Data Mining Concepts and Techniques second edition 数据挖掘概念与技术 第二版 韩家炜 第九章1.PPT

合集下载

数据挖掘课件汇总

数据挖掘课件汇总

发现知识的使用
有些人将数据挖掘视为数据库中知识发现的一 个基本步骤,如图
Data
mining: 知识 发现过程的核心过 程.
Task-relevant Data Data Warehouse
Pattern Evaluation
Data Mining
Selection
Data Cleaning Data Integration Databases

天文学

类星体

Web应用
通过分析web访问日志,发现客户的偏好和行为模式,
分析网上市场的效果,改进网站的组织。
Data Mining: Concepts and Techniques
一些具体例子
Data Mining: Concepts and Techniques
一些具体例子
例1:医生给一个病人看病(模式识别的完 整过程)。 测量病人的体温和血压,化验血沉,询问 临床表现; 通过综合分析,抓住主要病症; 医生运用自己的知识,根据主要病症,作 出正确的诊断。
Data Mining: Concepts and Techniques
典型数据挖掘系统的结构
Graphical user interface
Pattern evaluation Data mining engine
Database or data warehouse server
Data cleaning & data integration

发现有用特征, 维和变量约简.转化成适合挖掘的形式 摘要, 分类, regression(回归), 关联, 聚类.
数据挖掘功能选择

数据预处理 数据与统计

数据预处理  数据与统计
Data transformation and data discretization Normalization Concept hierarchy generation
4
Chapter 3: Data Preprocessing
Data Preprocessing: An Overview Data Quality Major Tasks in Data Preprocessing
e.g., Occupation=“ ” (missing data)
noisy: containing noise, errors, or outliers
e.g., Salary=“−10” (an error)
inconsistent: containing discrepancies in codes or names, e.g.,
Data migration and integration Data migration tools: allow transformations to be specified ETL (Extraction/Transformation/Loading) tools: allow users to specify transformations through a graphical user interface
9
How to Handle Noisy Data?
Binning first sort data and partition into (equal-frequency) bins then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.

数据采集和营销工具(英文版)

数据采集和营销工具(英文版)

Motivations for DM
Abundance of business and industry data
Competitive focus - Ke, powerful computing engines
Strong theoretical/mathematical foundations
1. Decision Trees and Fraud Detection
2. Association Rules and Market Basket Analysis 3. Clustering and Customer Segmentation
3. Trends in technology
1. Knowledge Discovery Support Environment 2. Tools, Languages and Systems
Provide a systematization to the many many concepts around this area, according the following lines
the process the methods applied to paradigmatic cases the support environment the research challenges
1970s:
Relational data model, relational DBMS implementation.
1980s:
RDBMS, advanced data models (extended-relational, OO, deductive, etc.) and application-oriented DBMS (spatial, scientific, engineering, etc.).

数据挖掘概念与技术_课后题答案

数据挖掘概念与技术_课后题答案

数据挖掘概念与技术_课后题答案数据挖掘⼀⼀概念概念与技术Data MiningConcepts andTechniques习题答案第1章引⾔1.1什么是数据挖掘?在你的回答中,针对以下问题:1.2 1.6定义下列数据挖掘功能:特征化、区分、关联和相关分析、预测聚类和演变分析。

使⽤你熟悉的现实⽣活的数据库,给岀每种数据挖掘功能的例⼦。

解答:特征化是⼀个⽬标类数据的⼀般特性或特性的汇总。

例如,学⽣的特征可被提岀,形成所有⼤学的计算机科学专业⼀年级学⽣的轮廓,这些特征包括作为⼀种⾼的年级平均成绩(GPA: Grade point aversge)的信息,还有所修的课程的最⼤数量。

区分是将⽬标类数据对象的⼀般特性与⼀个或多个对⽐类对象的⼀般特性进⾏⽐较。

例如,具有⾼GPA的学⽣的⼀般特性可被⽤来与具有低GPA的⼀般特性⽐较。

最终的描述可能是学⽣的⼀个⼀般可⽐较的轮廓,就像具有⾼GPA的学⽣的75%是四年级计算机科学专业的学⽣,⽽具有低GPA的学⽣的65%不是。

关联是指发现关联规则,这些规则表⽰⼀起频繁发⽣在给定数据集的特征值的条件。

例如,⼀个数据挖掘系统可能发现的关联规则为:major(X, Computi ng scie nee” S own s(X, personalcomputer ” [support=12%, confid en ce=98%]其中,X是⼀个表⽰学⽣的变量。

这个规则指出正在学习的学⽣,12% (⽀持度)主修计算机科学并且拥有⼀台个⼈计算机。

这个组⼀个学⽣拥有⼀台个⼈电脑的概率是98% (置信度,或确定度)。

分类与预测不同,因为前者的作⽤是构造⼀系列能描述和区分数据类型或概念的模型(或功能),⽽后者是建⽴⼀个模型去预测缺失的或⽆效的、并且通常是数字的数据值。

它们的相似性是他们都是预测的⼯具:分类被⽤作预测⽬标数据的类的标签,⽽预测典型的应⽤是预测缺失的数字型数据的值。

聚类分析的数据对象不考虑已知的类标号。

数据挖掘概念与技术原书第3版课后练习题含答案

数据挖掘概念与技术原书第3版课后练习题含答案

数据挖掘概念与技术原书第3版课后练习题含答案前言《数据挖掘概念与技术》(Data Mining: Concepts and Techniques)是一本经典的数据挖掘教材,已经推出了第3版。

本文将为大家整理并提供第3版课后习题的答案,希望对大家学习数据挖掘有所帮助。

答案第1章绪论习题1.1数据挖掘的基本步骤包括:1.数据预处理2.数据挖掘3.模型评价4.应用结果习题1.2数据挖掘的主要任务包括:1.描述性任务2.预测性任务3.关联性任务4.分类和聚类任务第2章数据预处理习题2.3数据清理包括以下几个步骤:1.缺失值处理2.异常值检测处理3.数据清洗习题2.4处理缺失值的方法包括:1.删除缺失值2.插补法3.不处理缺失值第3章数据挖掘习题3.1数据挖掘的主要算法包括:1.决策树2.神经网络3.支持向量机4.关联规则5.聚类分析习题3.6K-Means算法的主要步骤包括:1.首先随机选择k个点作为质心2.将所有点分配到最近的质心中3.重新计算每个簇的质心4.重复2-3步,直到达到停止条件第4章模型评价与改进习题4.1模型评价的方法包括:1.混淆矩阵2.精确率、召回率3.F1值4.ROC曲线习题4.4过拟合是指模型过于复杂,学习到了训练集的噪声和随机变化,导致泛化能力不足。

对于过拟合的处理方法包括:1.增加样本数2.缩小模型规模3.正则化4.交叉验证结语以上是《数据挖掘概念与技术》第3版课后习题的答案,希望能够给大家的学习带来帮助。

如果大家还有其他问题,可以在评论区留言,或者在相关论坛等平台提出。

Data Mining:Concepts and Techniques

Data Mining:Concepts and Techniques
4
Types of Outliers (I)


Three kinds: global, contextual and collective outliers Global Outlier Global outlier (or point anomaly) Object is Og if it significantly deviates from the rest of the data set Ex. Intrusion detection in computer networks Issue: Find an appropriate measurement of deviation Contextual outlier (or conditional outlier) Object is Oc if it deviates significantly based on a selected context o Ex. 80 F in Urbana: outlier? (depending on summer or winter?) Attributes of data objects should be divided into two groups Contextual attributes: defines the context, e.g., time & location Behavioral attributes: characteristics of the object, used in outlier evaluation, e.g., temperature Can be viewed as a generalization of local outliers—whose density significantly deviates from its local area Issue: How to define or formulate meaningful context?

第二十一章 形式化建模与验证

第二十一章  形式化建模与验证

1
21.1 净室策略
净室方法使用第2章所介绍的增量过程模型的专 业版。一个“软件增量的流水线”[Lin94b]由若干小 的、独立的软件团队开发。每当一个软件增量通过认 证,它就被集成到整体系统中。因此,系统的功能随 时间增加。
增量1 RG
BSS
FD
CV
TP
CG
CI
SUT
C
增量2 SE RG BSS FD CV TP BSS FD CV TP 净室过程模型
清晰盒包含了对状态盒的过程设计。
2014年12月11日星期四
Data Mining: Concepts and Techniques
6
CB1.1.1.1 BB1.1.1 SB1.1.1 CB1.1.1.2
BB1.1 BB1
BB1.2
BB1.1.2 BB1.1.3
CB1.1.1.3
BB1.n
盒结构求精
2014年12月11日星期四 Data Mining: Concepts and Techniques 14
Cont:[y2≤x]
y=y+1
21.4 净室测试

传统的测试方法导出一组测试用例,以发现设计和编码
错误;净室测试的目的是通过证明用例的统计样本的成 功运行来确认软件需求。
2014年12月11日星期四
得多,这种严格需要更多的工作量,单从一致性和完整性 的提高方面得到的好处在很多类型的应用中得到证明。
2014年12月11日星期四
Data Mining: Concepts and Techniques
24
21.7

形式化规格说明语言
形式化规格说明语言通常由3个主要成分构成:

432统计学参考书

432统计学参考书

432统计学参考书在学习统计学的过程中,参考书是必不可少的工具。

以下是432本值得参考的统计学参考书,涵盖了各种不同的主题和难度级别。

这些书籍从初学者到专业人士都能受益,并提供了深入的统计学知识。

1.《统计学》(Statistics),作者:David Freedman这本书是统计学的经典教材之一,适合初学者和中级学生。

2.《基础统计学》(Introductory Statistics),作者:Neil Weiss这本书是许多大学和高中教育机构的标准教材,适合初学者和中级学生。

3.《应用回归分析》(Applied Regression Analysis),作者:Norman Draper和Harry Smith这本书提供了深入的回归分析教程,适合那些已经对基本统计学知识有所了解的学生。

4.《多元统计分析》(Multivariate Statistical Analysis),作者:Joe F. Hair, Jr.等这本书为多元统计分析提供了全面的介绍,对于研究人员和专业人士非常有用。

5.《实验设计与数据分析》(Experimental Design and Data Analysis),作者:Gertrude Mary Cox和M. G. Cox这本书是统计学和实验设计的基本参考书之一,适合研究人员和专业人士。

6.《时间序列分析》(Time Series Analysis),作者:George E.P. Box和Gwilym M. Jenkins这本书是时间序列分析的参考书之一,适合研究人员和专业人士。

7.《应用多元统计分析》(Applied Multivariate Statistical Analysis),作者:W. J. Krzanowski这本书为应用多元统计分析提供了深入的介绍,适合研究人员和专业人士。

8.《统计基础》(Foundations of Statistical Inference),作者:Priscilla E. Greenwood和Murray Aitkin这本书提供了深入的统计学基础知识,适合那些对基础知识有一定了解的学生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

G2 … Gn
14
Apriori-Based, Breadth-First Search

Methodology: breadth-search, joining two graphs

AGM (Inokuchi, et al. PKDD‘00) generates new graphs with one more node

A (sub)graph is frequent if its support (occurrence frequency) in a given dataset is no less than a minimum support threshold

Applications of graph pattern mining

Classification and Clustering

Summary
Mining and Searching Graphs in Graph Databases
July 8, 2013
3
Why Graph Mining?

Graphs are ubiquitous

Chemical compounds (Cheminformatics) Protein structures, biological pathways/networks (Bioinformactics) Program control flow, traffic flow, and workflow analysis XML databases, Web, and social network analysis
July 8, 2013
10
WARMR (Dehaspe et al. KDD’98)

Graphs are represented by Datalog facts

atomel(C, A1, c), bond (C, A1, A2, BT),
atomel(C, A2, c) : a carbon atom bound to a carbon atom with bond type BT
compression, comparison, and correlation analysis
July 8, 2013 Mining and Searching Graphs in Graph Databases
6
Example: Frequent Subgraphs
GRAPH DATASET

Complexity of algorithms: many problems are of high complexity
Mining and Searching Graphs in Graph Databases
July 8, 2013
4
Graph, Graph, Everywhere
from H. Jeong et al Nature 411, 41 (2001)
2
Graph Mining

Methods for Mining Frequent Subgraphs
Mining Variant and Constrained Substructure Patterns
Applications:


Graph Indexing Similarity Search


Best substructure S in graph G minimizes: DL(S) + DL(G\S)

Terminate until no new substructure is discovered
Mining and Searching Graphs in Graph Databases
11
Frequent Subgraph Mining Approaches


Apriori-based approach AGM/AcGM: Inokuchi, et al. (PKDD‘00) FSG: Kuramochi and Karypis (ICDM‘01) # PATH : Vanetik and Gudes (ICDM‘02, ICDM‘04) FFSM: Huan, et al. (ICDM‘03) Pattern growth approach MoFa, Borgelt and Berthold (ICDM‘02) gSpan: Yan and Han (ICDM‘02) Gaston: Nijssen and Kok (KDD‘04)
Mining and Searching Graphs in Graph Databases
July 8, 2013
13
Apriori-Based Approach
k-edge (k+1)-edge
G1 G G’ G’’ JOIN
July 8, 2013 Mining and Searching Graphs in Graph Databases
Graph theory-based approaches

Apriori-based approach Pattern-growth approach
July 8, 2013
Mining and Searching Graphs in Graph Databases
9
SUBDUE (Holder et al. KDD’94)

Graph is a general model

Trees, lattices, sequences, and items are degenerated graphs

Diversity of graphs

Directed vs. undirected, labeled vs. unlabeled (edges & vertices), weighted, with angles & geometry (topological vs. 2-D/3-D)

FSG (Kuramochi and Karypis ICDM‘01) generates new graphs with one more edge
Mining and Searching Graphs in Graph Databases
July 8, 2013
15
PATH (Vanetik and Gudes ICDM’02, ’04)
Data Mining:
Concepts and Techniques
— Chapter 9 —
9.1. Graph mining
Jiawei Han and Micheline Kamber
Department of Computer Science
University of Illinois at Urbana-Champaign /~hanj
(A)
FREQUENT PATTERNS (MIN SUPPORT IS 2)
(B)
(C)
(1)
(2)
July 8, 2013
Mining and Searching Graphs in Graph Databases
7
EXAMPLE (II)
GRAPH DATASET
FREQUENT PATTERNS (MIN SUPPORT IS 2)
©2006 Jiawei Han and Micheline Kamber. All rights reserved.
July 8, 2013 Mining and Searching Graphs in Graph Databases
1
July 8, 2013
Mining and Searching Graphs in Graph Databases

Apriori-based approach Building blocks: edge-disjoint path • construct frequent paths • construct frequent graphs with 2 edge-disjoint paths • construct graphs with k+1 edge-disjoint paths from graphs with k edge-disjoint paths • repeat
July 8, 2013
Mining and Searching Graphs in Graph Databases
8
Graph Mining Algorithms

Incomplete beam search – Greedy (Subdue)
Inductive logic programming (WARMR)
A graph with 3 edge-disjoint paths
July 8, 2013
Mining and Searching Graphs in Graph Databases
16
FFSM (Huan, et al. ICDM’03)



Represent graphs using canonical adjacency matrix (CAM) Join two CAMs or extend a CAM to generate a new graph Store the embeddings of CAMs All of the embeddings of a pattern in the database Can derive the embeddings of newly generated CAMs
相关文档
最新文档