大学微惯性系统及器件研究所
地球的自转角速度为:
s
rad h e /102921158.7/0411.1515−×==o ω东南大学微惯性系统及器件研究所
东南大学微惯性系统及器件研究所
ωϕ
ωcos 1e ==ϕ
ωωsin 2e 东南大学微惯性系统及器件研究所
2 . 视运动
视运动一:
陀螺仪安装在
赤道上,主轴
垂直地极轴,
正端水平指东
陀螺仪主轴Ox正端逐渐离开水平面上升,经过六个小时后,主螺仪主轴端渐离水上过六个小时主轴Ox将与当地的地垂线相重合Ox轴正端指向天顶
东南大学微惯性系统及器件研究所
主轴正端开始下降而负端开始上升,又经过六个小时,主轴将主轴端始降负端始上过六个小时主轴将处在水平面内,且正端将指西方
东南大学微惯性系统及器件研究所
Ox轴的正端继续下降,负端继续上升。

再经过六个小时,Ox 轴的端继续降负端继续上过六个小时
轴将与当地的地垂线重合,Ox轴正端将指向地心
东南大学微惯性系统及器件研究所
Ox轴的正端又开始上升,负端开始下降。

再经过六个小时,轴的端始上负端始降过六个小时Ox轴回到起始位置,即主轴水平指东
东南大学微惯性系统及器件研究所
东南大学微惯性系统及器件研究所
视运动二:
陀螺仪安装在赤
道上,主轴正端
水平指北或指南
(平行地极轴)
东南大学微惯性系统及器件研究所
视运动三:
陀螺仪安装南
陀螺仪安装南极
或北极,主轴处
在水平面
东南大学微惯性系统及器件研究所
视运动四:
陀螺仪安装在
陀螺仪安装在任
意纬度,主轴正
端水平指北
东南大学微惯性系统及器件研究所。

相关文档
最新文档