常用算法及数据结构

合集下载

c语言数据结构与算法pdf

c语言数据结构与算法pdf

c语言数据结构与算法C语言是计算机编程的一种语言,广泛用于数据结构与算法的实现和分析。

数据结构是组织和存储数据的方式,而算法是一系列解决问题的步骤。

在C语言中,常见的数据结构包括数组、链表、栈、队列、树、图等,算法则包括排序、搜索、动态规划、贪心算法等。

以下是C语言中一些基本数据结构和算法的简要介绍:1. 数组:数组是连续存储的一组元素,可以通过索引来访问。

数组的大小在编译时确定,因此动态扩展能力有限。

2. 链表:链表是由一系列节点组成的数据结构,每个节点包含数据部分和指向下一个节点的指针。

链表的大小在运行时可以动态变化。

3. 栈:栈是一种后进先出(LIFO)的数据结构,主要操作包括压栈(push)和出栈(pop)。

栈通常用于解决递归、括号匹配等问题。

4. 队列:队列是一种先进先出(FIFO)的数据结构,主要操作包括入队(enqueue)和出队(dequeue)。

队列常用于任务调度、缓冲处理等问题。

5. 树:树是由节点组成的数据结构,每个节点包含数据部分和指向子节点的指针。

树的结构可以是二叉树、平衡树(如AVL树)、红黑树等。

树常用于表示层次关系、索引等。

6. 图:图是由节点和边组成的数据结构。

节点表示实体,边表示节点之间的关系。

图的表示方法有邻接矩阵和邻接表等。

图的应用包括最短路径、拓扑排序等。

在C语言中实现数据结构和算法,可以提高编程能力,更好地理解和解决复杂问题。

常见的算法包括冒泡排序、选择排序、插入排序、快速排序等排序算法,以及二分搜索、深度优先搜索、广度优先搜索等搜索算法。

此外,动态规划、贪心算法等高级算法也在C语言中得到广泛应用。

学习和掌握C语言的数据结构和算法,有助于提高编程水平,为解决实际问题奠定基础。

C#常用数据结构与算法

C#常用数据结构与算法

C常用数据结构与算法1.数据结构1.1 数组- 定义- 常用操作:访问元素、添加元素、删除元素、查找元素 - 应用场景1.2 链表- 定义- 常用操作:插入节点、删除节点、查找节点- 单链表、双链表、循环链表的区别- 应用场景1.3 栈- 定义- 常用操作:入栈、出栈、查看栈顶元素、判断栈是否为空 - 可使用数组或链表实现- 应用场景1.4 队列- 定义- 常用操作:入队、出队、查看队首元素、查看队尾元素、判断队列是否为空- 可使用数组或链表实现- 应用场景1.5 哈希表- 定义- 常用操作:插入键值对、删除键值对、根据键查找值、计算哈希值- 冲突解决方法:开放寻址法、链地质法- 应用场景2.常用算法2.1 排序算法- 冒泡排序- 插入排序- 选择排序- 快速排序- 归并排序- 堆排序2.2 查找算法- 线性查找- 二分查找- 插值查找- 哈希查找- 树查找(二叉搜索树、平衡二叉树、红黑树)2.3 图算法- 广度优先搜索- 深度优先搜索- 最短路径算法(Dijkstra算法、Floyd-Warshall算法) - 最小树算法(Prim算法、Kruskal算法)2.4 动态规划- 背包问题- 最长公共子序列- 最大子数组和3.附件:无4.法律名词及注释:- C: C是一种通用的、面向对象的编程语言,由微软公司开发。

- 数据结构:数据结构是计算机中组织和存储数据的方式。

- 算法:算法是解决问题的一系列步骤或过程。

- 数组:数组是一种线性数据结构,由一系列元素组成,每个元素都有唯一的索引值。

- 链表:链表是一种线性数据结构,由一系列节点组成,每个节点都包含数据和指向下一个节点的指针。

- 栈:栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作。

- 队列:队列是一种先进先出(FIFO)的数据结构,只能在队首和队尾进行操作。

- 哈希表:哈希表是一种使用哈希函数将键映射到值的数据结构。

- 排序算法:排序算法是将一组数据按照特定顺序排列的算法。

常见的数据结构与算法

常见的数据结构与算法

常见的数据结构与算法数据结构是计算机存储、组织和管理数据的方式。

算法是解决问题的一种方法论,包括一系列解决问题的步骤和规则。

在计算机科学中,常见的数据结构和算法可以分为以下几种类型。

1. 数组数组是一种最简单的数据结构,可以通过下标来访问和操作其元素。

数组是由相同类型的元素组成的有序集合,它的大小在创建后不可更改。

数组的插入和删除操作比较耗时,因此更适合用于查找和遍历操作。

2. 链表链表是一种线性数据结构,它由一系列节点组成,每个节点包含数据和指向下一个节点的指针。

链表可以分为单向链表、双向链表和循环链表。

链表的灵活性很高,可以快速地进行插入和删除操作,但查找操作需要遍历整个链表。

3. 栈栈是一种先进后出(LIFO)的数据结构,它可以存储任意类型的数据。

栈主要用于临时存储值,例如函数调用、表达式求值等。

5. 堆堆是一种特殊的树形数据结构,它满足一定的堆序性质。

大根堆中,每个节点的值都大于或等于其子节点的值;小根堆中,每个节点的值都小于或等于其子节点的值。

堆常用于优先队列、排序算法等场景。

6. 树树是一种分层数据结构,它由一组节点和一组连接这些节点的边组成。

树的根节点没有父节点,每个其他节点都有唯一的一个父节点。

常见的树包括二叉树、平衡二叉树、红黑树等。

7. 图图是一种复杂的非线性数据结构,它由一组顶点和一组连接这些顶点的边组成。

图可以表示大量的实际问题,例如社交网络、路网规划等。

8. 排序算法排序算法是指使一组数据按照特定顺序排列的算法。

常见的排序算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序等。

9. 搜索算法搜索算法是指在一组数据中查找特定元素的算法。

常见的搜索算法包括线性搜索、二分搜索、插值搜索、哈希查找等。

10. 动态规划动态规划是一种用于优化问题的算法,在很多优化问题中都有着广泛的应用,例如最短路径、最长公共子序列等。

动态规划基本就是一个记忆化的递归,把重复计算的子问题存储起来,避免不必要的重复计算。

java常用算法和数据结构

java常用算法和数据结构

java常用算法和数据结构Java是一种面向对象的编程语言,它具有丰富的算法库和数据结构库,为开发人员提供了许多常用的算法和数据结构。

下面将介绍一些Java常用的算法和数据结构。

1.排序算法-冒泡排序(Bubble Sort):比较相邻的两个元素,如果顺序错误则交换位置,重复该过程直到整个序列有序。

-插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分合适的位置。

-选择排序(Selection Sort):每次从未排序部分选择最小(或最大)的元素,放到已排序部分的末尾。

-快速排序(Quick Sort):选择一个基准元素,将数组分为两部分,小于基准的放左边,大于基准的放右边,递归地对左右两部分进行快速排序。

-归并排序(Merge Sort):将数组分为两部分,分别对每个子数组进行排序,然后合并两个有序子数组。

2.搜索算法-二分查找(Binary Search):对有序数组进行查找,每次将查找范围缩小一半。

-广度优先搜索(BFS):以树或图的形式搜索,从根节点开始,逐层扩展搜索范围,直到找到目标节点。

-深度优先搜索(DFS):以树或图的形式搜索,从根节点开始,逐个访问节点的所有邻居节点,直到找到目标节点或搜索完所有节点。

3.数据结构-数组(Array):一组按顺序存储的相同类型元素的集合,通过索引访问元素,可以快速访问元素,但插入和删除元素较慢。

-链表(Linked List):一组通过指针连接的节点存储的元素的集合,支持灵活的插入和删除操作,但访问元素较慢。

-栈(Stack):一种特殊的线性数据结构,遵循先进后出(LIFO)原则,只能在栈顶进行插入和删除操作。

-队列(Queue):一种特殊的线性数据结构,遵循先进先出(FIFO)原则,在队尾插入元素,队头删除元素。

-堆(Heap):一种特殊的树形数据结构,可以快速找到最小(或最大)元素,常用于实现优先队列。

常用的数据结构以及算法

常用的数据结构以及算法

常用的数据结构以及算法一、关于数据的几个概念1、数据。

是对客观事物的符号表示。

在计算机科学是指所有能够输入到计算机中并能被计算机程序处理的符号集合。

包括数值、文字、图像、图像、音频、视频等形式。

2、数据项。

所谓数据项就是数据中具有独立含义的、不可再分割的最小数据单位。

是客观实体一种特征的数据表示。

3、数据元素。

是多个相关数据项的集,是一个客观实体多种特征的数据描述,是计算机程序中加工处理的基本单位。

数据元素按其组成可分为简单型数据元素和复杂型数据元素。

简单型数据元素由一个数据项组成,复杂型数据元素由多个数据项组成,它通常携带着一个概念的多方面信息。

二、数据结构的几个概念。

1、数据结构,就是相互之间存在一种或多种特定关系的数据元素的集合。

可以简单表示为:数据结构 = 数据 + 关系同一数据元素集合,所定一的关系不同,构成不同的数据结构。

数据结构包括逻辑结构和存储结构两个方面。

2、数据的逻辑结构。

是指对数据及其关系的抽象逻辑描述,对立与计算机,与机器实现无关。

根据定义的关系不同,数据的逻辑结构分为四种:集合结构。

数据元素之间未定义任何关的松散集合。

线性结构。

数据元素之间定义了次序关系的集合(全序集合),描述的是1对1关系。

树形结构。

数据元素之间定义了层次关系的集合(偏序集合),描述的是1对多关系。

图状结构。

数据元素之间定义了网状关系的集合,描述的是多对多关系。

3、数据的存储结构(亦成物理结构)是指数据结构在计算机存储器中的具体实现。

存储结构与孤立的数据元素表示形式不同,数据结构中的数据元素不但要表示其本身的实际内容,还要表示清楚数据元素之间的逻辑结构。

常见的存储结构有:顺序存储结构:特点是借助于数据元素的相对存储位置来表示数据元素之间的逻辑结构;链式存储结构:特点是借助于指示数据元素地址的指针表示数据元素之间的逻辑结构。

散列存储结构:顺序+算列。

索引存储结构:顺序+索引。

数据元素相互之间的关系称为结构。

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法

现代计算机常用数据结构和算法现代计算机科学中常用的数据结构和算法非常多,下面是一些核心且广泛应用于软件开发、数据库系统、操作系统、编译器设计、网络编程、机器学习以及其他计算密集型任务中的数据结构与算法:常用数据结构:1. 数组:线性存储结构,通过索引访问元素,支持随机访问。

2. 链表:包括单向链表、双向链表和循环链表,通过指针链接元素,插入删除操作灵活但不支持随机访问。

3. 栈(Stack):后进先出(LIFO)的数据结构,常用于函数调用栈、表达式求值等。

4. 队列(Queue):先进先出(FIFO)的数据结构,适用于处理任务排队、广度优先搜索等问题。

5. 哈希表(Hash Table):基于散列函数实现快速查找,用于实现关联数组、缓存、唯一性检查等功能。

6. 树:如二叉树(包括二叉查找树、AVL树、红黑树)、B树、B+树、Trie树等,用于搜索、排序、文件系统索引等。

7. 图(Graphs):表示节点集合以及节点之间的关系,常见于社交网络分析、路径规划等领域。

8. 堆(Heap):一种特殊的树形数据结构,分为最大堆和最小堆,用于优先队列、堆排序等。

9. 集合与映射(Set & Map):无序不重复元素的集合和键值对结构,提供高效查找、插入和删除操作。

常用算法:1. 排序算法:快速排序、归并排序、冒泡排序、选择排序、插入排序、堆排序等。

2. 搜索算法:线性搜索、二分查找、插值搜索、哈希查找、深度优先搜索(DFS)、广度优先搜索(BFS)等。

3. 图算法:最短路径算法(Dijkstra、Bellman-Ford、Floyd-Warshall),拓扑排序,最小生成树算法(Prim、Kruskal)等。

4. 动态规划:解决具有重叠子问题和最优子结构的问题,如背包问题、最长公共子序列(LCS)等。

5. 贪心算法:在每一步都采取当前看来最优的选择,如霍夫曼编码、活动选择问题等。

6. 回溯算法和分支限界法:用于解决组合优化问题,如八皇后问题、旅行商问题等。

数据结构的常用算法

数据结构的常用算法

数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。

常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。

通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。

2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。

3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。

4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。

5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。

二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。

常见的查找算法有线性查找、二分查找、哈希查找等。

1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。

2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。

通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。

3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。

三、图算法图算法是解决图结构中相关问题的算法。

数据流算法与数据结构

数据流算法与数据结构

数据流算法与数据结构数据流算法和数据结构是计算机科学中重要的概念,它们在处理大规模数据时发挥着关键作用。

数据流算法是一种处理数据流的算法,它能够在数据不断产生的情况下进行实时处理和分析。

而数据结构则是组织和存储数据的方式,能够高效地进行数据操作和检索。

本文将介绍数据流算法和数据结构的基本概念、应用场景以及它们在实际项目中的重要性。

一、数据流算法数据流算法是一种处理数据流的算法,它能够在数据不断产生的情况下进行实时处理和分析。

数据流算法通常用于处理实时数据流,如网络数据包、传感器数据、日志数据等。

数据流算法的特点是需要在数据到达时立即进行处理,而不能等待所有数据都到达后再进行处理。

常见的数据流算法包括滑动窗口、Bloom Filter、Count-Min Sketch等。

滑动窗口是一种常用的数据流处理技术,它通过设置一个固定大小的窗口来处理数据流,保持窗口内数据的实时更新。

Bloom Filter是一种用于快速检索一个元素是否在集合中的数据结构,它能够高效地处理大规模数据流。

Count-Min Sketch是一种用于估计数据流中元素频率的算法,能够在有限的内存空间下进行高效的频率估计。

数据流算法在实际项目中有着广泛的应用,如网络流量监控、实时日志分析、实时推荐系统等。

通过数据流算法,我们能够实时地处理大规模数据流,从而及时发现数据中的规律和异常,为业务决策提供支持。

二、数据结构数据结构是组织和存储数据的方式,能够高效地进行数据操作和检索。

常见的数据结构包括数组、链表、栈、队列、树、图等。

不同的数据结构适用于不同的场景,能够提供高效的数据操作和检索功能。

数组是一种线性数据结构,能够高效地进行随机访问和元素插入。

链表是一种动态数据结构,能够高效地进行元素插入和删除。

栈和队列是两种常用的数据结构,分别实现了后进先出和先进先出的数据操作方式。

树是一种非线性数据结构,能够高效地进行数据的组织和检索。

图是一种复杂的数据结构,能够表示各种实体之间的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/*内循环控制每一趟两两比较的次数*/
{
if (a[j] > a[j + 1])
{
temp = a[j];
/*交换两个记录*/
a[j] = a[j + 1];
a[j + 1] = temp;
}}}

❖栈是一种数据结构,它是一种操作受 限的数组,因为它只允许用户从数组 的一头进行操作,其操作原则是先进 后出,或者说是后进先出。
栈顶
C
Pop()
B
A
栈底
用一维数组模拟栈操作
❖用一维数组模拟栈的操作,完成将用 户输入的数组按相反的顺序显示出来。
string Test; int MaxLength = 50; char[] str = new char[MaxLength]; int i; int CurrentPos = 0; Console.WriteLine("输入要测试的字符串:"); Test = Console.ReadLine(); for (i = 0; i < Test.Length; i++) {
直接选择排序
❖基本思想
直接选择排序的基本思想是:第一趟从所有的n个 记录中选取最小的记录放在第一位,第二趟从n-1 个记录中选取最小的记录放到第二位。以此类推, 经过n-1趟排序后,整个序列就成为有序序列。

初始记录的关键字: 7 4 -2 19 13 6 第一趟排序:-2 4 7 19 13 6 第二趟排序: -2 4 7 19 13 6 第三趟排序: -2 4 6 19 13 7 第四趟排序: -2 4 6 7 13 19 第五趟排序: -2 4 6 7 13 19 第六趟排序: -2 4 6 7 13 19
if (CurrentPos >= MaxLength) break;
图 冒泡排序过程
算法实现
int i,j,temp;
int[] a = new int[] { 7, 4, -2, 19, 13, 6 };
for (i = 0; i <a.Length-1; i++)
/*外循环控制排序的趟数*/
{
for (j = 0; j < a.Length - i-1; j++)
图 直接选择排序的过程
算法实现
int i, j, k,temp; int[] a = new int[] {7, 4, -2, 19, 13, 6 };
for (i = 0; i < a.Length - 1; i++) { k = i; for (j = i + 1; j < a.Length; j++) if (a[j] < a[k]) k = j; if (i != k) { temp = a[k]; a[k] = a[i]; a[i] = temp ; } }
冒泡排序
❖基本思想
冒泡排序(Bubble Sort)是一种简单的交换排序 方法。它的基本思想是对所有相邻记录进行比较, 如果是逆序,则将其交换,最终达到有序。

初始关键字序列: 23 38 22 45 23 67 31 15 41 第一趟排序后: 23 22 38 23 45 31 15 41 67 第二趟排序后: 22 23 23 38 31 15 41 45 67 第三趟排序后: 22 23 23 31 15 38 41 45 67 第四趟排序后: 22 23 23 15 31 38 41 45 67 第五趟排序后: 22 23 15 23 31 38 41 45 67 第六趟排序后: 22 15 23 23 31 38 41 45 67 第七趟排序后: 15 22 23 23 31 38 41 45 67
❖栈这种数据结构的操作主要有两个, 一个操作叫入栈(push)操作,它的 作用是把当前数据保存到栈顶,另一 个操作是出栈(pop)操作,它的作用 是取出栈顶的数据。

❖进栈或入栈 (Push)
Push(B) Push(A)
Push(C)
C
B
栈顶
A
栈底

❖弹出或出栈 (Pop)
Pop()
Pop()
常用算法及 Βιβλιοθήκη 据结构主要内容❖查找 ❖排序 ❖栈
查找
❖查找是指在数据元素集合中查找满足某种 条件的数据元素的过程。例如在学生成绩 表中查找某一学生的成绩;在字典中查找 某个字等等。
❖查找是计算机应用中最常用的操作之一, 也是许多程序中最耗时间的一部分。因而, 查找方法的优劣对系统的运行效率影响极 大。
if (x[i] == k) { p = i; break; } if (p != -1)
Console.WriteLine ("{0} in position {1}", k, p); else Console .WriteLine ("{0} no found!", k);
排序
❖排序是将一组任意序列的数据元素 (记录),按由大到小的顺序(降序) 排列或按由小到大的顺序(升序)排 列。这些数据元素(记录)可以是数 值型,也可以为字符型。若为数值型, 则按数值大小排列;若为字符型,则 按其ASCII码的顺序排列。
顺序查找
❖基本思想
▪ 从查找表的一端开始,逐个将记录的关 键字值和给定值进行比较,如果某个记 录的关键字值和给定值相等,则称查找 成功;否则,说明查找表中不存在关键 字值为给定值的记录,则称查找失败。
顺序查找
❖例:利用随机函数产生10个100以内 的整数存放在数组x中,然后读入一个 待查找的数k。若k存在,显示它在数 组中的位置(下标);否则显示没有 找到。
算法实现
int[] x = new int[10]; int k,p=-1,i; Random ran = new Random(); for (i = 0; i <x.Length ; i++) {
x[i] = (int)(ran.Next())% 100; Console .Write("{0},", x[i]); } Console.WriteLine(); Console .WriteLine ("please enter a number for search:"); k=int.Parse (Console .ReadLine ()); for (i = 0; i <x.Length ; i++)
相关文档
最新文档