量子力学基础入门ppt课件
合集下载
《量子力学》课件

贝尔不等式实验
总结词
验证量子纠缠的非局域性
详细描述
贝尔不等式实验是用来验证量子纠缠特性的重要实验。通过测量纠缠光子的偏 振状态,实验结果违背了贝尔不等式,证明了量子纠缠的非局域性,即两个纠 缠的粒子之间存在着超光速的相互作用。
原子干涉仪实验
总结词
验证原子波函数的存在
详细描述
原子干涉仪实验通过让原子通过双缝,观察到干涉现象,证明了原子的波函数存在。这个实验进一步 证实了量子力学的预言,也加深了我们对微观世界的理解。
量子力学的意义与价值
推动物理学的发展
量子力学是现代物理学的基础之一,对物理学的发展产生了深远 的影响。
促进科技的创新
量子力学的发展催生了一系列高科技产品,如电子显微镜、晶体 管、激光器等。
拓展人类的认知边界
量子力学揭示了微观世界的奥秘,拓展了人类的认知边界。
量子力学对人类世界观的影响
01 颠覆了经典物理学的观念
量子力学在固体物理中的应用
量子力学解释了固体材料的电子 结构和热学性质,为半导体技术 和超导理论的发现和应用提供了
基础。
量子力学揭示了固体材料的磁性 和光学性质,为磁存储器和光电 子器件的发展提供了理论支持。
量子力学还解释了固体材料的相 变和晶体结构,为材料科学和晶
体学的发展提供了理论基础。
量子力学在光学中的应用
复数与复变函数基础
01
复数
复数是实数的扩展,包含实部和虚部,是量子力 学中描述波函数的必备工具。
02
复变函数
复变函数是定义在复数域上的函数,其性质与实 数域上的函数类似,但更为丰富。
泛函分析基础
函数空间
泛函分析是研究函数空间的数学分支,函数空间中的元素称为函数或算子。
大学物理——量子力学基础共65页PPT

Thank you
大学物理——量子力学基础
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
பைடு நூலகம்
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
大学物理——量子力学基础
46、法律有权打破平静。——马·格林 47、在一千磅法律里,没有一盎司仁 爱。— —英国
48、法律一多,公正就少。——托·富 勒 49、犯罪总是以惩罚相补偿;只有处 罚才能 使犯罪 得到偿 还。— —达雷 尔
50、弱者比强者更能得到法律的保护 。—— 威·厄尔
பைடு நூலகம்
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
量子力学ppt

详细描述
量子计算和量子通信是量子力学的重要应用之一,具有比传统计算机和通信更高的效率和安全性。
量子计算是一种基于量子力学原理的计算方式,具有比传统计算机更快的计算速度和更高的安全性。量子通信是一种基于量子力学原理的通信方式,可以保证通信过程中的安全性和机密性。这两个应用具有广泛的应用前景,包括密码学、金融、人工智能等领域。
薛定谔方程
广泛应用于原子、分子和凝聚态物理等领域,可以用于描述物质的量子性质和现象。
薛定谔方程的应用
哈密顿算符与薛定谔方程
03
量子力学中的重要概念
是量子力学中的一种重要运算符号,用于描述量子态之间的线性关系,可以理解为量子态之间的“距离”。
狄拉克括号
是一种量子化方法,通过引入正则变量和其对应的算符,将经典物理中的力学量转化为量子算符,从而建立量子力学中的基本关系。
描述量子系统的状态,可以通过波函数来描述。
量子态与波函数
量子态
一种特殊的函数,可以表示量子系统的状态,并描述量子粒子在空间中的概率分布。
波函数
波函数具有正交性、归一性和相干性等性质,可以用于计算量子系统的性质和演化。
波函数的性质
一种操作符,可以用于描述物理系统的能量和动量等性质。
哈密顿算符
描述量子系统演化的偏微分方程,可以通过求解该方程得到波函数和量子系统的性质。
量子优化
量子优化是一种使用量子计算机解决优化问题的技术。最著名的量子优化算法是量子退火和量子近似优化算法。这些算法可以解决一些经典优化难以解决的问题,如旅行商问题、背包问题和图着色问题等。然而,实现高效的量子优化算法仍面临许多挑战,如找到合适的启发式方法、处理噪声和误差等。
量子信息中的量子算法与量子优化
解释和预测新材料的物理性质,如超导性和半导体性质等。
量子计算和量子通信是量子力学的重要应用之一,具有比传统计算机和通信更高的效率和安全性。
量子计算是一种基于量子力学原理的计算方式,具有比传统计算机更快的计算速度和更高的安全性。量子通信是一种基于量子力学原理的通信方式,可以保证通信过程中的安全性和机密性。这两个应用具有广泛的应用前景,包括密码学、金融、人工智能等领域。
薛定谔方程
广泛应用于原子、分子和凝聚态物理等领域,可以用于描述物质的量子性质和现象。
薛定谔方程的应用
哈密顿算符与薛定谔方程
03
量子力学中的重要概念
是量子力学中的一种重要运算符号,用于描述量子态之间的线性关系,可以理解为量子态之间的“距离”。
狄拉克括号
是一种量子化方法,通过引入正则变量和其对应的算符,将经典物理中的力学量转化为量子算符,从而建立量子力学中的基本关系。
描述量子系统的状态,可以通过波函数来描述。
量子态与波函数
量子态
一种特殊的函数,可以表示量子系统的状态,并描述量子粒子在空间中的概率分布。
波函数
波函数具有正交性、归一性和相干性等性质,可以用于计算量子系统的性质和演化。
波函数的性质
一种操作符,可以用于描述物理系统的能量和动量等性质。
哈密顿算符
描述量子系统演化的偏微分方程,可以通过求解该方程得到波函数和量子系统的性质。
量子优化
量子优化是一种使用量子计算机解决优化问题的技术。最著名的量子优化算法是量子退火和量子近似优化算法。这些算法可以解决一些经典优化难以解决的问题,如旅行商问题、背包问题和图着色问题等。然而,实现高效的量子优化算法仍面临许多挑战,如找到合适的启发式方法、处理噪声和误差等。
量子信息中的量子算法与量子优化
解释和预测新材料的物理性质,如超导性和半导体性质等。
第22章量子力学基础知识课件

px x h px x / 2
——测不准关系是微观 粒子波动性的结果。
The Nobel Prize in Physics 1932
Werner Karl Heisenberg
b.1901 d.1976 Leipzig University Leipzig, Germany
§22-2 波函数
1.波函数的概念:描述微观粒子波动性的数学表达式。
平面简谐波函数
y Acos 2 (t x / )
y Aei2 (tx/ )
自由粒子波函数
E / h h / p
i ( Et px)
0e
一般波函数: (x, t)
波长短,用于电子显微镜.
2. U 150V 0.9785106U 1
1.225 0.10nm
U
与X射线波长相近,同样采用晶体作光栅实现衍射。
例22.2 计算质量m=0.001kg,速率v=500m ·s-1的 子弹的德布罗意波长。
h h 6.626 1034 m=1.331034m
这说明,电子的波动性并不是很多电子在空间聚集在 一起时相互作用的结果,而是单个电子就具有波动性。 换言之,干涉是电子“自己和自己”的干涉。
底片上出现一个个的点子 电子具有粒子性。 随着电子增多,逐渐形成衍射图样 来源于
“一个电子”所具有的波动性而,不是电子间相
互作用的结果。
Double-Slit Experiment with a machine gun!
§22-1 波粒二象性
一.德布罗意波假设(1924 年 )
de Broglie
整个世纪以来,在辐射理论上, 相对于波动的研究方法,我们过于 忽视了粒子的研究方法;而在实物 理论上,是否发生了相反的错误呢? 是不是我们关于粒子的图象想得太 多,而忽略了波的图象呢?
——测不准关系是微观 粒子波动性的结果。
The Nobel Prize in Physics 1932
Werner Karl Heisenberg
b.1901 d.1976 Leipzig University Leipzig, Germany
§22-2 波函数
1.波函数的概念:描述微观粒子波动性的数学表达式。
平面简谐波函数
y Acos 2 (t x / )
y Aei2 (tx/ )
自由粒子波函数
E / h h / p
i ( Et px)
0e
一般波函数: (x, t)
波长短,用于电子显微镜.
2. U 150V 0.9785106U 1
1.225 0.10nm
U
与X射线波长相近,同样采用晶体作光栅实现衍射。
例22.2 计算质量m=0.001kg,速率v=500m ·s-1的 子弹的德布罗意波长。
h h 6.626 1034 m=1.331034m
这说明,电子的波动性并不是很多电子在空间聚集在 一起时相互作用的结果,而是单个电子就具有波动性。 换言之,干涉是电子“自己和自己”的干涉。
底片上出现一个个的点子 电子具有粒子性。 随着电子增多,逐渐形成衍射图样 来源于
“一个电子”所具有的波动性而,不是电子间相
互作用的结果。
Double-Slit Experiment with a machine gun!
§22-1 波粒二象性
一.德布罗意波假设(1924 年 )
de Broglie
整个世纪以来,在辐射理论上, 相对于波动的研究方法,我们过于 忽视了粒子的研究方法;而在实物 理论上,是否发生了相反的错误呢? 是不是我们关于粒子的图象想得太 多,而忽略了波的图象呢?
高二物理竞赛课件:量子力学(共15张PPT)

质子的质量比电子的质量大的多,在氢原子 中可近似认为质子静止而电子运动,因此电子 的能量就代表整个氢原子的能量。电子受质子 的库仑力作用,势能函数为
U(r) e2 和方向无关
4 0r
在以质子的位置为原点的直角坐标系中,电 子的能量本征方程为
2 2
2m
x 2
2 y2
2 z2
U
(r
)
发射一个光子,其频率满足: h En Em
相应的波数(波长的倒数)
~nm
En Em hc
1 R( m2
1 n2 )
将氢原子能级公式代入,首次算出里德伯常数
R
me e 4
8
2 0
h3
c
1.0973731534107 m1
玻尔的贡献 1) 揭开了近30年的“巴耳末公式之迷” 2) 首次打开了人们认识原子结构的大门 3) 定态假设和频率假设在原子结构和分子 结构的现代理论中仍是重要概念 4) 为量子力学的建立奠定了基础。但他的
量子力学
说明:
① n=1——基态
n>1——激发态
② En<0 物理意义:电子处于束缚态! ③ 电离能:使原子电离所需的最小能量
E电离=E∞-En=-En
氢原子
n=1, 电离能为 13.6 eV
n=2, 电离能为 3.39 eV
n=3, 电离能为 1.51 eV
氢原子光谱线的波数公式
当原子从较高能态 En向较低能态 Em 跃迁时,
玻尔假设:L n, n 1,2 •玻尔的量子化概念是正
l 0,1,2,(n 1) 确的,但条件需修正。
称为角量子数 角动量是量子化的
这改动虽不大,但却是原则 性的改动。 •经典力学中,角动量不能
U(r) e2 和方向无关
4 0r
在以质子的位置为原点的直角坐标系中,电 子的能量本征方程为
2 2
2m
x 2
2 y2
2 z2
U
(r
)
发射一个光子,其频率满足: h En Em
相应的波数(波长的倒数)
~nm
En Em hc
1 R( m2
1 n2 )
将氢原子能级公式代入,首次算出里德伯常数
R
me e 4
8
2 0
h3
c
1.0973731534107 m1
玻尔的贡献 1) 揭开了近30年的“巴耳末公式之迷” 2) 首次打开了人们认识原子结构的大门 3) 定态假设和频率假设在原子结构和分子 结构的现代理论中仍是重要概念 4) 为量子力学的建立奠定了基础。但他的
量子力学
说明:
① n=1——基态
n>1——激发态
② En<0 物理意义:电子处于束缚态! ③ 电离能:使原子电离所需的最小能量
E电离=E∞-En=-En
氢原子
n=1, 电离能为 13.6 eV
n=2, 电离能为 3.39 eV
n=3, 电离能为 1.51 eV
氢原子光谱线的波数公式
当原子从较高能态 En向较低能态 Em 跃迁时,
玻尔假设:L n, n 1,2 •玻尔的量子化概念是正
l 0,1,2,(n 1) 确的,但条件需修正。
称为角量子数 角动量是量子化的
这改动虽不大,但却是原则 性的改动。 •经典力学中,角动量不能
《量子力学基础与固体物理学》ppt课件01

3. 光量子具有整体性,一个光电子只能整个地被吸收 或放出。
4. 光电效应中,光量子被电子吸收,从而电子获得能 量h,当它离开金属表面时,具有动能
1 2
meV
2
h
W0
1 2
mvm2
e(
K
U0
)
39
爱因斯坦的光量子假说
光的波-粒两象性。 光是波-干涉、衍射、频率、波长 光也是粒子-光量子,能量、动量
答辩人叫Louis de Broglie,是一名世袭的法 国亲王,原来是学历史的, 后来转攻物理学。
P
P P P P
1 P P P
P
P P P
P
单色反射率 单色吸收率 单色透射率
18
第二节 黑体辐射和Planck能量子假说
不透明时 1
当 1 时,则称为绝对黑体
二.基尔霍夫定律
热平衡时:
1
2
3 B
绝热真空腔体
发射辐射能量=吸收辐射能量(空腔辐射×吸收率)
M1 (T ) M 2 (T ) M B (T ) =空腔辐射
黑体辐射就是构成黑体腔壁的物质中的 振子辐射电磁波。如果黑体腔被加热, 振子可以吸收任意数量的热能,从而黑 体变热。
29
四、普朗克能量子假说
Planck假定:物质中的振子不能 随便处于任意能量状态,它们只 能处于某些特定的能量状态,这 些能量是某一个最小能量的整倍 数: ,2 ,3 ……n ……
6
第二部分 固体物理学
第八章 固体结构 第九章 晶格振动 第十章 晶体的结合 第十一章 固体电子理论
7
本课程的特点: 很多概念以前没接触过,比较抽象,必需要反复 思索,理解,以建立比较具象的认识 数学运用非常多! 数学公式的推演反映了客观世界内在规律的演变! 科学的研究就是要找寻规律性! 数学公式、数学方程是对规律性最简捷最准确的 描述!
4. 光电效应中,光量子被电子吸收,从而电子获得能 量h,当它离开金属表面时,具有动能
1 2
meV
2
h
W0
1 2
mvm2
e(
K
U0
)
39
爱因斯坦的光量子假说
光的波-粒两象性。 光是波-干涉、衍射、频率、波长 光也是粒子-光量子,能量、动量
答辩人叫Louis de Broglie,是一名世袭的法 国亲王,原来是学历史的, 后来转攻物理学。
P
P P P P
1 P P P
P
P P P
P
单色反射率 单色吸收率 单色透射率
18
第二节 黑体辐射和Planck能量子假说
不透明时 1
当 1 时,则称为绝对黑体
二.基尔霍夫定律
热平衡时:
1
2
3 B
绝热真空腔体
发射辐射能量=吸收辐射能量(空腔辐射×吸收率)
M1 (T ) M 2 (T ) M B (T ) =空腔辐射
黑体辐射就是构成黑体腔壁的物质中的 振子辐射电磁波。如果黑体腔被加热, 振子可以吸收任意数量的热能,从而黑 体变热。
29
四、普朗克能量子假说
Planck假定:物质中的振子不能 随便处于任意能量状态,它们只 能处于某些特定的能量状态,这 些能量是某一个最小能量的整倍 数: ,2 ,3 ……n ……
6
第二部分 固体物理学
第八章 固体结构 第九章 晶格振动 第十章 晶体的结合 第十一章 固体电子理论
7
本课程的特点: 很多概念以前没接触过,比较抽象,必需要反复 思索,理解,以建立比较具象的认识 数学运用非常多! 数学公式的推演反映了客观世界内在规律的演变! 科学的研究就是要找寻规律性! 数学公式、数学方程是对规律性最简捷最准确的 描述!
量子力学 周世勋(全套ppt课件)

§2 量子论的诞生
(一)Planck 黑体辐射定律 (二)光量子的概念和光电效应理论 (四)波尔(Bohr)的量子论
(三)Compton 散射 ——光的粒子性的进一步证实
(一)Planck 黑体辐射定律
究竟是什么机制使空腔的原子产生出所观 察到的黑体辐射能量分布,对此问题的研 究导致了量子物理学的诞生。
能 量 密 度
•该式称为 Planck 辐射定律
0
Planck 线
5
10
(104 cm)
对 Planck 辐射定律的
三点讨论:
d
8h
C3
3
exp(h
1 /
kT
)
1
d
•(1)当 v 很大(短波)时,因为 exp(hv /kT)-1 ≈ exp(hv /kT), 于是 Planck 定律 化为 Wien 公式。
人们自然会提出如下三个问题:
1. 原子线状光谱产生的机制是什么? 2. 光谱线的频率为什么有这样简单的规律?
nm
3. 光谱线公式中能用整数作参数来表示这一事实启发我们 思考: 怎样的发光机制才能认为原子的状态可以用包含整数值的量来描写。
从前,希腊人有一种思想认为:
自然之美要由整数来表示。例如:
1. Wien 公式
能 量 密 度
Wien 线
0
5
10
(104 cm)
Wien 公式在短波部分与实验还相符合, 长波部分则明显不一致。
(2)光电效应
光照射到金属上,有电子从金属上逸出的现象。 这种电子称之为光电子。试验发现光电效应有 两个突出的特点:
•1.临界频率v0 只有当光的频率大于某一定值v0 时, 才有光电子发射出来。若光频率小于该值时,则不论 光强度多大,照射时间多长,都没有电子产生。光的 这一频率v0称为临界频率。
第一量子力学基础(ppt)

2021/1/25
10
Ek 0 ν0
2021/1/25
②对于每一种金属电极, 仅当入射光的频率大于 某一频率时,才有电流 产生,称临阈频率,与 金属性质有关。
③光电效应产生的电子
ν
的初动能随光的频率增 大而增加而与光的强度
无关。
④入射光照射到金属表 面立即有电子逸出,二 者几乎无时间差。
11
根据光波的经典图象,光波的能量与它的强度 (振幅的平方)成正比,而与频率无关。因此 只要有足够的强度,任何频率的光都能产生光 电效应,而电子的动能将随着光强的增加而增 加,与光的频率无关,这些经典物理学家的推 测与实验事实不符。
E( ,对T ) 作 2图应为一抛物线,在长波处很接近实验 曲线,在短波长处与实验结果(能量趋于零)显 著不符(紫外灾难)。Wein(维恩)用经典热力 学进行解释,假设辐射按波长的分布类似于 Maxwell的分子速率分布,所得公式在短波处与 实验比较接近,但长波处与实验曲线相差很大。
2021/1/25
只有把光看成是由光子组成的才能理解光电效应, 而只有把光看成波才能解释衍射和干涉现象,光表 现出波粒二象性。
2021/1/25
15
3.氢原子光谱与玻尔的氢原子模型 当原子被电火花、电弧或其它方法激发
1927年,海特勒和伦敦运用量子力学成功解释 了氢分子的成因,标志着量子化学的诞生,使 化学由经验科学向理论科学过渡。
2021/1/25
3
§1-1量子力学产生的背景
一、经典物理学的困难与旧量子论的诞生 1.黑体辐射与普朗克( planck)的量子论
任何物体都能受激吸收能量,又能自发辐射能量。 物体低温时能吸收什么波长的电磁波,高温时会发 射同样波长的电磁波。吸收光的本领越强的物体就
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了说明将我们的宏观世界间思想实验 移动到微观量子世界可能产生的荒谬的 结果,薛定谔描述了一个关于猫的思想 实验:
薛定谔的猫被放在一个与周围环境完
全隔离的箱子内。这个箱子内有一瓶致 命的氰化物,还有一些处于发射状态的 放射性原子衰变。放射性衰变遵循量子 力学定律,因而它处于发射和未发射的 叠加状态。因此,猫处于活着和死了的 叠加状态。现在,如果你窥视箱子内部, 你等于杀死了猫,因为量子叠加态对环 境作用非常敏感,观察猫的瞬间,猫的 “世界线”会“塌缩”到出现死或者活 两种结果中的一种。在薛定谔看来,这 个思想实验导致了一个荒谬的结论。它 在说明他应该向出现的量子道歉。
量子操纵可以通过势阱中的光子演示。阿罗什运用特殊调制的原子,叫做Rydberg 原 子,完成控制和测量空腔内微波光子的任务。
Rydberg原子穿越空腔并离开,留下光子,但之间的相互作用使原子的量子相位发生 改变,就像一阵波。当Rydberg原子离开空腔时,相位改变能测量得到,从而暗示空腔中 光子的存在或逃逸。
在阿罗什的空腔中,不同相位的微波光子 被同时放置在像猫一样的叠加态中,像同时有 很多顺时针或逆时针旋转的秒表。空腔用 Rydberg原子探测。结果出现了另一个难以理 解的称为纠缠态的量子效应。纠缠也被薛定谔 描述过,可以发生在两个或多个量子之间,他 们彼此没有直接接触,却可以读取或影响对方 的 属 性 。 微 波 场 中 量 子 的 纠 缠 态 和 Rydberg 原 子的运动让阿罗什映射生活和死亡的猫一样的 状态,进而一步一步,经历了从量子叠加态到 被完全定义的经典物理态的过渡。
利用相似的方法,阿罗什和他的团队可以数空腔内的光子。光子不容易数,任何和外 界接触就会破坏。借助这个方法,阿罗什和他的团队设计后期方案一步一步实现单个量子 状态的测量。
量子力学悖论
量子力学描绘了一个肉眼无 法观测的微观世界,很多与我们 的期望和在经典物理中的经验相 反。
量子世界本身具有不确定性。 例如叠加态,一个量子可以有多 重形态。我们通常不会认为一块 大理石同时是“这样”也是“那 样”,除非是一块量子大理石。 叠加态的大理石只能确切地告诉 我们大理石是每一种形态的概率。
塞尔日·阿罗什1944年9月11日出生于摩洛哥卡萨
布兰卡,目前居住于巴黎。1971年在法国皮埃 尔与玛丽·居里大学,即巴黎第六大学取得博士 学位。现任法国巴黎高等师范学院教授和法兰西 学院教授,兼任量子物理系主任。他还是法国物 理学会、欧洲物理学会和美国物理学会的会员, 被认为是腔量子电动力学的实验奠基者。曾获洪 堡奖、阿尔伯特·迈克尔逊勋章、查尔斯·哈德·汤 斯奖、法国国家科学研究中心金奖等诸多奖项。 其主要研究领域为通过实验观测量子脱散(又称 量子退相干),即量子系统状态间相互干涉的性 质会随时间逐步丧失。脱散现象可对量子信息科 学形成两方面的影响:一是涉及量子计算领域, 另一方面则与量子通信相关。
在势阱中控制单个光子 塞尔日-阿罗什和他的研究小组在巴黎的实验室里,微波光子在相距3厘米的镜片之间
反弹。镜片用超导材料制作,被冷却到刚刚超过绝对零度。这是世界最闪耀的超导镜片, 单个的光子在它们之间的空腔反弹超过十分之一秒的时间,直到它丢失或被吸收。这意味 着光子能够穿越40000千米的长度,相当于环绕地球一周。
2012年的两位物理学奖获得者能够映射到当外 界环境参与时量子猫的状态。他们设计了创新 实验,详细说明观测这一行为实际上如何导致 量子状态的崩溃并失去其叠加特性的。阿罗什 和 维因兰德并没有用猫,而是将势阱中的离子
放入薛定谔假设的叠加态中。这些量子物体尽 管宏观上没有那样的形状,但相对于量子尺 度仍然足够大。
第二章 背景知识 —量子力学
2012年诺贝尔物理学奖
10月9日下午,2012年诺贝尔物理学奖揭晓。 瑞典皇家科学院诺贝尔奖评审委员会将奖项授予给了量子光学领域的两位科学 家——法国物理学家塞尔日·阿罗什与美国物理学家戴维·瓦恩兰,以奖励他们 “提出了突破性的实验方法,使测量和操控单个量子系统成为可能”。
诺奖官方网站称,塞尔日·阿罗什与戴维·瓦恩兰两人分别发明 并发展出的方法,让科学界得以在不影响粒子量子力学性质 的情况下,对非常脆弱的单个粒子进行测量与操控。他们的 方式,在此前一度被认为是不可能做到的。
戴维·瓦恩兰1944年2月24日出生于美国 威斯康星州密尔沃基。1970年在美国哈 佛大学取得博士学位。现任美国国家标 准技术研究所研究员和组长,美国科罗 拉多大学波德分校教授。他还是美国物 理学会、美国光学学会会员,并于1992 年入选美国国家科学院。曾获得阿瑟·肖 洛奖(激光科学)、美国国家科学奖章 (物理学)、赫伯特·沃尔特奖、本杰 明·富兰克林奖章(物理学)等。他的主 要工作包括离子阱的激光冷却,以及利 用囚禁的离子进行量子计算等,因此被 认为是离子阱量子计算的实验奠基者。
单个物质粒子包括光子,经典力学不适 用,粒子表现出量子性。然而长久以来, 单个粒子不能从脱离周围环境直接观测 到,科学家只能通过思想实验验证它奇 异的表现。
他们的发明开辟了量子物理学的新时代;他们成功地观测到非常脆弱 的量子态,在不破坏单个粒子的前提下直接观察它们的特性;他们的 工作为制造新型超高速基于量子物理的计算机迈出了第一步。也可以 用来制造极精准时钟,用于未来的时间标准,比现有的铯原子钟精确 百倍。
在势阱中控制单个离子 在科罗拉多州博尔德市,大卫-维因兰德维因兰德的实验室内,带电原子或
离子被置于电场内的势阱中。该实验在真空和低温条件下进行,使粒子远离热 和辐射干扰。
维因兰德实验的秘诀是使用激光脉冲。他用激光压制离子在势阱中的热运 动,使离子停留在最低能量状态,从而观测势阱中离子的量子现象。一个细致 调节好的激光束可以使离子进入叠加态,该形态使一个离子同时存在于两种不 同状态。例如,一个离子可以同时处于两种能量值。它开始处于较低能量的状 态,激光的作用仅仅是向高能量状态轻轻推它,能够使它停留在两种状态的叠 加中,进入任何一种状态有相等的可能性。这样可以研究离子的量子叠加状态。