高一数学必修2各章知识点

合集下载

2022年高一数学必修2知识点

2022年高一数学必修2知识点

高一数学必修2知识点数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,全部的数学对象本质上都是人为定义的。

下面是我整理的高一数学必修2学问点,仅供参考,盼望能够关心到大家。

高一数学必修2学问点两个平面的位置关系:(1)两个平面相互平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。

a、平行两个平面平行的判定定理:假如一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线动身的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.两平面垂直两平面垂直的定义:两平面相交,假如所成的角是直二面角,就说这两个平面相互垂直。

记为⊥两平面垂直的判定定理:假如一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直两个平面垂直的性质定理:假如两个平面相互垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。

高一数学必修学问点总结⊥公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⊥公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⊥若{a}、{b}为等差数列,则{a±b}与{ka+b}(k、b为非零常数)也是等差数列.⊥对任何m、n,在等差数列{a}中有:a=a+(n-m)d,特殊地,当m=1时,便得等差数列的通项公式,此式较等差数列的通项公式更具有一般性.⊥、一般地,假如l,k,p,…,m,n,r,…皆为自然数,且l+k+p+…=m+n+r+…(两边的自然数个数相等),那么当{a}为等差数列时,有:a+a+a+…=a+a+a+….⊥公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd(k为取出项数之差).⊥假如{a}是等差数列,公差为d,那么,a,a,…,a、a也是等差数列,其公差为-d;在等差数列{a}中,a-a=a-a=md.(其中m、k、)⊥在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⊥当公差d0时,等差数列中的数随项数的增大而增大;当d0时,等差数列中的数随项数的削减而减小;d=0时,等差数列中的数等于一个常数.⊥设a,a,a为等差数列中的三项,且a与a,a与a的项距差之比=(≠-1),则a=.⊥数列{a}为等差数列的充要条件是:数列{a}的前n项和S可以写成S=an+bn的形式(其中a、b为常数).⊥在等差数列{a}中,当项数为2n(nN)时,S-S=nd,=;当项数为(2n-1)(n)时,S-S=a,=.⊥若数列{a}为等差数列,则S,S-S,S-S,…仍旧成等差数列,公差为.⊥若两个等差数列{a}、{b}的前n项和分别是S、T(n为奇数),则=.⊥在等差数列{a}中,S=a,S=b(nm),则S=(a-b).⊥等差数列{a}中,是n的一次函数,且点(n,)均在直线y=x+(a-)上.⊥记等差数列{a}的前n项和为S.①若a0,公差d0,则当a≥0且a≤0时,S;②若a0,公差d0,则当a≤0且a≥0时,S最小.高一数学函数的性质1、函数的局部性质——单调性设函数y=f(x)的定义域为I,假如对应定义域I内的某个区间D内的任意两个变量x1、x2,当x1 x2时,都有f(x1)f(x2),那么y=f(x)在区间d上是增函数,d是函数y=f(x)的单调递增区间;当x1 x2时,都有f(x1)=f(x2),那么那么y=f(x)在区间D上是减函数,D是函数y=f(x)的单调递减区间。

高一数学必修2知识点梳理

高一数学必修2知识点梳理

高一数学必修2知识点梳理一、立体几何初步(一)空间几何体1. 棱柱- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。

- 分类:按底面多边形的边数分为三棱柱、四棱柱、五棱柱等。

- 性质:侧棱都平行且相等;侧面都是平行四边形。

2. 棱锥- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形的多面体。

- 分类:按底面多边形的边数分为三棱锥(四面体)、四棱锥等。

- 性质:如果棱锥被平行于底面的平面所截,那么截面和底面相似,并且它们面积的比等于截得的棱锥的高与已知棱锥的高的平方比。

3. 棱台- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 分类:三棱台、四棱台等。

- 性质:棱台的各侧棱延长后交于一点。

4. 圆柱- 定义:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

- 性质:圆柱的轴截面是矩形;圆柱的侧面展开图是矩形。

5. 圆锥- 定义:以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。

- 性质:圆锥的轴截面是等腰三角形;圆锥的侧面展开图是扇形。

6. 圆台- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 性质:圆台的轴截面是等腰梯形;圆台的侧面展开图是扇环。

7. 球- 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体。

- 性质:球的截面是圆;球心和截面圆心的连线垂直于截面。

(二)点、线、面之间的位置关系1. 平面的基本性质- 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

- 公理2:过不在一条直线上的三点,有且只有一个平面。

- 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

- 推论1:经过一条直线和这条直线外一点,有且只有一个平面。

- 推论2:经过两条相交直线,有且只有一个平面。

- 推论3:经过两条平行直线,有且只有一个平面。

高一数学必修二各章知识点总结

高一数学必修二各章知识点总结

【导语】如果把⾼中三年去挑战⾼考看作⼀次越野长跑的话,那么⾼中⼆年级是这个长跑的中段。

与起点相⽐,它少了许多的⿎励、期待,与终点相⽐,它少了许多的掌声、加油声。

它是孤⾝奋⽃的阶段,是⼀个耐⼒、意志、⾃控⼒⽐拚的阶段。

但它同时是⼀个厚实庄重的阶段,这个时期形成的优势有实⼒。

⾼⼆频道为你整理了《⾼⼀数学必修⼆各章知识点总结》,学习路上,为你加油! 【第⼀章空间⼏何体】 1.1空间⼏何体的结构 1.2空间⼏何体的三视图和直观图 阅读与思考画法⼏何与蒙⽇ 1.3空间⼏何体的表⾯积与体积 探究与发现祖暅原理与柱体、椎体、球体的体积 实习作业 ⼩结 复习参考题 【第⼆章点、直线、平⾯之间的位置关系】 2.1空间点、直线、平⾯之间的位置关系 2.2直线、平⾯平⾏的判定及其性质 2.3直线、平⾯垂直的判定及其性质 阅读与思考欧⼏⾥得《原本》与公理化⽅法 ⼩结 复习参考题 【第三章直线与⽅程】 3.1直线的倾斜⾓与斜率 探究与发现魔术师的地毯 3.2直线的⽅程 3.3直线的交点坐标与距离公式 阅读与思考笛卡⼉与解析⼏何 ⼩结 复习参考题 【第四章圆与⽅程】 4.1圆的⽅程 阅读与思考坐标法与机器证明 4.2直线、圆的位置关系 4.3空间直⾓坐标系 信息技术应⽤⽤《⼏何画板》探究点的轨迹:圆 ⼩结 复习参考题 【函数知识点】 ⼀、定义与定义式: ⾃变量x和因变量y有如下关系: y=kx+b 则此时称y是x的⼀次函数。

特别地,当b=0时,y是x的正⽐例函数。

即:y=kx(k为常数,k≠0) ⼆、⼀次函数的性质: 1.y的变化值与对应的x的变化值成正⽐例,⽐值为k 即:y=kx+b(k为任意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。

三、⼀次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出⼀次函数的图像——⼀条直线。

因此,作⼀次函数的图像只需知道2点,并连成直线即可。

高一数学必修二各章知识点总结(精)(2)[1]

高一数学必修二各章知识点总结(精)(2)[1]

数学必修2知识点1. 多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全) 体 积(V ) 棱 柱 棱柱 直截面周长×l S 侧+2S 底S 底·h=S 直截面·h 直棱柱 ChS 底·h棱 锥棱锥 各侧面面积之和S 侧+S 底S 底·h正棱锥 ch ′ 棱 台棱台各侧面面积之和S 侧+S 上底+S 下底h (S 上底+S 下底+)正棱台(c+c ′)h ′表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表示高,h ′表示斜高,l 表示侧棱长。

2. 旋转体的面积和体积公式名称 圆柱 圆锥 圆台 球 S 侧 2πrl πrl π(r1+r2)l S 全2πr (l+r )Πr (l+r )π(r1+r2)l+π(r21+r22)4πR2V πr2h (即πr2l )πr2h πh (r21+r1r2+r22) πR3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R 表示半径。

4、平面的基本性质:公理1、若一条直线上的两点在一个平面内,那么这条直线在此平面内. ,,,l l l αααA∈B∈A∈B∈⇒⊂公理2、过不在一条直线上的三点,有且只有一个平面.,,,,,C C ααααA B ⇒A∈B∈∈三点不共线有且只有一个平面使公理3、若两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.l l αβαβP∈⇒=P∈且推论1、经过一条直线和直线外的一点,有且只有一个平面. 推论2、经过两条相交直线,有且只有一个平面. 推论3、经过两条平行直线,有且只有一个平面.公理4、平行于同一条直线的两条直线互相平行. //,////a b b c a c ⇒5、等角定理:空间中若两个角的两边分别对应平行,那么这两个角相等或互补.推论:若两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.6、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行. 数学符号表示:,,////a b a b a ααα⊄⊂⇒直线与平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行. 数学符号表示://,,//a a b a b αβαβ⊂=⇒7、平面与平面平行的判定定理:(1)一个平面内的两条相交直线与另一个平面平行,则这两个平面平行. 数学符号表示:,,,//,////a b a b a b ββαααβ⊂⊂=P ⇒ (2)垂直于同一条直线的两个平面平行. 符号表示:,//a a αβαβ⊥⊥⇒ (3)平行于同一个平面的两个平面平行.符号表示://,////αγβγαβ⇒面面平行的性质定理:(1)若两个平面平行,那么其中一个平面内的任意直线均平行于另一个平面. //,//a a αβαβ⊂⇒ (2)若两个平行平面同时和第三个平面相交,那么它们的交线平行. //,,//a b a b αβαγβγ==⇒8、直线与平面垂直的判定定理:(1)一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直. 数学符号表示:,,,,m n m n l m l n l ααα⊂⊂=A ⊥⊥⇒⊥(2)若两条平行直线中一条垂直于一个平面,那么另一条也垂直于这个平面. //,a b a b αα⊥⇒⊥(3)若一条直线垂直于两个平行平面中一个,那么该直线也垂直于另一个平面.//,a a αβαβ⊥⇒⊥直线与平面垂直的性质定理:垂直于同一个平面的两条直线平行.,//a b a b αα⊥⊥⇒9、两个平面垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直. ,a a βααβ⊥⊂⇒⊥ 平面与平面垂直的性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 数学符号表示:,,,b a a b a αβαβαβ⊥=⊂⊥⇒⊥10、直线的倾斜角和斜率:(1)设直线的倾斜角为α()0180α≤<,斜率为k ,则tan 2k παα⎛⎫=≠ ⎪⎝⎭.当2πα=时,斜率不存在. (2)当090α≤<时,0k ≥;当90180α<<时,0k <. (3)过111(,)P x y ,222(,)P x y 的直线斜率212121()y y k x x x x -=≠-.11、两直线的位置关系:两条直线111:l y k x b =+,222:l y k x b =+斜率都存在,则:(1)1l ∥2l ⇔12k k =且12b b ≠(2)12121l l k k ⊥⇔⋅=-(当1l 的斜率存在2l 的斜率不存在时12l l ⊥) (3)1l 与2l 重合⇔12k k =且12b b =12、直线方程的形式:(1)点斜式:()00y y k x x -=-(定点,斜率存在) (2)斜截式:y kx b =+(斜率存在,在y 轴上的截距) (3)两点式:1121212121(,)y y x x y y x x y y x x --=≠≠--(两点) (4)一般式:()2200x y C A B A +B += +≠(5)截距式:1x ya b+=(在x 轴上的截距,在y 轴上的截距) 13、直线的交点坐标:设11112222:0,:0l A x B y c l A x B y c ++=++=,则: (1)1l 与2l 相交1122A B A B ⇔≠;(2)1l ∥2l 111222A B C A B C ⇔=≠;(3)1l 与2l 重合111222A B C A B C ⇔==. 14、两点111(,)P x y ,222(,)P x y间的距离公式12PP =原点()0,0O 与任一点(),x y P的距离OP =15、点000(,)P x y 到直线:0l x y C A +B +=的距离d =(1)点000(,)P x y 到直线:0l x C A +=的距离0Ax Cd A +=(2)点000(,)P x y 到直线:0l y C B +=的距离0By Cd B+=(3)点()0,0P 到直线:0l x y C A +B +=的距离d =16、两条平行直线10x y C A +B +=与20x y C A +B +=间的距离d =17、过直线1111:0l A x B y c ++=与2222:0l A x B y c ++=交点的直线方程为()111222()()0A x B y C A x B y c R λλ+++++=∈18、与直线:0l x y C A +B +=平行的直线方程为()0x y D C D A +B +=≠与直线:0l x y C A +B +=垂直的直线方程为0x y D B -A += 19、中心对称与轴对称:(1)中心对称:设点1122(,),(,)P x y E x y 关于点00(,)M x y 对称,则12012022x x x y y y +⎧=⎪⎪⎨+⎪=⎪⎩(2)轴对称:设1122(,),(,)P x y E x y 关于直线:0l x y C A +B +=对称,则: a 、0B =时,有122x x C A +=-且12y y =; b 、0A =时,有122y y CB+=-且12x x = c 、0A B ⋅≠时,有12121212022y y Bx x A x x y y A B C -⎧=⎪-⎪⎨++⎪⋅+⋅+=⎪⎩20、圆的标准方程:222()()x a y b r -+-=(圆心(),A a b ,半径长为r )圆心()0,0O ,半径长为r 的圆的方程222x y r +=。

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结

【最新】高一数学必修二各章知识点总结高一数学必修二各章知识点总结如下:第一章:函数与二次函数1. 函数的概念及性质:定义域、值域、奇偶性、单调性等。

2. 二次函数的基本性质:顶点、对称轴、单调性、零点、图像的开口方向。

3. 一次函数与二次函数的比较与关系:求解一次函数与二次函数的交点等。

4. 二次函数的图像与方程:画出给定二次函数的图像,根据图像确定二次函数的方程等。

5. 二次函数与根式、指数、对数的应用。

第二章:三角函数1. 角度制与弧度制的转换。

2. 弧度制下的任意角的三角函数值的计算。

3. 三角函数的简单性质及其关系:同角三角函数的相互关系、倒数三角函数的相互关系等。

4. 三角函数的图像与性质:正弦函数、余弦函数、正切函数的图像与性质等。

5. 三角函数的应用:三角函数在几何、物理、工程等领域的应用。

第三章:指数与对数函数1. 指数的定义、性质及运算规律:指数与乘法、除法、乘方运算规律等。

2. 对数的定义、性质及运算规律:对数与指数的关系、对数运算法则等。

3. 指数函数与对数函数的简单性质与图像:指数函数与对数函数的基本性质、图像和性质等。

4. 指数函数与对数函数的应用:指数与对数在增长与衰减、微积分、金融等领域的应用。

第四章:数列1. 数列的概念与性质:等差数列、等比数列、通项公式、前n 项和等。

2. 数列的运算:数列的加减乘除等。

3. 等差数列与等差中项:等差数列的通项公式、等差数列的求和公式、等差数列的奇数项和、以及奇数和与偶数和等。

4. 等比数列与等比中项:等比数列的通项公式、等比数列的求和公式、等比数列的前n项和、无穷等比级数等。

5. 等差数列与等差中项的应用:等差数列在等价代换、简化形式、利润计算等方面的应用。

第五章:排列与组合1. 排列与组合的基本概念:排列、组合的定义与计算方法等。

2. 排列与组合的计算:排列与组合的计算公式、乘法原理、加法原理等。

3. 排列与组合的应用:排列与组合在概率、几何、数学问题解法等领域的应用。

高一数学必修1-2知识点总结

高一数学必修1-2知识点总结

高中数学必修1知识点总结 第一章 集合与函数概念 【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集(∅). (6)空集的特性①空集是不含任何元素的集合.②空集是任何集合的子集,是任何非空集合的真子集.③空集单独使用时当集合的,但是放在集合里面又可以当元素使用,如{Φ}【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算(8)交集、并集、补集B{x A A = ∅=∅ B A ⊆ B B ⊆ B{x A A = A ∅= B A ⊇ B B ⊇Φ=A C U UA C U =【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(2)一元二次不等式的解法0)【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f 叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a xa xb x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a yc y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.o⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种. 解析法:就是用数学表达式表示两个变量之间的对应关系. 列表法:就是列出表格来表示两个变量之间的对应关系. 图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f)叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法增;若y f =则[()]y f g x =为减.(2)函数()(0)af x x a x=+>的图象与性质()f x分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作m x f =)(min .【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.若0)0(≠f ,则0=x 必不在)(x f 的定义域上③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.高中数学必修1知识点总结第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n示;当n 是偶数时,正数a 的正的n 表示,负的n 次方根用符号0的n 次方根是0;负数a 没有n次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数 【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN =,其中a 叫做底数,N叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log a a aMM N N-=③数乘:log log ()n aa n M M n R =∈ ④log a N a N =⑤loglog (0,)bn a anM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()xy ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对. (0,)+∞上为减函p,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数. ⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x=上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式 ①一般式:2()(0)f x ax bx c a =++≠ ②顶点式:2()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a --.②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2b a -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)axbx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布. 设一元二次方程20(0)axbx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=-③判别式:∆ ④端点函数值符号. ①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出. (5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a>时(开口向上)①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b qa->,则()m f q =xxx①若02b x a -≤,则()M f q = ②02b x a->,则()M f p = (Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()mf q = ②02b x a->,则()m f p =.高中数学必修1知识点总结第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

高一必修二数学知识点总结及公式

高一必修二数学知识点总结及公式

高一必修二数学知识点总结及公式高中数学的学习,对于每个学生来说都是一次全新的挑战。

特别是高一阶段,作为高中新生的学习起点,需要理解和掌握许多基础数学知识点和公式。

本文将对高一必修二数学知识点进行总结,并给出相应的公式。

一、二次函数二次函数是高中数学中非常重要的一个概念,掌握二次函数的性质和相关的公式对于解题至关重要。

1. 二次函数的标准方程:y = ax² + bx + c,其中 a、b、c 为常数,a ≠ 0。

2. 二次函数的顶点坐标公式:对于二次函数 y = ax² + bx + c,其顶点的横坐标为 x = -b/2a,纵坐标为 y = -(b²-4ac)/4a。

3. 二次函数的对称轴公式:对于二次函数 y = ax² + bx + c,其对称轴的方程为 x = -b/2a。

4. 二次函数图像的开口方向:若 a > 0,则二次函数图像开口向上;若 a < 0,则二次函数图像开口向下。

5. 二次函数的判别式:判别式 D = b²-4ac,D > 0 时,二次函数有两个不同的实根;D = 0 时,二次函数有一个重根;D < 0 时,二次函数没有实根。

二、三角函数三角函数是数学中的重要分支,掌握三角函数的基本概念和公式,对高中数学的学习和后续数学知识的理解都起到至关重要的作用。

1. 正弦函数与余弦函数的定义:对于任意角θ,其正弦函数的值为sinθ,余弦函数的值为cosθ。

2. 正切函数的定义:对于任意角θ,其正切函数的值为tanθ。

3. 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。

4. 常用三角函数的周期性:sin(θ + 2πk) = sinθ,cos(θ + 2πk) = cosθ,tan(θ + πk) = tanθ(其中 k 为整数)。

高一数学必修一必修二知识点2

高一数学必修一必修二知识点2

- 1 -必修1知识点第一章、集合与函数概念 1、§1.1.1.集合2、集合三要素: 确定性、互异性、无序性。

3、常见集合: 正整数集合: 或 ; 整数集合: ;有理数集合: ; 实数集合: . 集合的表示方法: 列举法、描述法. §1.1.2.集合间的基本关系1.一般地, 对于两个集合A.B, 如果集合A 中任意一个元素都是集合B中的元素, 则称集合A 是集合B 的子集。

记作 .2.如果集合 , 但存在元素 , 且 , 则称集合A 是集合B 的真子集.记作:A B.3.把不含任何元素的集合叫做空集.记作: .并规定: 空集合是任何集合的子集. 空集是任何非空集合的真子集. 4.如果集合A 中含有n 个元素, 则集合A 有 个子集. §1.1.3.集合间的基本运算1. 一般地, 由所有属于集合A 或集合B 的元素组成的集合, 称为集合A 与B 的并集.记作: .2. 一般地, 由属于集合A 且属于集合B 的所有元素组成的集合, 称为A 与B 的交集.记作: . 1、3.全集、补集: 2、§1.2.1.函数的概念3、一个函数的构成要素为: 定义域、对应关系、值域.如果两个函数的定义域相同, 并且对应关系完全一致, 则称这两个函数相等.§1.2.2、函数的表示法 解析法、图象法、列表法. 求解析式的方法:1.换元法2.配凑法3.待定系数法4.方程组法 §1.3.1.单调性与最大(小)值注意函数单调性证明的一般格式: 解: 设 且 , 则: =… 五个步骤:取值, 作差, 化简, 定号, 小结 §1.3.2.奇偶性1.一般地, 如果对于函数 的定义域内任意一个 , 都有 , 那么就称函数 为偶函数.偶函数图象关于 轴对称.2、一般地, 如果对于函数 的定义域内任意一个 , 都有 , 那么就称函数 为奇函数.奇函数图象关于原点对称. 第二章、基本初等函数 §2.1.1.指数与指数幂的运算1.一般地, 如果 , 那么 叫做 的 次方根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修2各章知识点总结第一章 立体几何初步1、柱、锥、台、球的结构特征 (1)棱柱:几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:几何特征:①上下底面是相似的平行多边形 ②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。

3、空间几何体的直观图——斜二测画法斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变;②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。

4、柱体、锥体、台体的表面积与体积(1)几何体的表面积为几何体各个面的面积的和。

(2)特殊几何体表面积公式(c 为底面周长,h 为高,'h 为斜高,l 为母线)ch S =直棱柱侧面积 rh S π2=圆柱侧 '21ch S =正棱锥侧面积 rl S π=圆锥侧面积')(2121h c c S +=正棱台侧面积 l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表(3)柱体、锥体、台体的体积公式V Sh =柱 2V Sh r h π==圆柱 13V Sh =锥 h r V 231π=圆锥'1()3V S S h =台'2211()()33V S S h r rR R h π=+=++圆台(4)球体的表面积和体积公式:V 球=343R π ; S 球面=24R π第二章 空间点、直线、平面之间的位置关系1.空间点、直线、平面之间的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

应用: 判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 符号:平面α和β相交,交线是a ,记作α∩β=a 。

符号语言:,P A B A B l P l ∈⇒=∈ 公理2的作用:①它是判定两个平面相交的方法。

②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。

③它可以判断点在直线上,即证若干个点共线的重要依据。

公理3:经过不在同一条直线上的三点,有且只有一个平面。

推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。

公理3及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据 公理4:平行于同一条直线的两条直线互相平行 2.空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线 ② 异面直线性质:既不平行,又不相交。

③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线④ 异面直线所成角:作平行,令两线相交,所得锐角或直角,即所成角。

两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直。

求异面直线所成角步骤:A 、利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选在特殊的位置上;B 、证明作出的角即为所求角;C 、利用三角形来求角.等角定理:如果一个角的两边和另一个角的两边分别平行,那么这两角相等或互补。

3.空间直线与平面之间的位置关系直线在平面内——有无数个公共点.三种位置关系的符号表示:a ⊂α a ∩α=A a ∥α 4.平面与平面之间的位置关系:平行——没有公共点;α∥β相交——有一条公共直线。

α∩β=b5.空间中的平行问题(1)直线与平面平行的判定及其性质线面平行的判定定理:平面外一条直线与此平面内一条直线平行,则该直线与此平面平行。

线线平行⇒线面平行线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

线面平行⇒线线平行 (2)平面与平面平行的判定及其性质 两个平面平行的判定定理(1)如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行。

(线面平行→面面平行),(2)如果在两个平面内,各有两组相交直线对应平行,那么这两个平面平行。

(线线平行→面面平行),(3)垂直于同一条直线的两个平面平行, 两个平面平行的性质定理(1)如果两个平面平行,那么某一个平面内的直线与另一个平面平行。

(面面平行→线面平行)(2)如果两个平行平面都和第三个平面相交,那么它们的交线平行。

(面面平行→线线平行) 6.空间中的垂直问题(1)线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理 ①线面垂直判定定理和性质定理判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

7.空间角问题(1)直线与直线所成的角①两平行直线所成的角:规定为 0。

②两条相交直线所成的角:两条直线相交其中不大于直角的角,叫这两条直线所成的角。

③两条异面直线所成的角:过空间任意一点O ,分别作与两条异面直线a ,b 平行的直线b a '',,形成两条相交直线,这两条相交直线所成的不大于直角的角叫做两条异面直线所成的角。

(2)直线和平面所成的角①平面的平行线与平面所成的角:规定为0。

②平面的垂线与平面所成的角:规定为90。

③平面的斜线与平面所成的角:平面的一条斜线和它在平面内的射影所成的锐角,叫做这条直线和这个平面所成的角。

求斜线与平面所成角的思路类似于求异面直线所成角:“一作,二证,三计算”。

在“作角”时依定义关键作射影,由射影定义知关键在于斜线上一点到面的垂线, 在解题时,注意挖掘题设中两个主要信息:(1)斜线上一点到面的垂线;(2)过斜线上的一点或过斜线的平面与已知面垂直,由面面垂直性质易得垂线。

(3)二面角和二面角的平面角①二面角的定义:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内..分别作垂直于...棱的两条射线,这两条射线所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。

两相交平面如果所组成的二面角是直二面角,那么这两个平面垂直;反过来,如果两个平面垂直,那么所成的二面角为直二面角 ④求二面角的方法定义法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角第三章 直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是 0°≤α<180° (2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k 表示。

即tan k α=。

斜率反映直线与轴的倾斜程度。

当[)90,0∈α时,0≥k ; 当()180,90∈α时,0<k ; 当 90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--=注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在, 倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b ③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x④截距式:1x ya b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数); (4)直线系方程:即具有某一共同性质的直线 (一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)垂直直线系垂直于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=+-C y A x B (C 为常数)(三)过定点的直线系斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ;(5)两直线平行与垂直当111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=⇔;12121-=⇔⊥k k l l 注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

相关文档
最新文档