高一数学必修2第二章教案(完整版)
高一数学必修2全套教案(共62页)

高中数学新人教版A必修二全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。
教师对学生的活动及时给予评价。
2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。
根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。
(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。
2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。
在此基础上得出棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。
5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
人教B版高中数学必修2教学案:2.1.2平面直角坐标系中的基本公式(教师版)

2.1.2 平面直角坐标系中的基本公式【学习要求】1.理解两点间的距离的概念,掌握两点间的距离公式,并会求两点间的距离.2.理解坐标法的意义,并会用坐标法研究问题.【学法指导】通过在直角坐标系中构造直角三角形并应用勾股定理,探究出两点间距离公式,通过公式的应用,初步了解解析法证明的思路和方法,体验由特殊到一般,再由一般到特殊的思想及“数”和“形”结合转化思想.填一填:知识要点、记下疑难点1.两点间的距离公式:P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离表示为d(P 1,P 2)=|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2;(x -a )2+(y -b )2的几何意义是: 两点P 1(x ,y),P 2(a ,b) 的距离 .2.中点公式:已知平面直角坐标系中的两点A(x 1,y 1),B(x 2,y 2),点M(x ,y)是线段AB 的中点,则x =x 1+x 22,y =y 1+y 22. 研一研:问题探究、课堂更高效[问题情境]我们已经知道数轴上的两点A 、B 的距离|AB|=|x A -x B |,那么如果已知平面上两点P 1(x 1,y 1),P 2(x 2,y 2), 如何求P 1,P 2的距离d(P 1P 2)呢?本节我们就来研究这个问题.探究点一 两点间的距离公式问题1 在平面直角坐标系中,有序实数对构成的集合与坐标平面内点的集合具有怎样的对应关系?有序实数对(x ,y)与点P 对应时x ,y 分别叫做什么?答: 具有一一对应关系.有序实数对(x ,y)与点P 对应时,(x ,y)叫做点P 的坐标.其中x 叫做点P 的横坐标,y 叫做点P 的纵坐标.问题2 在x 轴上,已知点P 1(x 1,0)和P 2(x 2,0),那么点P 1和P 2的距离为多少?答: |P 1P 2|=|x 1-x 2|.问题3 在y 轴上,已知点P 1(0,y 1)和P 2(0,y 2),那么点P 1和P 2的距离为多少?答: |P 1P 2|=|y 1-y 2|.问题4 如图,已知x 轴上一点P 1(x 0,0)和y 轴上一点P 2(0,y 0),那么点P 1和P 2的距离为多少?答: |P 1P 2|=x 20+y 20.问题5 在平面直角坐标系中,已知点A(x ,y) ,原点O 和点A 的距离d(O ,A)等于什么?答: 如下图,当点A 不在坐标轴上时,从点A(x ,y)作x 轴的垂线段AA1,垂足为A 1,再运用勾股定理得d(O ,A)=x 2+y 2 .问题6 一般地,已知平面上两点P 1(x 1,y 1),P 2(x 2,y 2),如何利用上述方法求点P 1和P 2的距离?答: 当x 1≠x 2,y 1=y 2时,|P 1P 2|=|x 2-x 1|;当x 1=x 2,y 1≠y 2时,|P 1P 2|=|y 2-y 1|;当x 1≠x 2,y 1≠y 2时,如图,在Rt △P 1QP 2中,由勾股定理知,|P 1P 2|2=|P 1Q|2+|QP 2|2,所以d(P 1,P 2)=|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.小结:两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式d(P 1,P 2)=|P 1P 2|=2-x 12+2-y 12. 例1 已知点A(1,2),B(3,4),C(5,0),求证:△ABC 是等腰三角形.证明: 因为d(A ,B)=(3-1)2+(4-2)2=8, d(A ,C)=(5-1)2+(0-2)2=20, d(C ,B)=(5-3)2+(0-4)2=20,即|AC|=|BC|. 又可验证A ,B ,C 不共线,所以△ABC 是等腰三角形.小结:本题是用代数的方法证明几何问题,这就是解析法. 具体来说就是根据图形特点,建立适当的直角坐标系,利用坐标解决有关问题,这种方法叫坐标的方法,也称为解析法.跟踪训练1 已知点A(-3,4),B(2,3),试在x 轴上找一点P ,使得d(P ,A)=d(P ,B),并求出d(P ,A). 解: 设P(x,0),由题意得d(P ,A)=(x +3)2+(0-4)2=x 2+6x +25, d(P ,B)=(x -2)2+(0-3)2=x 2-4x +7 由d(P ,A)=d(P ,B),即x 2+6x +25=x 2-4x +7,化简得x =-95,故P 点的坐标为⎝⎛⎭⎫-95,0, d(P ,A)=⎝⎛⎭⎫-3+952+42=21095. 例2 证明:平行四边形四条边的平方和等于两条对角线的平方和.证明: 如图所示,以顶点A 为坐标原点,AB 边所在的直线为x 轴,建立直角坐标系,有A(0,0).设B(a,0),D(b ,c),由平行四边形的性质知点C 的坐标为(a +b ,c),因为|AB|2=a 2,|CD|2=a 2,|AD|2=b 2+c 2,|BC|2=b 2+c 2,|AC|2=(a +b)2+c 2,|BD|2=(b -a)2+c 2. 所以|AB|2+|CD|2+|AD|2+|BC|2=2(a 2+b 2+c 2),|AC|2+|BD|2=2(a 2+b 2+c 2).所以|AB|2+|CD|2+|AD|2+|BC|2=|AC|2+|BD|2.因此,平行四边形四条边的平方和等于两条对角线的平方和.小结: 用解析法证几何题的注意事项:(1)首先要根据题设条件建立适当的直角坐标系,然后根据题中所给的条件,设出已知点的坐标;(2)再根据题设条件及几何性质推出未知点的坐标;(3)另外,在证题过程中要不失一般性. 跟踪训练2 求函数y =x 2+1+x 2-4x +8的最小值.解: ∵函数的解析式可化为y =x 2+1+x 2-4x +8=(x -0)2+(0-1)2+(x -2)2+(0-2)2.令A(0,1),B(2,2),P(x,0),则问题转化为在x 轴上求一点P(x,0),使得|PA|+|PB|取最小值.∵A 关于x 轴的对称点为A ′(0,-1),∴(|PA|+|PB|)min =|A ′B|=(2-0)2+(2+1)2=4+9=13.即函数y =x 2+1+x 2-4x +8的最小值为13.探究点二 中点公式问题 已知A(x 1,y 1),B(x 2,y 2),M(x ,y)是线段AB 的中点,如何用A ,B 点的坐标表示M 点的坐标?答: 如图,过点A ,B ,M 分别向x 轴,y 轴作垂线AA 1,AA 2,BB 1,BB 2,MM 1,MM 2,垂足分别为A 1(x 1,0),A 2(0,y 1),B 1(x 2,0),B 2(0,y 2),M 1(x,0),M 2(0,y).因为M 是线段AB 的中点,所以点M 1和点M 2分别是A 1B 1和A 2B 2的中点,即A 1M 1=M 1B 1,A 2M 2=M 2B 2.所以x -x 1=x 2-x ,y -y 1=y 2-y. 即x =x 1+x 22,y =y 1+y 22. 这就是线段中点坐标的计算公式,简称中点公式. 例3 已知▱ABCD 的三个顶点A(-3,0),B(2,-2),C(5,2),求顶点D 的坐标(如图所示).解: 因为平行四边形的两条对角线的中点相同,所以它们的坐标也相同.设点D 的坐标为(x ,y),则⎩⎪⎨⎪⎧x +22=-3+52=1y -22=0+22=1,解得⎩⎪⎨⎪⎧ x =0y =4.所以点D 的坐标为(0,4), 小结: 利用解析法解决几何中的问题,要充分利用几何性质. 跟踪训练3 证明:直角三角形斜边的中点到三个顶点的距离相等. 证明: 如图所示,以直角三角形的直角顶点C 为坐标原点,一直角边CA 所在直线为x 轴,建立直角坐标系, 则C(0,0).设A(a,0),B(0,b), 则斜边的中点M 的坐标为⎝⎛⎭⎫a 2,b 2. |OM|=a 24+b 24=12a 2+b 2, |BM|=a 24+⎝⎛⎭⎫b 2-b 2=12a 2+b 2, |MA|=⎝⎛⎭⎫a -a 22+b 24=12a 2+b 2. |MA|=⎝⎛⎭⎫a -a 22+b 24=12a 2+b 2. 即直角三角形斜边的中点到三个顶点的距离相等.练一练:当堂检测、目标达成落实处1.已知A(-3,5),B(2,15),则d(A ,B)等于( ) A .5 2 B .513 C .517 D .5 5 解析: d(A ,B)=(2+3)2+(15-5)2 =52+102=5 5. 2.已知两点A(a ,b),B(c ,d),且a 2+b 2-c 2+d 2=0,则 ( )A .原点一定是线段AB 的中点 B .A 、B 一定都与原点重合C .原点一定在线段AB 上但不是中点D .结论都不正确 解析: 由a 2+b 2-c 2+d 2=0,得:a 2+b 2=c 2+d 2,即d(O ,A)=d(O ,B).所以A 、B 到原点O 的距离相等, 故选项A 、B 、C 都错,故选D.3.已知平面内平行四边形的三个顶点A(-2,1)、B(-1,3)、C(3,4),求第四个顶点D 的坐标.解: 分以下三种情况(如图所示).(1)构成▱ABCD 1(以AC 为对角线).设D 1(x 1,y 1),AC 的中点坐标为⎝⎛⎭⎫12,52,其也为BD 1的中点坐标,∴12=-1+x 12,52=3+y 12.∴x 1=2,y 1=2,即D 1(2,2).(2)以BC 为对角线构成▱ACD 2B ,同理得D 2(4,6).(3)以AB 为对角线构成▱ACBD 3,同理得D 3(-6,0).课堂小结:1.坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.平面几何中与线段长有关的定理和重要结论,可以用坐标法来证明.用坐标法解题时,由于平面图形的几何性质是不依赖于平面直角坐标系的建立而改变的,但不同的平面直角坐标系会使计算有繁简之分,因此在建立直角坐标系时必须“避繁就简”.。
高中必修二数学全册教案

高中必修二数学全册教案
第一节:直线和平面的方程
教学目标:学生能够理解和应用直线和平面的方程。
教学重点:直线和平面的一般方程、截距式方程、点斜式方程、交点坐标、平面的截距式方程。
教学难点:平面的一般方程的推导。
教学过程:
1.引入直线和平面的方程。
通过实际例子引导学生了解直线和平面的一般方程。
2.介绍直线的方程。
讲解直线的截距式方程和点斜式方程,并通过例题演示如何转换。
3.介绍平面的方程。
学习平面的一般方程和截距式方程,并讲解如何根据平面上的点和法向量来确定平面的方程。
4.练习。
让学生进行练习,巩固直线和平面的方程的知识。
5.总结。
总结本节课的重点内容,并提醒学生注意要点。
教学资源:教材、黑板、彩色粉笔、习题册。
课后作业:完成课后习题,练习直线和平面的方程,并思考如何应用到实际生活中。
扩展阅读:了解不同方程的应用领域,并与实际生活进行联系。
新教材高中数学第二章等式性质与不等式性质教案新人教A版必修第一册

新教材高中数学新人教B 版选择性必修第二册:第二章一元二次函数、方程和不等式2.1 等式性质与不等式性质【素养目标】1.了解现实世界和日常生活中的等量关系与不等关系.(数学抽象)2.了解不等式(组)的实际背景,会用不等式(组)表示不等关系.(数学建模)3.掌握不等式的性质及应用.(逻辑推理)4.会用作差法(或作商法)比较两个实数或代数式值的大小.(数学运算)5.能运用等式的性质或不等式的性质解决相关问题.(逻辑推理)【学法解读】在相等关系与不等关系的学习中,学生通过类比学过的等式与不等式的性质,进一步探索等式与不等式的共性与差异.第1课时不等关系与比较大小必备知识·探新知基础知识知识点1 不等式与不等关系不等式的定义所含的两个要点.(1)不等符号<,>,______,______或≠.(2)所表示的关系是____________.思考1:不等式“a b ≤”的含义是什么?只有当“a b <”与“a b =”同时成立时,该不等式才成立,是吗?提示:不等式a b ≤应读作“a 小于或者等于b ”,其含义是指“a b <或者a b =”,等价于“a 不大于b ”,即若a b <或a b =之中有一个正确,则a b ≤正确.知识点2 比较两实数a ,b 大小的依据000a b a b a b ->⎧⎪-<⎨⎪-=⎩如果依据如果如果比较两实数a ,b 的大小⎩⎪⎨⎪⎧ 依据⎩⎪⎨⎪⎧ 如果a -b>0,那么________如果a -b<0,那么________如果a -b =0,那么________结论:确定任意两个实数a ,b 的大小关系,只 需确定它们的差a -b 与0的大小关系思考2:(1)在比较两实数a ,b 大小的依据中,a ,b 两数是任意实数吗?(2)若“0b a ->”,则a ,b 的大小关系是怎样的?提示:(1)是 (2)b a >基础自测1.判断正误(对的打“√”,错的打“×”)(1)不等式2x ≥的含义是指x 不小于2.( )(2)若20x =,则0x ≥.( )(3)若10x -≤,则1x <.( )(4)两个实数a ,b 之间,有且只有a b >,a b =,a b <三种关系中的一种.( )[解析] (1)不等式2x ≥表示2x >或2x =,即x 不小于2.(2)若20x =,则0x =,所以0x ≥成立.(3)若10x -≤,则1x <或者1x =,即1x ≤.(4)任意两数之间,有且只有a b >,a b =,a b <三种关系中的一种,没有其他大小关系.2.大桥桥头立着的“限重40吨”的警示牌,是提示司机要安全通过该桥,应使车和货物的总质量T 满足关系( )A .40T <B .40T >C .40T ≤D .40T ≥3.已知1x <,则22x +与3x 的大小关系为_____________.关键能力·攻重难题型探究题型一 用不等式(组)表示不等关系例1 某商人如果将进货单价为8元的商品按每件10元销售,每天可销售100件,现在他采用提高售价,减少进货量的办法增加利润.已知这种商品的售价每提高1元,销售量就相应减少10件.若把提价后商品的售价设为x 元,怎样用不等式表示每天的利润不低于300元?[分析] 由“这种商品的售价每提高1元,销售量就相应减少10件”确定售价变化时相应每天的利润,由“每天的利润不低于300元”确定不等关系,即可列出不等式.[解析] 若提价后商品的售价为x 元,则销售量减少10101x -⨯件,因此,每天的利润为810010()[)]0(1x x ---元,则“每天的利润不低于300元”可以用不等式表示为810010()[(10300)]x x ---≥⋅.[归纳提升] 将不等关系表示成不等式的思路(1)读懂题意,找准不等式所联系的量.(2)用适当的不等号连接.例2 某矿山车队有4辆载重为10t 的甲型卡车和7辆载重为6t 的乙型卡车,且有9名驾驶员,此车队每天至少要运360t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式.[分析] 首先用变量x ,y 分别表示甲型卡车和乙型卡车的车辆数,然后分析已知量和未知量间的不等关系:(1)卡车数量与驾驶员人数的关系;(2)车队每天运矿石的数量;(3)甲型卡车的数量;(4)乙型卡车的数量.再将不等关系用含未知数的不等式表示出来,要注意变量的取值范围.[解析] 设每天派出甲型卡车x 辆,乙型卡车y 辆,则9106683600407,x y x y x y x y N +≤⎧⎪⨯+⨯≥⎪⎪≤≤⎨⎪≤≤⎪∈⎪⎩即954300407,x y x y x y x y N+≤⎧⎪+≥⎪⎪≤≤⎨⎪≤≤⎪∈⎪⎩ [归纳提升] 用不等式组表示不等关系的方法首先要先弄清题意,分清是常量与常量、变量与变量、函数与函数还是一组变量之间的不等关系;然后类比等式的建立过程找到不等词,选准不等号,将量与量之间用不等号连接;最后注意不等式与不等关系的对应,不重不漏,尤其要检验实际问题中变量的取值范围.【对点练习】❶用一段长为30m 的篱笆围成一个一边靠墙的矩形菜园,墙长18m ,要求菜园的面积不小于2110m ,靠墙的一边长为xm ,试用不等式表示其中的不等关系.[解析] 由于矩形菜园靠墙的一边长为xm ,而墙长为18m ,所以018x <≤, 这时菜园的另一条边长为30(15)()22x x m -=-.因此菜园面积(15)2x S x =⋅-,依题意有110S ≥, 即(15)1102xx -≥, 故该题中的不等关系可用不等式组表示为018(15)1102x x x <≤⎧≥⎪⎨-⎪⎩ 题型二 比较实数的大小例3 已知a ,b[解析] 方法一(作差法):-=+===. ∵a ,b0>,20≥,∴0≥≥方法二(作商法)===11==+≥.∵0>0>+≥方法三(平方后作差):∵222a b b a =+,2a b =++∴222()()a b a bab +--=. ∵0a >,0b >,∴2()()0a b a b ab+-≥.又0+>0>+≥[归纳提升] 比较大小的方法1.作差法的依据:0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<. 步骤:作差—变形—判断差的符号—得出结论.注意:只需要判断差的符号,至于差的值究竟是多少无关紧要,通常将差化为完全平方式的形式或多个因式的积的形式.2.作商法的依据:()0b ><时,1()a a b b >⇔><;1a a b b =⇔=;1()a a b b<⇔<>. 步骤:作商——变形——判断商与1的大小——得出结论.注意:作商法的适用范围较小,且限制条件较多,用的较少.3.介值比较法:(1)介值比较法的理论根据:若a b >,b c >,则a c >,其中b 是a 与c 的中介值.(2)介值比较法的关键是通过不等式的恰当放缩,找出一个比较合适的中介值.【对点练习】❷当1x ≤时,比较33x 与231x x -+的大小.[解析] 3232()()()331331x x x x x x --+--=+ 231()()1x x x +=--231()()1x x =+-.因为1x ≤,所以10x ≤-, 而2310x +>.所以2()(10)31x x +-≤,所以32331x x x ≤-+.第2课时 不等式性质必备知识·探新知基础知识知识点1不等式的性质性质1 a b >⇔ ________;(对称性)性质2 a b >,b c >⇒ ________;(传递性)性质3 a b >⇒ ______________;(同加保序性)推论:a b c >⇒+___________;(移项法则)性质4 a b >,0c >⇒ __________,(乘正保序性)a b >,0c ac bc <⇒<;(乘负反序性)性质5 a b >,c d >⇒ ______________;(同向相加保序性)性质6 0a b >>,0c d >>⇒ __________;(正数同向相乘保序性)性质7 0a b >>⇒ __________()2n N n ∈≥,.(非负乘方保序性)思考:(1)性质3的推论实际就是解不等式中的什么法则?(2)性质4就是在不等式的两边同乘以一个不为零的数,不改变不等号的方向,对吗?为什么?(3)使用性质6,7时,要注意什么条件?提示:(1)移项法则.(2)不对.要看两边同乘以的数的符号,同乘以正数,不改变不等号的方向,但是同乘以负数时,要改变不等号的方向.(3)各个数均为正数.基础自测1.判断正误(对的打“√”,错的打“×”)(1)若a b >,则22ac bc >.( )(2)同向不等式相加与相乘的条件是一致的.( )(3)设a ,b R ∈,且a b >,则33a b >.( )(4)若a c b d >++,则a b >,c d >.( )[解析] (1)由不等式的性质,22ac bc a b >⇒>;反之,0c =时,a b >22ac bc >.(2)相乘需要看是否00a b c d >>⎧⎨>>⎩,而相加与正、负和零均无关系.(3)符合不等式的可乘方性.(4)取4a =,5c =,6b =,2d =,满足a c b d >++,但不满足a b >,故此说法错误.2.设b a <,d c <,则下列不等式中一定成立的是( )A .a c b d ->-B .ac bd >C .a c b d >++D .a d b c >++3.已知0a <,10b -<<,那么下列不等式成立的是( )A .2a ab ab >>B .2ab ab a >>C .2ab a ab >>D .2ab ab a >>[解析] 由10b -<<,可得21b b <<,又0a <,∴2ab ab a >>,故选D .4.用不等号“>”或“<”填空:(1)如果a b >,c d <,那么a c -______b d -;(2)如果0a b >>,0c d <<,那么ac ______bd ;(3)如果0a b >>,那么21a ______21b ; (4)如果0a b c >>>,那么c a ______c b . [解析] (1)∵cd ->-,∴c d ->-,∵a b >,∴a c b d ->-.(2)∵0c d <<,∴0c d ->->.∵0a b >>,∴ac bd ->-,∴ac bd <.(3)∵0a b >>,∴0ab >,10ab >,∴110a b ab ab>>, ∴110b a >>,∴2211()()b a >,即2211a b<. (4)∵0a b >>,所以10ab >,10ab >.于是11a b ab ab ⋅>⋅,即11b a >,即11a b <.∵0c >,∴c c a b<. 关键能力·攻重难题型探究例1 若0a b <<,则下列结论正确的是( )A .22a b <B .2ab b <C .11a b> D .22ac bc > [分析] 通过赋值可以排除A ,D ,根据不等式的性质可判断B ,C 正误.[解析] 若0a b <<,对于A 选项,当2a =-,1b =-时,不成立;对于B 选项,等价于a b >,故不成立;对于C 选项,110b a<<,故选项正确;对于D 选项,当0c =时,不正确. [归纳提升] 判断关于不等式的命题真假的两种方法(1)直接运用不等式的性质:把要判断的命题和不等式的性质联系起来考虑,找到与命题相近的性质,然后进行推理判断.(2)特殊值验证法:给要判断的几个式子中涉及的变量取一些特殊值,然后进行比较、判断.【对点练习】❶设a ,b 是非零实数,若a b <,则下列不等式成立的是( )A .22a b <B .22ab a b <C .2211ab a b <D .b a a b< [解析] 当0a <,0b >时,22a b <不一定成立,故A 错.因为22()ab a b ab b a =--,0b a ->,ab 符号不确定,故B 错.2222110a b ab a b a b --=<,所以2211ab a b <,故C 正确.D 中b a 与a b的大小不能确定. 题型二 利用不等式的性质证明不等式例2设a b c >>,求证:111>0a b b c c a++---. [分析] 不等式证明,就是利用不等式性质或已知条件,推出不等式成立.[证明] 因为a b c >>,所以c b ->-.所以0a c a b ->->,所以11>>0a b a c--. 所以110a b c a+>--.又0b c ->, 所以10b c >-.所以1110a b b c c a ++>---. [归纳提升] 利用不等式的性质证明不等式注意事项(1)利用不等式的性质及其推论可以证明一些不等式.解决此类问题一定要在理解的基础上,记准、记熟不等式的性质并注意在解题中灵活准确地加以应用.(2)应用不等式的性质进行推导时,应注意紧扣不等式的性质成立的条件,且不可省略条件或跳步推导,更不能随意构造性质与法则.【对点练习】❷若0a b >>,0c d <<,0e <,求证:22>()()e e a c b d --. [证明] 因为0c d <<,所以0c d ->->.又因为0a b >>,所以0a c b d ->->.所以22()()0a c b d ->->.所以22110()()a c b d <>--. 又因为0e <,所以22>()()e e a c b d --. 题型三 利用不等式的性质求范围例3 已知14x -<<,23y <<.(1)求x y -的取值范围.(2)求32x y +的取值范围.[解析] (1)因为14x -<<,23y <<,所以32y -<-<-,所以42x y -<-<.(2)由14x -<<,23y <<,得3312x -<<,426y <<,所以13218x y <<+.[归纳提升] 利用不等式的性质求取值范围的策略(1)建立待求范围的整体与已知范围的整体的关系,最后利用一次不等式的性质进行运算,求得待求的范围.(2)同向(异向)不等式的两边可以相加(相减),这种转化不是等价变形,如果在解题过程中多次使用这种转化,就有可能扩大其取值范围.【对点练习】❸已知1025m <<,3015n -<<-,求m n -与m n的取值范围. [解析] 因为3015n -<<-,所以1530n <-<,所以 10152530m n <-<++,即2555m n <-<.因为3015n -<<-,所以1111530n -<-<,所以1113015n <-<,又111<<3015n , 所以10253015m n <-<,即1533m n <-<. 所以5133m n -<<-. 误区警示错用同向不等式性质例4 已知1260a <<,1536b <<,a b的取值范围是_____________. [错解] ∵1260a <<,1536b <<,∴1260<<1536a b , ∴45<<53a b .故填45<<53a b . [错因分析] 把不等式的同向不等式(正项)相乘的性质用到了除法,从而导致错误.[正解] ∵1536b <<,∴1113615b <<,又1260a <<,∴12603615a b <<,∴ 143a b <<,故填143a b<<. [方法点拨] 若题目中指定代数式的取值范围,必须依据不等式的性质进行求解,同向不等式具有可加性与可乘性,但是不能相减或相除,解题时必须利用性质,步步有据,避免改变代数式的取值范围.学科素养不等关系的实际应用不等关系是数学中最基本的部分关系之一,在实际问题中有广泛应用,也是高考考查的重点内容.例5 有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m )分别为x ,y ,z ,且x y z <<,三种颜色涂料的粉刷费用(单位:元/2m )分别为a ,b ,c ,且a b c <<.在不同的方案中,最低的总费用(单位:元)是( )A .ax by cz ++B .az by cx ++C .ay bz cx ++D .ay bx cz ++[分析] 本题考查实际问题中不等关系的建立及利用不等式的性质比较大小.[解析] 方法一:因为x y z <<,a b c <<,所以0()()()()()ax by cz az by cx a x z c z x x z a c ++-++--=--=>+,故ax by cz az by cx ++>++;同理,0()()()()()ay bz cx ay bx cz b z x c x z x z c b ++-++--=--=<+,故ay bz cx ay bx cz ++<++.又0()()()()()az by cx ay bz cx a z y b y z a b z y ++-++--=--+<=,故az by cx ay bz cx ++<++.综上可得,最低的总费用为az by cx ++.方法二:采用特殊值法进行求解验证即可,若1x =,2y =,3z =,1a =,2b =,3c =,则14ax by cz ++=,10az by cx ++=,11ay bz cx ++=,13ay bx cz ++=.由此可知最低的总费用是az by cx ++.[归纳提升] 对于不等关系判断问题的求解,一般需要通过作差进行推理论证,对运算能力要求较高,但对于具有明确不等关系的式子进行判断时,特殊值法是一种非常值得推广的简便方法.。
人教版高中数学必修二 空间中直线与直线之间的位置关系公开课优质教案

§2.1.2 空间中直线与直线之间的位置关系一、教材分析空间中直线与直线的位置关系是立体几何中最基本的位置关系,直线的异面关系是本节的重点和难点.异面直线的定义与其他概念的定义不同,它是以否定形式给出的,因此它的证明方法也就与众不同.公理4是空间等角定理的基础,而等角定理又是定义两异面直线所成角的基础,请注意知识之间的相互关系,准确把握两异面直线所成角的概念.二、教学目标1.知识与技能(1)了解空间中两条直线的位置关系;(2)理解异面直线的概念、画法,培养学生的空间想象能力;(3)理解并掌握公理4;(4)理解并掌握等角公理;(5)异面直线所成角的定义、范围及应用。
2.过程与方法让学生在学习过程中不断归纳整理所学知识.3.情感、态度与价值让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣.三、重点难点两直线异面的判定方法,以及两异面直线所成角的求法.四、课时安排1课时五、教学设计(一)导入新课思路1.(情境导入)在浩瀚的夜空,两颗流星飞逝而过(假设它们的轨迹为直线),请同学们讨论这两直线的位置关系. 学生:有可能平行,有可能相交,还有一种位置关系不平行也不相交,就像教室内的日光灯管所在的直线与黑板的左右两侧所在的直线一样.教师:回答得很好,像这样的两直线的位置关系还可以举出很多,又如学校的旗杆所在的直线与其旁边公路所在的直线,它们既不相交,也不平行,即不能处在同一平面内.今天我们讨论空间中直线与直线的位置关系.思路2.(事例导入)观察长方体(图1),你能发现长方体ABCD—A′B′C′D′中,线段A′B所在的直线与线段C′C所在直线的位置关系如何?图1(二)推进新课、新知探究、提出问题①什么叫做异面直线?②总结空间中直线与直线的位置关系.③两异面直线的画法.④在同一平面内,如果两直线都与第三条直线平行,那么这两条直线互相平行.在空间这个结论成立吗?⑤什么是空间等角定理?⑥什么叫做两异面直线所成的角?⑦什么叫做两条直线互相垂直?活动:先让学生动手做题,再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路.讨论结果:①异面直线是指不同在任何一个平面内的两条直线.它是以否定的形式给出的,以否定形式给出的问题一般用反证法证明.②空间两条直线的位置关系有且只有三种.结合长方体模型(图1),引导学生得出空间的两条直线的三种位置关系:⎪⎩⎪⎨⎧⎩⎨⎧.,:;,:;,:没有公共点不同在任何一个平面内异面直线没有公共点同一平面内平行直线有且只有一个公共点同一平面内相交直线共面直线 ③教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如图2.图2④组织学生思考:长方体ABCD —A′B′C′D′中,如图1, BB′∥AA′,DD′∥AA′,BB′与DD′平行吗? 通过观察得出结论:BB′与DD′平行. 再联系其他相应实例归纳出公理4.公理4:平行于同一条直线的两条直线互相平行. 符号表示为:a ∥b,b ∥c ⇒a ∥c.强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用. 公理4是:判断空间两条直线平行的依据,不必证明,可直接应用.⑤等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. ⑥怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?可以把异面直线所成角转化为平面内两直线所成角来表示.如图3,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.图3针对这个定义,我们来思考两个问题.问题1:这样定义两条异面直线所成的角,是否合理?对空间中的任一点O有无限制条件?答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′(图4),过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等,即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上(如图3).图4问题2:这个定义与平面内两相交直线所成角是否矛盾?答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.⑦在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直.例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(图5).图5(三)应用示例思路1例1 如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.图6求证:四边形EFGH 是平行四边形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,且FG=BD 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 变式训练1.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD. 求证:四边形EFGH 是菱形.证明:连接EH ,因为EH 是△ABD 的中位线,所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,EF ∥AC ,且FG=BD 21,EF=AC 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 因为AC=BD,所以EF=EH. 所以四边形EFGH 为菱形.2.如图6,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点且AC=BD ,AC ⊥BD.求证:四边形EFGH 是正方形.证明:连接EH ,因为EH 是△ABD 的中位线, 所以EH ∥BD ,且EH=BD 21. 同理,FG ∥BD ,EF ∥AC ,且FG=BD 21,EF=AC 21. 所以EH ∥FG ,且EH=FG.所以四边形EFGH 为平行四边形. 因为AC=BD ,所以EF=EH.因为FG ∥BD ,EF ∥AC ,所以∠FEH 为两异面直线AC 与BD 所成的角.又因为AC ⊥BD ,所以EF ⊥EH. 所以四边形EFGH 为正方形.点评:“见中点找中点”构造三角形的中位线是证明平行常用的方法. 例2 如图7,已知正方体ABCD —A′B′C′D′.图7(1)哪些棱所在直线与直线BA′是异面直线? (2)直线BA′和CC′的夹角是多少? (3)哪些棱所在直线与直线AA′垂直?解:(1)由异面直线的定义可知,棱AD 、DC 、CC′、DD′、D′C′、B′C′所在直线分别与BA′是异面直线. (2)由BB′∥CC′可知,∠B′BA′是异面直线BA′和CC′的夹角,∠B′BA′=45°,所以直线BA′和CC′的夹角为45°.(3)直线AB 、BC 、CD 、DA 、A′B′、B′C′、C′D′、D′A′分别与直线AA′垂直. 变式训练如图8,已知正方体ABCD —A′B′C′D′.图8(1)求异面直线BC′与A′B′所成的角的度数;(2)求异面直线CD′和BC′所成的角的度数.解:(1)由A′B′∥C′D′可知,∠BC′D′是异面直线BC′与A′B′所成的角,∵BC′⊥C′D′,∴异面直线BC′与A′B′所成的角的度数为90°.(2)连接AD′,AC,由AD′∥BC′可知,∠AD′C是异面直线CD′和BC′所成的角,∵△AD′C是等边三角形.∴∠AD′C=60°,即异面直线CD′和BC′所成的角的度数为60°.点评:“平移法”是求两异面直线所成角的基本方法.思路2例1 在长方体ABCD—A1B1C1D1中,E、F分别是棱AA1和棱CC1的中点.求证:EB1∥DF,ED∥B1F.活动:学生先思考或讨论,然后再回答,教师点拨、提示并及时评价学生.证明:如图9,设G是DD1的中点,分别连接EG,GC1.图9∵EG A1D1,B1C1A1D1,∴EG B1C1.四边形EB1C1G是平行四边形,∴EB1GC1.同理可证DF GC1,∴EB1DF.∴四边形EB1FD是平行四边形.∴ED∥B1F.变式训练如图10,在正方体ABCD—A1B1C1D1中,E、F分别是AA1、AB的中点,试判断下列各对线段所在直线的位置关系:图10(1)AB与CC1;(2)A1B1与DC;(3)A1C与D1B;(4)DC与BD1;(5)D1E与CF.解:(1)∵C∈平面ABCD,AB⊂平面ABCD,又C∉AB,C1∉平面ABCD,∴AB与CC1异面.(2)∵A1B1∥AB,AB∥DC,∴A1B1∥DC.(3)∵A1D1∥B1C1,B1C1∥BC,∴A1D1∥BC,则A1、B、C、D1在同一平面内.∴A1C与D1B相交.(4)∵B∈平面ABCD,DC⊂平面ABCD,又B∉DC,D1∉平面ABCD,∴DC与BD1异面.(5)如图10,CF与DA的延长线交于G,连接D1G,∵AF∥DC,F为AB中点,∴A为DG的中点.又AE ∥DD 1,∴GD 1过AA 1的中点E.∴直线D 1E 与CF 相交.点评:两条直线平行,在空间中不管它们的位置如何,看上去都平行(或重合).两条直线相交,总可以找到它们的交点.作图时用实点标出.两条直线异面,有时看上去像平行(如图中的EB 与A 1C ),有时看上去像相交(如图中的DC 与D 1B ).所以要仔细观察,培养空间想象能力,尤其要学会两条直线异面判定的方法.例2 如图11,点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=22AD ,求异面直线AD 和BC 所成的角.图11解:设G 是AC 中点,连接EG 、FG .因E 、F 分别是AB 、CD 中点,故EG ∥BC 且EG=BC 21,FG ∥AD ,且FG=AD 21.由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为所求.由BC=AD 知EG=GF=AD 21,又EF=22AD,由勾股定理可得∠EGF=90°.点评:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角.通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系.变式训练设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB=212,CD=24,且HG·HE·sin ∠EHG=312,求AB 和CD 所成的角.解:如图12,由三角形中位线的性质知,HG ∥AB ,HE ∥CD ,图12∴∠EHG 就是异面直线AB 和CD 所成的角. 由题意可知EFGH 是平行四边形,HG=2621=AB ,HE=3221=CD , ∴HG·HE·sin ∠EHG=612sin ∠EHG . ∴612sin ∠EHG=312.∴sin ∠EHG=22.故∠EHG=45°. ∴AB 和CD 所成的角为45°. (四)知能训练如图13,表示一个正方体表面的一种展开图,图中的四条线段AB 、CD 、EF 和GH 在原正方体中相互异面的有对____________.图13答案:三 (五)拓展提升图14是一个正方体的展开图,在原正方体中,有下列命题:图14①AB与CD所在直线垂直;②CD与EF所在直线平行;③AB与MN所在直线成60°角;④MN与EF所在直线异面.其中正确命题的序号是()A.①③B.①④C.②③D.③④答案:D(六)课堂小结本节学习了空间两直线的三种位置关系:平行、相交、异面,其中异面关系是重点和难点.为了准确理解两异面直线所成角的概念,我们学习了公理4和等角定理.(七)作业课本习题2.1 A组3、4.。
北师大版高中数学必修2第二章《解析几何初步》2.1《直线与直线的方程(5)》教案

第五课时 直线的一般式方程一、教学目标1、知识与技能:(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。
2、过程与方法:学会用分类讨论的思想方法解决问题。
3、情态与价值观:(1)认识事物之间的普遍联系与相互转化;(2)用联系的观点看问题。
二、教学重点、难点1、重点:直线方程的一般式。
2、难点:对直线方程一般式的理解与应用。
三、教学方法:探析交流法 四、教学过程问 题设计意图 师生活动1、(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系。
教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程。
对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式。
为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形。
然后由学生去变形判断,得出结论:关于y x ,的二元一次方程,它都表示一条直线。
教师概括指出:由于任何一条直线都可以用一个关于y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线。
我们把关于关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2、直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程的一般式的与其他形 学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:问 题设计意图 师生活动式的不同点。
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。
数学:第二章《点、直线、平面之间的位置关系》教案(新人教A版必修2)

点、直线、平面之间的位置关系复习(一)课型:复习课一、教学目标1、知识与技能(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观学习,易于识记;同时凸现数学知识的发展和联系。
3情态与价值学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步培养学生的空间想象能力和解决问题能力。
二、教学重点、难点重点:各知识点间的网络关系;难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计(一)知识回顾,整体认识1、本章知识回顾(1)空间点、线、面间的位置关系;(2)直线、平面平行的判定及性质;(3)直线、平面垂直的判定及性质。
2、本章知识结构框图(二)整合知识,发展思维1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑推理的基础。
公理1——判定直线是否在平面内的依据;公理2——提供确定平面最基本的依据;公理3——判定两个平面交线位置的依据;公理4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;3、空间平行、垂直之间的转化与联系:4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固1、P.73 A 组第1题2、P.74 A 组第6、8题(四)、课堂练习:1.选择题 (1)如图BC 是R t ⊿ABC 的斜边,过A 作⊿ABC 所在平面α垂线AP ,连PB 、PC ,过A 作AD ⊥BC 于D ,连PD ,那么图中直角三角形的个数是( ) (A )4个 (B )6个 (C )7个 (D )8个(2)直线a 与平面α斜交,则在平面α内与直线a 垂直的直线( ) (A )没有 (B )有一条 (C )有无数条 (D )α内所有直线 答案:(1)D (2) C2.填空题(1)边长为a 的正六边形ABCDEF 在平面α内,PA ⊥α,PA =a ,则P 到CD 的距离为 ,P 到BC 的距离为 .(2)AC 是平面α的斜线,且AO =a ,AO 与α成60º角,OC ⊂α,AA '⊥α于A ',∠A 'OC =45º,则A 到直线OC 的距离是 , ∠AOC 的余弦值是 . 答案:(1)a a27,2; (2)42,414a 3.在正方体ABCD -A 1B 1C 1D 1中,求证:A 1C ⊥平面BC 1D .分析:A 1C 在上底面ABCD 的射影AC ⊥BD, A 1C 在右侧面的射影D 1C ⊥C 1D,所以A 1C ⊥BD, A 1C ⊥C 1D,从而有A 1C ⊥平面BC 1D .A A ′ CαOC1课后作业1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;2、P.76 B组第2题。
高一数学 人教A版必修2 第二章 2.2.1、2直线与平面平行、平面与平面平行的判定 课件

(1)直线EG∥平面BDD1B1;
证明 如图,连接SB.
∵点E,G分别是BC,SC的中点,
∴EG∥SB.
又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,
∴EG∥平面BDD1B1.
证明
(2)平面EFG∥平面BDD1B1. 证明 连接SD. ∵点F,G分别是DC,SC的中点, ∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1, ∴FG∥平面BDD1B1. 又EG∥平面BDD1B1, 且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G, ∴平面EFG∥平面BDD1B1.
证明
反思与感悟 解决线面平行与面面平行的综合问题的策略 (1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三 种平行关系不是孤立的,而是相互联系、相互转化的. (2) 线线平行 ―判――定―→ 线面平行 ―判――定―→ 面面平行
所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.
第二章 §2.2 直线、平面平行的判 定及其性质
2.2.2 平面与平面平行的判定
学习目标
1.通过直观感知、操作确认,归纳出平面与平面平行的判定定理. 2.掌握平面与平面平行的判定定理,并能初步利用定理解决问题.
问题导学
知识点 平面与平面平行的判定定理
思考1 三角板的两条边所在直线分别与平面α平行,这个三角板所在平 面与平面α平行吗? 答案 平行.
证明
Байду номын сангаас
命题角度2 以柱体为背景证明线面平行 例3 在三棱柱ABC-A1B1C1中,D,E分别是棱BC,CC1的中点,在线 段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
解答
引申探究 将本例改为在三棱柱ABC-A1B1C1中,若M为AB的中点, 求证:BC1∥平面A1CM. 证明 如图,连接AC1交A1C于点F, 则F为AC1的中点. 又因为M是AB的中点,连接MF, 所以BC1∥MF. 因为MF⊂平面A1CM,BC1⊄平面A1CM, 所以BC1∥平面A1CM.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修2第二章教案(完整版)LT(必修二)高中数学第二章教案22.1.1 平面二、教学重点、难点重点:1.平面的概念及表示;2.平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言.难点:平面基本性质的掌握与运用.观察并思考以下问题:1.长方体由哪些基本元素构成? 答:点、线、面.2.观察长方体的面,说说它的特点?答:是平的.指出:长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印345点B在平面α外,记作:Bα∉想一想:点和平面的位置关系有几种?4.平面的基本性质思考:如果直线与平面有一个公共点P,直线是否在平面内?如果直线与平面有两个公共点呢? 要让学生充分发表自己的见解.观察理解:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上.得出结论:公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(教师引导学生阅读教材P42前几行相关内容,并加以解析)67符号表示为A lB l l A B ααα∈⎫⎪∈⎪⇒⊂⎬∈⎪⎪∈⎭公理1作用:判断直线是否在平面内师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等…… 引导学生归纳出公理2公理2:过不在一条直线上的三点,有且只有一个平面.符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α使A ∈α、B ∈α、C ∈α 公理2作用:确定一个平面的依据. 补充3个推论:推论1:经过一条直线与直线外一点,有且只有一个平面.推论2:经过两条平行直线,有且只有一个平面.推论3:经过两条相交直线,有且只有一个平面.教师用正(长)方形模型,让学生理解两个平面的交线的含义.引导学生阅读P42的思考题,从而归纳出公理3公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.符号表示为:P∈α∩β=>α∩β=L,且P ∈L公理3作用:判定两个平面是否相交的8依据2.1.2空间中直线与直线之间的位置关系二、教学重、难点:1.重点: (1)空间中两条直线的位置关系的判定;(2)理解并掌握公理4.2.难点: 理解异面直线的概念、画法.四、教学过程:(一)复习引入1. 前面我们已学习了平面的概念及其9基本性质.回顾一下,怎样确定一个平面呢?(公理3及其三个推论)2 .在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推进1.空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题共面直线相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异面直线:不同在任何一个平面内,没有公共点102.异面直线(1)概念:不同在任何一个平面内的两条直线.(2)判断:下列各图中直线l 与m 是异面直线吗?αlm lmαβαl ml αβmlmαβlmαβ让学生直观判断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫.(3)画法:用一个或两个平面衬托(4)辨析①空间中没有公共点的两条直线是异面直线.②分别在两个不同平面内的两条直线是异面直线.αlmαlmlmαβl mαβ③不同在某一平面内的两条直线是异面直线.④平面内的一条直线和平面外的一条直线是异面直线.⑤既不相交,又不平行的两条直线是异面直线 .(5)结合实例小结判断异面直线的关键 ① 例1:在正方体1111ABCD A B C D 中,哪些棱所在的直线与1BA 成异面直线? ②合作探究如右图所示是一个正方体的展开图,如果将它还原成正方体,那么AB 、CD 、EF 、GH 这四条线段所在的直线是异面直线的有几对?ABDCGEHF让学生根据异面直线的定义判断在几何体上的具有异面直线位置关系的两条直线.培养学生的空间想象能力,加深对异面直线概念的理解.③判断异面直线的关键:既不相交,又不平行.3.公理4的教学⑴思考:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线平行。
空间中,如果两条直线都与第三条直线平行,是否也有类似的规律?(2)观察:如图2.1.2-2,长方体1111ABCD A B C D中,AA1∥1BB, AA1∥1DD,那么1BB与1DD平行吗?公理4C1 A1平行。
符号表示为:设a 、b 、c 是三条直线//////a b a c b c ⎫⇒⎬⎭注:公理4实质上是说平行具有传递性,在平面、空间此性质都适用;公理4作用:判断空间两条直线平行的依据.⑶ 讲解例2,让学生掌握公理4的运用 例2:如图在空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点. 求证:四边形EFGH 四边形,先结自制模型 简单介绍什么叫空间四边形,再分析如何证明)分析:如何判定一个四边形是平行四边形?怎样证明EH∥ FG?证明关键是什么?提问:有没有其它证明方法呢?(EF∥HG,且EF=HG)变式练习:(1)在例2中, 如果再加上条件AC BD=,那么四边形EFGH是什么图形?(2) 把条件改为: E、H分别是边AB、AD的中点,F、G分别是边CB、CD上的点,且CG CF=则四边形EFGH是什么CD CB图形?为什么?(四)小结(1)空间中两直线有何位置关系?(平行、相交、异面)(2)怎样判断两直线是异面直线?(判断关键:既不平行又不相交)(3)什么是平行公理?它的作用是什么?(平行同一条直线的两条直线互相平行, 作用:判断两直线平行它将空间平行问题转化为平面内的平行问题)(五)作业(1)P56习题2.1A组第6题(2)在正方体1111中,与对角线1DB成ABCD A B C D异面直线的棱共有几条?§2.1.3 空间中直线与平面§2.1.4 平面与平面之间的位置关系二、教学重点、难点重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、教学设计空间中直线与平面有多少种位置关系?(二)研探新知1.引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:(1)直线在平面内——有无数个公共点(2)直线与平面相交——有且只有一个公共点(3)直线在平面平行——没有公共点指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示a α a∩α=A a∥α例4: 加深了学生对这几种位置关系的理解.2.引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种位置关系:(1)两个平面平行——没有公共点(2)两个平面相交——有且只有一条公共直线用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为α∥β α∩β= L指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行.2.2.1直线与平面平行的判定αβα βL二、教学的重点与难点:教学重点:通过直观感知、操作确认,归纳出直线和平面平行的判定及其应用。
教学难点:直线和平面平行的判定定理的探索过程及其应用。
三、教学过程设计:(二)温故知新直线与平面平行的定义是什么?如果一条直线和一个平面没有公共点,那么我们就说这条直线与这个平面平行.这里所说的直线是向两方无限延伸的,平面是向四周无限延展的.那么,直线与平面的位置关系有几种?直线与平面的位置关系有三种:①直线在平面内——有无数个公共点;②直线与平面相交——有且只有一个公共点;③直线与平面平行——没有公共点.问:我们把直线与平面相交或直线与平面平行的情况统称为直线在平面外。
今后凡谈到直线在平面外,则有两种情况:直线与平面相交,直线与平面平行。
直线与平面的三种位置关系的图形语言、符号语言各是怎样的?(三)讲解新课直线a在平面α外,是不是能够断定//aα呢?直线与平面平行将如何判定呢?直线无限延伸,平面无限延展,如何保证直线与平面有没有公共点 a呢?请同学们将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB 所在直线与桌面所在平面具有什么样的位置关系?如图:直线a 与平面平行吗?若α内有直线b 与a 平行,那么α与a 的位置关系如何?是否可以保证直线a 与平面α平行?判定定理告诉我们直线与平面平行应具备几个条件?符号语言表示:////a b a a b αβα⊄⎫⎪⊂⇒⎬⎪⎭这个定理可以简述为:“线线平行,则线面平行”,不过要注意,前面的线线有什么区别?例 1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面.已知:如图,空间四边形ABCD中,E,F分别是AB,AD的中点.求证:EF//平面BCD.证明:连接BD,则AE=EB,AF=FB 所以EF//BD因为 EF⊄平面BCD,BD⊂平面BCD 由直线与平面平行的判定定理得 EF//平面BCD2.2.2 平面与平面平行的判定二、教学重、难点:1.重点:平面和平面平行的判定定理的探索过程及应用。
2.难点:平面和平面平行的判定定理的探究发现及其应用。
三、教学过程:(一)创设情景1.你知道建筑师是如何检验屋顶平面是与水平面平行的吗?2.三角板的一条边所在直线与地面平行,这个三角板所在平面与地面平行吗?三角板的两条边所在直线与地面平行,情况又如何呢?(二)温故知新线面平行的判定方法有几种?(1)定义法:若直线与平面无公共点,则直线与平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线与另一平面平行.(3)判定定理:证明面外直线与面内直线平行.(三)探求新知平面与平面平行的定义是什么?如何判断两平面平行?如果两个平面平行,那么其中一个平面内的直线与另一个平面关系如何?为什么?若一个平面内所有直线都和另一个平面平行,那么这两个平面会平行吗?由此将判定两个平面平行的问题可以转化为线面平行的问题来解决,可是最少需要几条线与面平行呢?平面β内有一条直线与平面α平行,α、β平行吗?请举例说明.如右图,借助长方体模型,我们可以看出,平面''A ADD 中直线'//,A A ''平面DCC D ''A ADD ''但平面与平面DCC D 相交.若平面α内有两条直线a 、b 都平行于平面β,能保证α∥β吗?如上图,借助长方体模型,在平面''A ADD 内,有一条与'A A 平行的直线EF ,显然'A A 与EF 都平行与平面''DCC D ,但这两条平行直线所在的平面''A ADD 与平面''DCC D 相交. 如下图,平面β内有两条相交直线与平面α平行,情况如何?一般地,我们有如下的判定平面平行的定理:如果一个平面内的两条交直线与另一个平面平行,则这两个平面平行.以上是两个平面平行的文字语言表述,你能写出定理的符号语言吗?若,,,//a b a b P ββαααβ⊂⊂⋂=,且a//,b//则.利用判定定理证明两个平面平行,必须具备哪些条件?(1)由两条直线平行与另一个平面,(2)这两条直线必须相交.从转化的角度认识该定理就是:线线相交,线面相交⇒面面平行.(四)拓展应用例1. 已知正方体ABCD-1111A B C D ,求证:平面11AB D //平面1C BD . 证明:因为ABCD-1111A B C D 为正方体,所以11,AB A B = 1111//D C A B 1111D C A B =, 又11//AB A B ,11,AB A B =所以11//D C AB , 11D C AB =,所以11D C BA 为平行四边形. 所以11,C B C BD ⊂平面 11//D A C B . 又11D A C BD ⊄平面,11C B C BD ⊂平面, 由直线与平面的判定定理得11//DA C BD 平面,同理111//DBC BD 平面,又1111D A D B D ⋂=,所以平面111//AB D C BD平面.拓展1.已知正方体ABCD-A1B1C1D1,M、N分别为A1A、CC1的中点.求证:平面NBD∥平面MB1D1.拓展2.已知正方体ABCD-A1B1C1D1,P、Q、R分别为A1A、AB、AD的中点.求证:平面PQR∥平面CB1D1.例2.点P是△ABC所在平面外一点,M、N、G分别是△PBC、△PCA、△PAB的重心. 求证:平面MNG//平面ABC分析:连结PM,PN,PG则PM:PD=PN:PE=PG:PF故MN∥DE,MG∥EF2.2.3平面与平面平行的判定二、教学重点、难点、疑点及解决方法1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.2.教学难点:掌握两个平行平面的性质及其应用.三、教学设计(一)复习两个平面的位置关系及两个平面平行的判定两个平面的位置关系有哪几种?两个平面平行的判定方法有哪几种?(二)两个平面平行的性质根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1://,aαβα⊂则//aβ.1.两个平面平行的性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行.已知:α∥β,γ∩α=a ,γ∩β=b .求证:a ∥b .直接证法: ∵α∥β,∴α与β没有公共点.又,a b γγ⊂⊂∴a ∥b这个结论可作为性质2:若α∥β,α∩γ=a ,β∩γ=b ,则a ∥b .2.例题例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.已知:α∥β,,l l αα⊥⋂=A.求证:lβ⊥.证明直线与平面垂直的方法有几种?方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.我们可以试着用第一种方法来证明.证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.因为直线b是平面β内的任意一条直线,所以l⊥β.这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l⊥β.3.两个平行平面的公垂线、公垂线段和距离与两个平行平面α,β同时垂直的直线L叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.如图α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得练习.夹在两个平行平面间的平行线段相等.已知:如图1—116,α∥β,AB ∥CD,A∈α,C∈α,B∈β,D∈β.求证:AB=CD.证明:∵AB∥CD,∴过AB、CD的平面γ与平面α和β分别交于AC'和BD.∵α∥β,∴BD∥AC.∴四边形ABCD是平行四边形,∴AB=CD.这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等.2.2.4平面与平面平行的性质二、教学重、难点:1.重点:两个平面平行的性质定理的探索过程及应用.2.难点:两个平面平行的性质定理的探究发现及其应用.三、教学过程:(一)温故知新1. 两个平面的位置关系?2. 面面平行的判定方法:(1)定义法:若两平面无公共点,则两平面平行.(2)判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行.(二)创设情景两个平面平行,那么其中一个平面内的直线与另一平面有什么样的关系?通过分析可以发现,若平面α和平面β平行,则两面无公共点,那么就意味着平面α内任一直线a 和平面β也无公共点,即直线a 和平面β平行.用语言表述就是:如果两个平面平行,那么其中一个平面内的直线平行与另一个平面.用式子可表示为://,//a a ββαα⊂⇒。