知识点归纳 计算机图形学中的图像处理与三维建模
计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学的概念计算机图形学简单来说,就是让计算机去生成、处理和显示图形的学科。
它就像是一个魔法世界,把一堆枯燥的数字和代码变成我们眼睛能看到的超酷图形。
你看那些超炫的3D游戏里的场景、超逼真的动画电影,那可都是计算机图形学的功劳。
这个学科就是想办法让计算机理解图形,然后把图形按照我们想要的样子呈现出来。
二、图形的表示1. 点点是图形里最基本的元素啦。
就像盖房子的小砖头一样,很多个点组合起来就能变成各种图形。
一个点在计算机里就是用坐标来表示的,就像我们在地图上找一个地方,用经度和纬度一样,计算机里的点就是用x和y坐标(如果是3D图形的话,还有z坐标呢)来确定它在空间里的位置。
2. 线有了点,就能连成线啦。
线有各种各样的类型,直线是最简单的,它的方程可以用我们学过的数学知识来表示。
比如说斜截式y = kx + b,这里的k就是斜率,b就是截距。
还有曲线呢,像抛物线、双曲线之类的,在图形学里也经常用到。
这些曲线的表示方法可能会复杂一点,但也很有趣哦。
3. 面好多线围起来就形成了面啦。
面在3D图形里特别重要,因为很多3D物体都是由好多面组成的。
比如说一个正方体,就有六个面。
面的表示方法也有不少,像多边形表示法,就是用好多条边来围成一个面。
三、图形变换1. 平移平移就是把图形在空间里挪个位置。
这就像我们把桌子从房间的这头搬到那头一样。
在计算机里,平移一个图形就是把它每个点的坐标都加上或者减去一个固定的值。
比如说把一个点(x,y)向右平移3个单位,向上平移2个单位,那这个点就变成(x + 3,y + 2)啦。
2. 旋转旋转就更有意思啦。
想象一下把一个图形像陀螺一样转起来。
在计算机里旋转图形,需要根据旋转的角度和旋转中心来计算每个点新的坐标。
这就得用到一些三角函数的知识啦,不过也不难理解。
比如说以原点为中心,把一个点(x,y)逆时针旋转θ度,新的坐标就可以通过一些公式计算出来。
3. 缩放缩放就是把图形变大或者变小。
计算机形学与三维建模基础知识

计算机形学与三维建模基础知识计算机形学与三维建模是计算机科学领域中重要的研究方向,它们为实现计算机图形学、计算机动画、虚拟现实等应用提供了基础。
本文将介绍计算机形学的概念、三维建模的基本原理和常用方法,并探讨它们在现实生活和工业设计中的应用。
一、计算机形学概念及原理计算机形学是研究数学模型和算法,用来描述和生成计算机图形的学科。
它主要包括几何学、多边形网格、体素表示、参数曲面和曲线、光照与着色等方面的内容。
1. 几何学几何学是计算机形学的核心内容之一,它研究空间中点、线、面等基本几何元素的性质和关系。
在计算机图形学中,常用的几何表示方法包括笛卡尔坐标系、二维和三维向量、矩阵和变换等。
2. 多边形网格多边形网格是计算机图形中最常用的表示方法之一,它使用一系列相连的边或面来表示二维或三维图形。
多边形网格可以通过划分和连接细分而成,常见的多边形网格有三角形、四边形、六边形等。
3. 体素表示体素表示是一种将三维物体分割成小块的表示方法,每个小块称为一个体素。
体素表示适用于描述具有复杂内部结构的物体,例如人体、机械零件等。
体素表示可以使用二值图像或三维数组来表示。
4. 参数曲面和曲线参数曲面和曲线是计算机形学中用来描述平面曲线和曲面的方法。
它们通过一系列参数方程来表示,可以用来模拟自然界中的弯曲物体,例如球体、螺旋线等。
5. 光照与着色光照与着色是计算机形学中模拟光线、阴影和反射等光学效果的技术。
它们可以用来增强计算机图形的真实感和立体感,使得图形更加逼真和美观。
二、三维建模方法与应用三维建模是将真实世界的物体或场景用计算机模型进行描述和重现的过程。
它是计算机图形学中的重要研究方向,广泛应用于游戏开发、影视特效、产品设计等领域。
1. 多边形建模多边形建模是三维建模中最常用的方法之一,它使用多边形网格来描述物体的表面。
多边形建模可以通过直接绘制、三维扫描、参数化建模等方式进行。
2. 曲面建模曲面建模是通过参数方程来描述物体表面的方法。
计算机图形学基础知识重点整理

计算机图形学复习资料第一章1 图形学定义ISO的定义:计算机图形学是研究怎样利用计算机表示、生成、处理和显示图形的原理、算法、方法和技术的一门学科。
通俗定义:计算机图形学以表达现实世界中的对象及景物为主要目标,其核心是解决如何用图形方式作为人和计算机之间传递信息的手段,即人机界面问题.计算机图形学的研究对象-—图形.图形是从客观世界物体中抽象出来的带有颜色及形状信息的图和形。
图形的构成要素:几何要素:点、线、面、体等描述对象的轮廓、形状。
非几何要素:描述对象的颜色、材质等。
图形的表示方法:点阵法:枚举出图形中所有点(简称图像)。
参数法:由图形的形状参数(简称图形)。
2 图形与图像图像:狭义上又称为点阵图或位图图像。
图像是指整个显示平面以二维矩阵表示,矩阵的每一点称为一个像素,由像素点所取亮度或颜色值不同所构成的二维画面。
特点:A文件所占的空间大。
B位图放大到一定的倍数后会产生锯齿.C位图图像在表现色彩、色调方面的效果比矢量图更加优越。
图形:狭义上又称为矢量图形或参数图形.按照数学方法定义的线条和曲线组成,含有几何属性.或者说更强调场景的几何表示,是由场景的几何模型和景物的物理属性共同组成的。
特点:A文件小。
B可采取高分辨印刷.C图形可以无限缩放.3 图形学过程3D几何建模、3D动画设置、绘制(光照和纹理)、生成图像的存储和显示4 与图像处理计算机图形学:研究模型及数据的建立和由模型生成图像的过程和方法.(模型到图像)图像处理:将客观景物数字化成图像,研究数字化图像的采集、去噪、压缩、增强、锐化、复原及重建等。
(图像到特征)对立统一的关系。
5 计算机图形信息的特点图形信息表达直观,易于理解。
图形信息表达精确、精炼。
图形信息能“实时”的反映事物的分布和变化规律6 计算机图形学的应用计算机辅助设计及计算机辅助制造科学计算可视化地图制图与地理信息系统计算机动画、游戏用户接口计算机艺术7 计算机图形系统作为一个图形系统,至少应具有计算、存储、输入、输出、对话等五个方面的基本功能.计算机图形系统主要有三部分构成:人、图形软件包、图形硬件设备。
计算机图形学基础知识入门

计算机图形学基础知识入门计算机图形学是一门关于计算机如何生成、处理和显示图像的学科。
它在如今数字媒体和虚拟现实等领域中发挥着重要的作用。
本文将介绍计算机图形学的基础知识,包括图像表示、坐标系统、几何变换和光栅化等方面。
一、图像表示在计算机图形学中,图像可以通过两种方式来表示:位图和矢量图。
1. 位图(Bitmap)位图是一种由像素组成的图像表示方式。
每个像素都包含了图像中一个点的色彩信息。
位图图像通常是一个二维数组,其中每个元素表示图像中相应位置的像素。
2. 矢量图(Vector)矢量图使用线段、曲线和其他几何图元来表示图像。
与位图不同,矢量图通过描述图形的形状和位置来表示图像。
矢量图可以无损地进行缩放和变换,因此在图形设计和打印等领域中广泛应用。
二、坐标系统在计算机图形学中,坐标系统用于定义和表示图像中点的位置。
常见的坐标系统包括二维笛卡尔坐标系和三维笛卡尔坐标系。
1. 二维笛卡尔坐标系二维笛卡尔坐标系由一个水平轴和一个垂直轴组成。
原点通常定义为坐标轴的交点。
在二维笛卡尔坐标系中,每个点可以由其水平和垂直坐标表示。
2. 三维笛卡尔坐标系三维笛卡尔坐标系在二维笛卡尔坐标系的基础上增加了一个垂直轴,通常表示为Z轴。
三维坐标系中的点可以由其水平、垂直和垂直坐标表示。
三、几何变换几何变换是指通过对图像中的点进行平移、旋转、缩放和反射等操作来改变图像的形状和位置。
常见的几何变换包括平移、旋转、缩放和错切。
1. 平移平移是将图像中的点移动指定的水平和垂直距离。
这可以通过对点的坐标进行简单的加减操作来实现。
2. 旋转旋转是将图像中的点绕指定的旋转中心按一定角度进行旋转。
旋转操作需要使用三角函数来计算旋转后的点坐标。
3. 缩放缩放是通过改变图像中点的坐标来调整图像的大小。
缩放操作可以通过对点的坐标进行乘法运算来实现。
4. 错切错切是将图像中的点按一定比例沿着坐标轴进行拉伸。
错切操作需要使用矩阵运算来计算变换后的点坐标。
计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、图形学基础知识1、图形学的定义:图形学是一门研究图形的计算机科学,它研究如何使用计算机来生成、处理和显示图形。
2、图形学的应用:图形学的应用非常广泛,它可以用于计算机游戏、虚拟现实、图形用户界面、图形设计、图形处理、图形建模、图形分析等。
3、图形学的基本概念:图形学的基本概念包括图形、坐标系、变换、光照、纹理、投影、深度缓冲、抗锯齿等。
4、图形学的基本算法:图形学的基本算法包括几何变换、光照计算、纹理映射、投影变换、深度缓冲、抗锯齿等。
5、图形学的基本技术:图形学的基本技术包括OpenGL、DirectX、OpenCL、CUDA、OpenGL ES等。
二、图形学的基本原理1、坐标系:坐标系是图形学中最基本的概念,它是一种用来表示空间位置的系统,它由一系列的坐标轴组成,每个坐标轴都有一个坐标值,这些坐标值可以用来表示一个点在空间中的位置。
2、变换:变换是图形学中最重要的概念,它指的是将一个图形从一个坐标系变换到另一个坐标系的过程。
变换可以分为几何变换和光照变换,几何变换包括平移、旋转、缩放等,光照变换包括颜色变换、照明变换等。
3、光照:光照是图形学中最重要的概念,它指的是将光照投射到物体表面,从而产生颜色和纹理的过程。
光照可以分为环境光照、漫反射光照和镜面反射光照。
4、纹理:纹理是图形学中最重要的概念,它指的是将一张图片映射到物体表面,从而产生纹理的过程。
纹理可以分为纹理映射、纹理坐标变换、纹理过滤等。
5、投影:投影是图形学中最重要的概念,它指的是将一个三维图形投射到二维屏幕上的过程。
投影可以分为正交投影和透视投影,正交投影是将三维图形投射到二维屏幕上的过程,而透视投影是将三维图形投射到二维屏幕上,从而产生透视效果的过程。
大一上学期末计算机图形学导论课程重点整理

大一上学期末计算机图形学导论课程重点整理计算机图形学导论课程是大一上学期的一门重要课程,通过学习这门课程,可以使学生们初步了解计算机图形学的基本概念、原理和应用。
本文将对大一上学期末计算机图形学导论课程的重点内容进行整理,帮助同学们更好地复习和总结知识。
一、图形学基础知识1. 图形学概述计算机图形学是研究计算机在图像产生、处理、存储和显示等方面的科学和技术。
包括二维图形和三维图形。
2. 图形学的发展历程从二维向三维发展的历程,包括硬件和软件技术的进步。
3. 计算机图形学的应用领域包括动画、游戏、虚拟现实、影视特效等领域。
二、图形学基本原理1. 坐标系统二维坐标系统和三维坐标系统的区别和联系。
2. 图元的表示点、线、面元素的表示方法,以及颜色、光照等基本属性的处理。
3. 绘图算法直线生成算法、圆弧生成算法等常用绘图算法的原理和实现。
4. 变换和投影二维、三维图形的平移、旋转、缩放等基本变换,透视投影、正交投影等投影方式。
三、图形学基本技术1. 光栅化技术将几何图元映射到屏幕上的光栅化过程。
2. 图像处理基础包括图像的采样、量化、编码等基本处理。
3. 图形学算法面向对象的图形学算法、图像处理算法的设计和实现。
4. 图形学软件工具常用的图形学软件工具及其基本操作。
四、计算机图形学的发展趋势1. 虚拟现实技术虚拟现实技术在计算机图形学中的应用和发展。
2. 人工智能和图形学的融合人工智能技术对计算机图形学的影响和促进作用。
3. 图形处理技术的发展图形处理芯片、图形处理算法等新技术的发展趋势和前景。
以上便是大一上学期末计算机图形学导论课程的重点内容整理,希望同学们通过复习和总结,能够更好地掌握这门课程的知识,取得优异的成绩。
计算机图形学基础知识重点整理

计算机图形学基础知识重点整理一、定义与研究内容定义:计算机图形学是研究通过计算机将数据转换为图形,并在专门显示设备上显示的原理、方法和技术的学科。
它涉及图形的生成、表示、处理与显示等多个方面。
研究内容:图形的生成和表示技术。
图形的操作与处理方法。
图形输出设备与输出技术的研究。
图形输入设备、交互技术及用户接口技术的研究。
图形信息的数据结构及存储、检索方法。
几何模型构造技术。
动画技术。
图形软硬件的系列化、模块化和标准化的研究。
科学计算的可视化。
二、图形与图像图形:是从客观世界物体中抽象出来的带有颜色及形状信息的图和形。
图形的构成要素包括几何要素 (点、线、面、体等)和非几何要素 (颜色、材质等)。
图形按数学方法定义,由线条和曲线组成,强调场景的几何表示。
图像:狭义上又称为点阵图或位图图像,是指整个显示平面以二维矩阵表示,矩阵的每一点称为一个像素,由像素点所取亮度或颜色值不同所构成的二维画面。
图像在表现色彩、色调方面的效果比矢量图更加优越,但文件所占的空间大,且放大到一定的倍数后会产生锯齿。
三、图形学过程3D几何建模:构建物体的三维几何模型。
3D动画设置:为模型设置动画效果。
绘制:包括光照和纹理的处理,使模型更加逼真。
生成图像的存储和显示:将绘制好的图像存储并在显示设备上显示出来。
四、计算机图形系统基本功能:计算、存储、输入、输出、对话等五个方面。
构成:主要由人、图形软件包、图形硬件设备三部分构成。
其中,图像硬件设备通常由图形处理器 (GPU)、图形输入设备和输出设备构成。
五、基本图形生成算法1. 直线生成算法:DDA算法:从直线的起点开始,每次在x或y方向上递增一个单位步长,计算相应的y或x坐标,并取整作为当前点的坐标。
该算法简单直接,但每次加法后都需要进行取整运算。
Bresenham算法:通过比较临近像素点到直线的距离,设法求出该距离的递推关系,并根据符号判别像素取舍。
该算法避免了浮点运算和乘除法运算,节省运算量,并适合硬件实现。
计算机图形学与三维建模技术

计算机图形学与三维建模技术计算机图形学是一门研究如何使用计算机来生成和处理图像的学科,而三维建模技术则是计算机图形学中的一个重要组成部分。
在现代科技发展的背景下,计算机图形学与三维建模技术在游戏、动画、影视等领域的应用日益广泛,本文将探讨其原理与发展。
计算机图形学的基础是图像处理和几何学。
图像处理是指对图像进行数字化处理,如改变亮度、对比度、色彩等,以及对图像进行滤波、增强、降噪等操作。
而几何学则是研究点、线、面的形状和变换关系,常用于实现图形的旋转、缩放、平移等变换。
在计算机图形学中,三维建模技术起着至关重要的作用。
三维建模是指通过计算机技术创建具有虚拟三维形态的模型。
其主要包括建模、渲染和动画三个方面。
建模是指利用计算机软件工具创建三维模型的过程,可以通过线框模型、曲面模型、体素模型等方式进行。
渲染是指将三维模型转化为二维图像的过程,包括光照、阴影、纹理等效果的添加。
动画则是通过对三维模型进行连续变换和运动,使其具有动态效果。
随着计算机图形学与三维建模技术的不断发展,其应用范围也在不断扩大。
在影视制作方面,计算机特效技术的应用使得许多原本无法实现的场景变得可能,如科幻片中的空间飞船、外星生物等。
而即使在现实影像的合成中,计算机图形学的技术也扮演着重要角色,比如把真实演员的脸部表情替换成动画形象,或通过计算机合成场景中缺失的道具。
此外,在游戏领域,三维建模技术也被广泛应用,使得游戏画面更加逼真,玩家的沉浸感更强。
然而,计算机图形学与三维建模技术仍然面临着许多挑战和问题。
首先是计算资源的需求。
随着细节的增加和效果的提升,计算机图形学中的算法变得更加复杂,对计算资源的需求也越来越大。
其次是真实感的追求。
现实世界中的光照、纹理、运动等是非常复杂和多样的,如何模拟这些效果,使得计算机生成的图像看起来更加真实,一直是计算机图形学研究者努力追求的目标。
此外,还有建模和动画的技术难点,例如如何简化复杂几何模型的建模过程、如何更加自然地模拟角色的运动等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点归纳计算机图形学中的图像处理与三
维建模
知识点归纳-计算机图形学中的图像处理与三维建模
计算机图形学是计算机科学的一个重要领域,涉及到图像处理和三维建模等各种技术。
图像处理是指对数字图像进行各种操作和处理的过程,而三维建模则是构建虚拟三维对象的过程。
本文将就计算机图形学中的图像处理与三维建模进行归纳。
一、图像处理
图像处理是图形学的重要分支,广泛应用于医学影像、数字媒体、电影特效等领域。
图像处理主要包括以下几个方面的内容:
1.图像获取
图像获取是指通过各种传感器或设备获取到的现实世界中的图像数据,比如从摄像头获取实时视频数据或从扫描仪中获取扫描图像。
图像获取的质量和方式对后续的图像处理有着重要影响。
2.图像增强
图像增强是对采集到的图像进行增强和改进的过程,以使图像更加清晰、鲜艳或易于分析。
常见的图像增强方法包括直方图均衡化、对比度增强、锐化等。
3.图像滤波
图像滤波涉及到对图像进行平滑或增强的操作。
常见的滤波器包括
线性滤波器(如平均滤波器和高斯滤波器)和非线性滤波器(如中值
滤波器和双边滤波器)等。
4.图像变换
图像变换是指对图像进行几何变换或颜色变换的操作。
常见的图像
变换包括旋转、缩放、镜像、灰度变换和色彩空间转换等。
5.图像分割与特征提取
图像分割是将图像分成若干个不同的区域的过程,常见的图像分割
方法有阈值分割、边缘检测和区域生长等。
特征提取则是对图像中的
感兴趣的目标进行描述和提取,以用于图像识别或分类等任务。
二、三维建模
三维建模是计算机图形学中重要的内容,用于构建虚拟的三维对象,如建筑、汽车、人物等。
三维建模主要包括以下几个方面的内容:
1.几何建模
几何建模是指通过控制点、线和面等基本几何元素来描述三维对象
的形状和结构。
常见的几何建模方法有网格模型、贝塞尔曲线和NURBS曲面等。
2.纹理映射
纹理映射是将二维图像(纹理)应用到三维对象上的过程,以增加对象的真实感和细节。
常见的纹理映射方法有UV映射、法线贴图和环境贴图等。
3.光照和渲染
光照和渲染是指模拟三维场景中的光照效果和渲染图像的过程。
光照模型可以模拟不同光源下的反射、折射和阴影等效果,而渲染则是将三维场景渲染成二维图像的过程。
4.动画和仿真
动画和仿真是为三维对象添加运动和行为的过程。
通过对对象的位置、姿态和形状进行变换和插值,可以实现三维对象的动画和仿真效果。
结语
计算机图形学中的图像处理与三维建模是该领域中非常重要的两个方面。
图像处理涉及到对数字图像进行各种操作和处理,而三维建模则是构建虚拟三维对象的过程。
精通这些知识点可以帮助我们更好地应用图形学技术,开发出更加逼真和精确的图像和动画。