数量关系题型
行测数量关系常见题型与答题技巧

行测数量关系常见题型与答题技巧在公务员行测考试中,数量关系一直是让众多考生头疼的一个模块。
但其实,只要我们掌握了常见的题型和有效的答题技巧,就能在这一部分取得不错的成绩。
下面,我将为大家详细介绍行测数量关系中常见的题型以及对应的答题技巧。
一、工程问题工程问题是数量关系中比较常见且容易掌握的一类题型。
其核心公式为:工作总量=工作效率×工作时间。
在解题时,我们通常需要根据题目所给条件,先确定工作总量、工作效率和工作时间这三个量中的已知量和未知量,然后通过设未知数、列方程来求解。
例如:一项工程,甲单独做需要 10 天完成,乙单独做需要 15 天完成。
两人合作需要多少天完成?我们设工作总量为 1(也可以设为甲、乙工作时间的最小公倍数30),那么甲的工作效率就是 1/10,乙的工作效率就是 1/15。
两人合作的工作效率为 1/10 + 1/15 = 1/6,所以两人合作完成这项工程需要的时间为 1÷(1/6) = 6 天。
答题技巧:对于工程问题,当题目中给出的工作时间的数值是具体的量时,我们往往将工作总量设为时间的最小公倍数,这样可以方便计算工作效率。
二、行程问题行程问题也是行测数量关系中的高频考点,主要包括相遇问题、追及问题、流水行船问题等。
相遇问题的核心公式为:相遇路程=速度和×相遇时间;追及问题的核心公式为:追及路程=速度差×追及时间;流水行船问题中,顺水速度=船速+水速,逆水速度=船速水速。
比如:甲、乙两人分别从 A、B 两地同时出发相向而行,甲的速度为 5 千米/小时,乙的速度为 3 千米/小时,经过 2 小时相遇。
A、B 两地相距多远?根据相遇问题的公式,相遇路程=(5 + 3)×2 = 16 千米,即 A、B 两地相距 16 千米。
再如:甲、乙两人同向而行,甲在乙前面 10 千米处,甲的速度为 4 千米/小时,乙的速度为 6 千米/小时,乙多久能追上甲?根据追及问题的公式,追及时间= 10÷(6 4)= 5 小时。
数量关系经典题型

. 某数加上 6,乘以 6,减去 6,除以 6,其结果等于 6,则这个数是多少? 2. 两个两位数相加,其中一个加数是 73,另一个加数不知道,只知道另一个加数的十位数字增加 5,个位数字增加 1,那么求得的和的后两位数字是 72,问另一个加数原来是多少? 3. 有砖 26 块,兄弟二人争着去挑。
弟弟抢在前面,刚摆好砖,哥哥赶到了。
哥哥看弟弟挑的太多,就抢过一半。
弟弟不肯,又从哥哥那儿抢走一半。
哥哥不服,弟弟只好给哥哥 5 块,这时哥哥比弟弟多挑 2 块。
问最初弟弟准备挑多少块? 4. 甲、乙、丙三人钱数各不相同,甲最多,他拿出一些钱给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的钱最多;接着乙拿出一些钱给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的钱最多;最后丙拿出一些钱给甲和乙,使甲和乙的钱数都比原来增加了两倍,结果三人钱数一样多了。
如果他们三人共有 81 元,那么三人原来的钱分别是多少元? 5. 甲、乙、丙三人各有糖豆若干粒,甲从乙处取来一些,使自己的糖豆增加了一倍;接着乙从丙处取来一些,使自己的糖豆也增加了一倍;丙再从甲处取来一些,也使自己的糖豆增加了一倍。
现在三人的糖豆一样多。
如果开始时甲有 51 粒糖豆,那么乙最开始有多少粒糖豆? 6. 有一筐苹果,把它们三等分后还剩 2 个苹果;取出其中两份,将它们三等分后还剩两个;然后再取出其中两份,又将这两份三等分后还剩 2 个。
问:这筐苹果至少有几个? 7. 今年父亲的年龄是儿子的 5 倍,年后, 15 父亲的年龄是儿子年龄的 2 倍,现在父子的年龄各是多少岁?问: 8. 有老师和甲乙丙三个学生,现在老师的年龄刚好是三个学生的年龄和;9 年后,老师年龄为甲、乙两个学生的年龄和;又 3 年后,老师年龄为甲、丙两个学生的年龄和;再 3 年后,老师年龄为乙、丙两个学生的年龄和。
求现在各人的年龄。
9. 全家 4 口人,父亲比母亲大 3 岁,姐姐比弟弟大 2 岁。
数量关系八种必考题型讲解

数量关系分类型讲解--等差数列及其变式【例题1】2,5,8,()A 10B 11C 12D 13【解答】从上题的前3个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。
题中第二个数字为5,第一个数字为2,两者的差为3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8+3=11,第四项应该是11,即答案为B。
【例题2】3,4,6,9,(),18A 11B 12C 13D 14【解答】答案为C。
这道题表面看起来没有什么规律,但稍加改变处理,就成为一道非常容易的题目。
顺次将数列的后项与前项相减,得到的差构成等差数列1,2,3,4,5,……。
显然,括号内的数字应填13。
在这种题中,虽然相邻两项之差不是一个常数,但这些数字之间有着很明显的规律性,可以把它们称为等差数列的变式。
□ 等比数列及其变式【例题3】3,9,27,81()A 243B 342C 433D 135【解答】答案为A。
这也是一种最基本的排列方式,等比数列。
其特点为相邻两个数字之间的商是一个常数。
该题中后项与前项相除得数均为3,故括号内的数字应填243。
【例题4】8,8,12,24,60,()A 90B 120C 180D 240【解答】答案为C。
该题难度较大,可以视为等比数列的一个变形。
题目中相邻两个数字之间后一项除以前一项得到的商并不是一个常数,但它们是按照一定规律排列的;1,1 5,2,2 5,3,因此括号内的数字应为60×3=180。
这种规律对于没有类似实践经验的应试者往往很难想到。
我们在这里作为例题专门加以强调。
该题是1997年中央国家机关录用大学毕业生考试的原题。
【例题5】8,14,26,50,()A 76B 98C 100D 104【解答】答案为B。
这也是一道等比数列的变式,前后两项不是直接的比例关系,而是中间绕了一个弯,前一项的2倍减2之后得到后一项。
故括号内的数字应为50×2-2=98。
数量关系21种题型

数量关系21种题型数量关系是数学中的重要分支,它涉及到数值的比较、加减乘除和大小关系等,是数学学习的重要内容之一。
在各个考试中,数量关系也是常见的考察内容之一。
本文将针对数量关系的21种题型进行详细分析,以帮助读者更好地掌握数量关系的应用技巧。
1. 大小关系:常见的大小关系题目包括比较大小、填写大小关系、找规律等。
能够熟练掌握比大小的技巧,可以快速解决这类题目。
2. 增减关系:增减关系题目主要包括百分数和倍数的应用,要求考生能够对数值进行运算和计算。
3. 结论推理:这类题目主要考察考生的逻辑推理能力,需要根据给出的条件,得出结论。
4. 比例关系:比例关系包括比例和比例变化,需要考生掌握相关公式和计算方法。
5. 份额问题:这类问题主要考察考生的应用能力,以现实场景为背景,涉及到分配、合并、分拆等相关问题。
6. 均分问题:均分问题需要考生对平均数的概念有一定的掌握,能够通过平均数、中位数、众数等统计性指标进行计算。
7. 偏移问题:偏移问题主要考察考生的空间想象力和推理能力,需要计算经过移动后的位置。
8. 推理猜想:推理猜想需要考生对数据进行推测猜想,对未知答案进行分析。
9. 绝对值问题:绝对值问题主要考察考生的绝对值计算能力,需要计算绝对值的大小和正负关系。
10. 逆推问题:逆推问题需要考生从已知结果中推理出前提条件,考察考生的逆推能力。
11. 分组问题:分组问题主要考察考生的分类能力,需要对数据进行分类统计和分组计算。
12. 勾股定理问题:勾股定理问题需要考生掌握勾股定理的基本原理,能够运用勾股定理进行计算。
13. 比重问题:比重问题主要考察考生的密度计算能力,需要计算物质的比重和密度。
14. 分段函数问题:分段函数问题需要考生掌握函数分段的概念和计算方法,以及函数连续性的判断。
15. 面积周长问题:面积周长问题主要考察考生测量和计算面积和周长的能力。
16. 平均数问题:平均数问题需要考生掌握平均数的概念和计算方法,能够对数据进行平均值的计算。
行测数量关系13种题型的难易

行测数量关系13种题型的难易本文将介绍行测中数量关系部分的13种题型,难易程度排名,并给出解题技巧和注意事项。
1. 比例问题难度:易解题技巧:确定比例关系,利用交叉乘积法或倍数关系法解题。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
2. 百分数问题难度:易解题技巧:将百分数转化为小数或分数,利用倍数关系法解题。
注意事项:注意百分数与小数之间的转换关系。
3. 倍数问题难度:易解题技巧:确定倍数关系,利用比例关系法解题。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
4. 平均数问题难度:易解题技巧:求出总量和个数,计算平均数。
注意事项:注意数据是否齐全,是否有“除以个数”的错误。
5. 增减量问题难度:易解题技巧:确定增减量,并计算出最终的数量。
注意事项:注意单位转换,特别是涉及到货币单位的题目。
6. 比例分配问题难度:中等解题技巧:利用比例关系和总量计算各个部分的数量。
注意事项:注意比例关系的转化和单位转换。
7. 组合问题难度:中等解题技巧:将数量关系分解为若干个子问题求解,再合并计算。
注意事项:注意题目中是否有限制条件,如“每个组合中必须包含某个元素”。
8. 合作问题难度:中等解题技巧:利用公式计算出各个人的效率,再计算总体效率。
注意事项:注意题目中是否有限制条件,如“某个人每天只能工作4小时”。
9. 换算问题难度:中等解题技巧:利用换算公式计算出转换后的数量。
注意事项:注意单位换算的关系,如“1千克=1000克”。
10. 比例混合问题难度:中等解题技巧:利用比例关系解决混合问题。
注意事项:注意题目中是否有限制条件,如“混合物质的比例不能超过某个范围”。
11. 货币换算问题难度:中等解题技巧:利用货币换算公式计算出换算后的数量。
注意事项:注意货币单位的关系,如“1元=10角=100分”。
12. 线性方程问题难度:较难解题技巧:将数量关系表示为线性方程组,并解方程组。
注意事项:注意方程组的求解过程,如消元、代入等。
国考数量关系常考题型

国考数量关系常考题型
国考数量关系是指行测科目中的一种题型,主要考察考生的数学运算能力和逻辑思维能力。
以下是国考数量关系中常考的题型:
1. 计算问题:考察考生的基本数学运算能力,如加减乘除、百分数计算等。
2. 排列组合问题:考察考生对于排列组合原理的理解和应用能力。
3. 工程问题:考察考生对于实际工程问题的解决能力,如工时计算、成本分析等。
4. 利润问题:考察考生对于商业利润计算的理解和应用能力。
5. 行程问题:考察考生对于路程、速度和时间之间关系的理解和应用能力。
6. 容斥问题:考察考生对于集合交、并、补的计算原理的理解和应用能力。
7. 几何问题:考察考生对于几何图形的认识和计算能力,如平面几何、立体几何等。
8. 概率问题:考察考生对于概率计算的理解和应用能力。
9. 函数图像问题:考察考生对于函数图像的理解和分析能力。
10. 极值问题:考察考生对于最值问题的理解和应用能力,如最大值、最小值等。
数量关系题型

数理推断1、一次差后出现的往往都是等差等比,规律易寻23 25 28 33 40 ——51(注意一次差中出现质数数列)2 3 5 72、二次差,一次差的一次差,有时候一次差无果,莫放弃,再试,二次差的数已经是很简单了(二次差至少要三个数,除非二次差是两个相同的数,如例一,也就是说题干至少是5个数)39 62 91 126 149 178——21323 29 35 236 61 9 35 91 189——3418 26 56 9818 30 4212 14 19 29 46 ——722 5 10 173 5 76 8 ()27 442 ??17???——此三个问号相加为15,每个就是5括号在中间,先猜然后验3、倍数法,就是数之间没有明显的倍数关系和幂级关系,如数之间有明显的关系,则转而用其他方法,而不是次差100 20 2 2/15 1/150——1/37505倍10 15 20也有不明显的情况2 23 6 151倍 1.5 2 2.54、一次和法,次差和倍数差要么渐渐变大,要么渐渐变小,要么上下规律变动,若看到类似以下题型,很明显不符合次差和倍数差的规律1 2 3 4 7 6(注意划线部分为一次和标志)3 5 7 11 1382 98 102 118 62 138180 200 220 180但也会存在渐大题(一次和的最高境界了)3 5 22 42 83(思路:无倍数关系,用次差,一次无果、二次无果、一次和可行)5、,一次积法,明显的分数,而且出现前数的分母等于后数的分子,也就是两者乘积可以化简或化整 32 23 34 3 38 1 2 4 86、交叉/分组数,上述所有题型与交叉/分组数区别在于,题中给的项数,交叉/分组数多达8项以上(含括号项),其他的在5到7项之间,因为分组数两两组合后起码要三项才能显现规律,还要一项引出答案,8项一般是两两组合,9项一般是三三组合,另外一种就是出现两个括号,一定是交叉分组题,奇数项是交叉,偶数的两种都有可能 2 15 8 11 14 7 20 ()2、8、14、20为以6为等差的偶数数列15、11、7为以4为等差的奇数数列有时候能用交叉做的,分组不一定能做1 4 6 13 36 22 216 ()5 19 58 所以首要看交叉项7、上题也可以做分组数列解2 15 8 11 14 7 20 ()17 19 21也有5 46 97 14 () ()9 15 21但是,分组数中,并完全是组合的和,还可能是组合之间的加减乘除3 4 7 9 13 16 22 ()差1 2 3 41 1 8 16 7 21 4 162 ()乘1 2 3 4 52 4 8 24 9 36 7 35 6 ()除2 3 4 5 6九项一定是交叉1 4 3 52 6 4 7 ( )——3A.1B.2C.3D.48、分数数列,特点:出现分数项,但不是所有的有分数项都是(1)递推型:注意分子分母分别递推型和整个分数递推型的区别,但都有次差特征,见P80,例五属于整个分数递推型,分子分母分别递推可能没有答案,因为选项可能不是最简(2)化简法:无次差特征,一定要通过分子或分母进行变形才可以看出规律,至于如何变形,应题而异,本质思路是,化简成递推型来做题A、分组看待B、将分母或分子化成简单或相同,即广义通分C、反约分:即同时扩大,看分母或分子谁不符合历史潮流,扩大之即有规律可循,讲义例7—99、简单幂数列,有明显的幂数字特征,如0、1、4、8、9、16、25、27、32简单幂数列之最高境界(可能与分数混)16 5 ()1/7 1/64化简后:42 51407-18-210、幂修正数列,数列加上或减去一个简单的等差或等比数列可以把数列修正为简单幂数列,即相邻数发散,突破口:最大的已知数修正数列中较难的题型,序数修正数幂三个杂糅-2 -8 0 64 250-2*1^3 -1*2^3 0*3^3 1*4^3 2*5^32 3 10 15 26——35=6^2-11^2+1 2^2-1 3^2+111、整体趋势法,数列整体有变化趋势题型:1、单数推(也就是倍数法)2、两数推a b c d e () 一定是na+b=c或者a+nb=c3、多数推:前三数推出第四数递推的类型:和差积商倍方整体递减:差商整体递增:和方积倍做题方法1、看趋势,判断是用差商还是和方积倍2、看大数,看它适合哪种运算方法,使得前项得最大项3、用圈三数法试,也就是研究前两个数如何得到第三数圈三数法有三个结果,以差商为例1、直接通过加减乘除得到第三数2、差太远:就是商3、差别不大:修正法修正法:1、简单修正法:白痴都能看出来的修正,不解释2、前项相关数列修正法,亦称一格半,标志:相邻数之间有n-n+1倍数即n、n+1都好像可以例子:1 1 3 7 17 41 ()A89 B99 C109 D209思路:趋势——和方积倍——倍——修正——2/3倍数——一格半2 4 6 10 16(前两项)一般是直接相加减乘除1 2 6 16 44——120(前两项相加之和的两倍)6 7 16 51 208(前一项)一般是前项乘以*加上**1+1 *2+20 1 1 2 4 7 13(前三项)相加容易看出,相乘也未必难,往往括号前最后一项跟括号前最后第二项差距很大1 2 5 13 68*5+3整体题最高境界(前一项没什么,最怕的是前两项组合)1 3 2 7 17 121——20642*3+1 2*7+3 7*17+21 2 8 28 1001*2+2*3 2*2+8*33,3+2,5+3,9,(),13+6A.9+5B.10+5D.12+512、对称数列1 32 5 23 ()——113、图形数阵(50%几率会考)观察角度:上下、左右、交叉类型:四格圆、五格圆、九宫格圆图的运算角度1、两个圆里的奇数都是偶数个——加减入手2、一个圆里的奇数是奇数个——乘法入手五图圆中心必是等号右边,一般是交叉运算四图圆要是乘法入手,小的先乘九宫格1、每横每竖等比或等差(不常考)2、每横每竖加起来相等(不常考)3、横递推前两数如何变才成为第三数(第三数一定是最大数)Na+b=c a+nb=c n(a+b)=c am+nb=c特例:13.6/1.7=8——610.8/2.7=4——?=214、其他本数个十百相加为下数与其之差227 238 251 259——27511 13 8在上下波动看不出规律的的情况下,有可能是前两数相加的个位数6 7 3 0 3 3 6 9 5——413 10 3 3 6 9 15 14序数及其乘数之间的关系2,13,40,61,2*6+1=1313*3+1=4040*1.5+1=6161*0.75+1=答案数学公式题(规律比较明显)39-1,38+2,37-3,36+1,35-2,34+3,…求最后一个原题:77492816122加括号:77(4928)(1612)(2 (10))(2,12),(6,30),(25,100,)——96*6 -6 *5 -5 *4 -4(2.7,102,)( 4.2,103,)( 5.7,105,)(7.2,107,)8.7,1011数数数量关系12,1112,3112,211213,312213一个一一个二三个一一个二三个一二个二一个三趣味数列(去最小奇数倒排,数字已经失去计算的作用)637 951,59 736,6 795,976——692,12,121,1121,11211——111211(2的左右依次加1)5项(含括号)又不能一次差,差了3个,二次差就更不用说了。
数量关系简单题型

选择题
若某班级有男生24人,女生人数是男生的1/2,则女生人数为:
A. 8人
B. 12人(正确答案)
C. 16人
D. 24人
已知一个等差数列的首项为3,公差为2,第5项为:
A. 7
B. 9
C. 11(正确答案)
D. 13
一根绳子对折3次后,每段长度为2米,这根绳子原长为:
A. 3米
B. 6米
C. 8米
D. 16米(正确答案)
某商店进行打折促销,原价100元的商品打8折后售价为:
A. 20元
B. 50元
C. 80元(正确答案)
D. 100元
一个直角三角形的两条直角边分别为3和4,则斜边长为:
A. 5(正确答案)
B. 6
C. 7
D. 8
若一个圆的半径增加1倍,则其面积增加:
A. 1倍
B. 2倍
C. 3倍(正确答案)
D. 4倍
一列火车以60km/h的速度行驶,2小时内行驶的距离为:
A. 30km
B. 60km
C. 90km
D. 120km(正确答案)
已知x和y满足x + y = 10,且x - y = 2,则x的值为:
A. 4
B. 5
C. 6(正确答案)
D. 7
一个正方体的棱长是3cm,其体积为:
A. 9cm³
B. 18cm³
C. 27cm³(正确答案)
D. 36cm³。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数量关系题型
数量关系题型是指需要通过数据、数字等具体量来描述和分析问题的
题型。
这种题型需要考生掌握一定的数字分析和计算能力,能够运用
数学思维分析和解决问题。
下面是一些常见的数量关系题型及其解法:
一、比例关系题型
比例关系题型是指要求考生根据所给定的比例,计算相应的数值关系。
常见的比例关系题型包括:
1.比例分配题型
比例分配题型常常涉及到价格、工资、奖金等经济问题。
考生需要根
据比例关系,计算相应的数值。
例如:小明的爷爷去年买下一处房产,小明的父亲占1/2,而小明本人
占1/3,那么小明父亲的部分价值是多少?
解答:小明爷爷的房产部分总价值就是1,小明父亲的部分价值是1/2,小明的部分价值是1/3,因此小明父亲的部分价值就是
1/2÷(1/2+1/3)=3/5,也就是0.6。
2.比例倍数题型
比例倍数题型通常用于计算某些连续或离散的数据之间的倍数关系,
如求一个数值是另一数值的几倍。
例如:A、B、C三个人三人的年龄比是3∶4∶5,而A的年龄是10岁,那么B的年龄是多少?
解答:A的年龄是3的倍数,B的年龄是4的倍数,C的年龄是5的倍数,假设B的年龄是4x,由于A的年龄是10岁,因此A的年龄是3x,C的年龄是5x,因此3x+4x+5x=10+要求B的年龄,所以4x=20,因此
B的年龄是20岁。
二、百分数题型
百分数题型是一种以百分数为基础的题型,考生需要能够将百分数转
化为实际数值。
常见的百分数题型包括:
1.百分比计算题型
百分比计算题型常常涉及到百分比税率、优惠折扣等经济问题。
考生
需要根据百分比关系,计算相应的数值。
例如:一种商品以原价20元出售,现在打折10%,那么现价是多少?
解答:打折10%相当于打九折,即价格是20×0.9=18元。
2.百分比增长和减少题型
百分比增长和减少题型通常用于计算某些数据随着时间的变化而发生的百分比变化。
例如:某钢铁厂去年的产量是10万吨,今年增长了10%,今年的产量是多少?
解答:今年的产量相当于去年的产量加上10%的增长量,即
100000×1.1=110000吨。
三、平均数题型
平均数题型是指要求考生根据所给的数据,计算其平均值,或计算数据之间的平均差距。
常见的平均数题型包括:
1.求平均数题型
求平均数题型通常问考生求一个数据集合中的平均值,是比较基础的计算类型。
例如:在一场考试中,小明的语文成绩是90,数学成绩是80,英语成绩是70,那么他的平均成绩是多少?
解答:小明的三科平均成绩相当于三科成绩之和除以3,即
(90+80+70)/3=80分。
2.平均数关系题型
平均数关系题型涉及到两个集合之间的平均数关系。
考生需要根据所给的数据,计算两个集合之间的平均值、增长量或减少量等。
例如:小红在A、B两个集合中各取5个数,A的平均数是10,B的平均数是12,那么两个集合合并后的平均数是多少?
解答:合并后的集合共10个数,这10个数的平均数等于A中这5个数的平均数加上B中这5个数的平均数除以2,即(10+12)/2=11。
以上就是数量关系题型的一些常见类型和解法,需要考生掌握具体的计算方法,运用数学思维和逻辑推理完成题目。