专题49整式的加减-重难点题型(举一反三)(解析版)
整式的加减知识点及专项训练(含答案解析)

整式的加减知识点及专项训练(含答案解析)【知识点1:合并同类项】1. 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.1.1 判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.1.2 同类项与系数无关,与字母的排列顺序无关.1.3 一个项的同类项有无数个,其本身也是它的同类项.2. 合并同类项2.1 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.2 法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变.2.3 合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项时,只把系数相加减,字母、指数不作运算,照抄即可.【知识点2:去括号与添括号】1. 去括号法则:(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2. 去括号法则诠释:2.1 去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.2.2 去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号.2.3 对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.2.4 去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形.3. 添括号法则:(1)添括号后,括号前面是“+”号,括到括号里的各项都不变符号;(2)添括号后,括号前面是“-”号,括到括号里的各项都要改变符号.4. 添括号法则诠释:4.1 添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.4.2 去括号和添括号是两种相反的变形,因此可以相互检验正误:如:a +b −c 添括号→ a +(b −c) a −b +c 添括号→ a −(b −c)【知识点3:整式的加减运算法则】1. 运算顺序: 一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2. 整式的加减运算法则诠释:2.1 整式加减的一般步骤是:①先去括号;②再合并同类项.2.2 两个整式相加减时,减数一定先要用括号括起来.2.3 整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点1:同类项的概念】1. 下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a)5与(-3)5⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥【答案】C【解析】所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.2. 判断下列各组是同类项的有 ( ) .①0.2x 2y 和0.2xy 2;②4abc 和4ac ;③-130和15;④-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组【答案】B【解析】 ①0.2x 2y 和0.2xy 2,所含字母虽然相同,但相同字母的指数不同,因此不是同类项.②4abc 和4ac 所含字母不同.③-130和15都是常数,是同类项.④-5m 3n 2和4n 2m 3所含字母相同,且相同字母的指数也相同,是同类项.3. 如果单项式﹣x a+1y 3与x 2y b 是同类项,那么a 、b 的值分别为( )A. a=2,b=3B. a=1,b=2C. a=1,b=3D. a=2,b=2【答案】C【解析】根据题意得:a+1=2,b=3,则a=1.4. 若﹣2a m b 4与3a 2b n+2是同类项,则m+n= .【答案】4.【解析】∵﹣2a m b 4与3a 2b n+2是同类项,∴{m =2n +2=4解得:{m =2n =2则m+n=4.故答案为:4.5. 如果单项式﹣xy b+1与12x a ﹣2y 3是同类项,那么(a ﹣b )2015= .【答案】1.【解析】由同类项的定义可知,a ﹣2=1,解得a=3,b+1=3,解得b=2,所以(a ﹣b )2015=1.6. 指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)3x 2y 3与-y 3x 2;(2)2x 2yz 与2xyz 2;(3)5x 与xy ;(4)-5与8【答案】(1)(4)是同类项;(2)不是同类项,因为2x 2yz 与2xyz 2所含字母x ,z 的指数不相等;(3)不是同类项,因为5x 与xy 所含字母不相同.【解析】辨别同类项要把准“两相同,两无关”,“两相同”是指:①所含字母相同;②相同字母的指数相同. “两无关”是指:①与系数及系数的指数无关;②与字母的排列顺序无关.7. 若单项式13a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.【答案】8【解析】解:由13a 3b n+1和2a 2m ﹣1b 3是同类项,得{2m −1=3n +1=3, 解得{m =2n =2. 当m=2,n=2时,3m+n=3×2+2=6+2=8.8. 如果单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项.求(1)(7a ﹣22)2021的值;(2)若5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,求(5m ﹣5n )2022的值.【答案】(1)-1;(2)0【解析】(1)由单项式5mx a y 与﹣5nx 2a ﹣3y 是关于x 、y 的单项式,且它们是同类项,得a=2a ﹣3,解得a=3;∴(7a ﹣22)2021=(7×3﹣22)2021=(﹣1)2021=﹣1;(2)由5mx a y ﹣5nx 2a ﹣3y=0,且xy ≠0,得5m ﹣5n=0,解得m=n ;∴(5m ﹣5n )2022=02022=0.9. 如图所示,是一个正方体纸盒的平面展开图,其中的五个正方形内都有一个单项式,当折成正方体后,“?”所表示的单项式与对面正方形上的单项式是同类项,则“?”所代表的单项式可能是( ).A.6 B.d C.c D.e【答案】D【解析】题中“?”所表示的单项式与“5e”是同类项,故“?”所代表的单项式可能是e,故选D.【考点2:“去括号”与“添括号”】1.化简m﹣n﹣(m+n)的结果是()A.0 B.2m C.﹣2n D.2m﹣2n【答案】C【解析】原式=m﹣n﹣m﹣n=﹣2n.故选C.2.去括号:(1)d-2(3a-2b+3c);(2)-(-xy-1)+(-x+y);(3)8m-(3n+5);(4)n-4(3-2m);(5)2(a-2b)-3(2m-n).【答案】(1)d-6a+4b-6c;(2)xy+1-x+y【解析】去括号时.若括号前有数字因数,应先把它与括号内各项相乘,再去括号.(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c;(2)-(-xy-1)+(-x+y)=xy+1-x+y.(3)8m-(3n+5)=8m-3n-5.(4)n-4(3-2m)=n-(12-8m)=n-12+8m.(5)2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n.3.在各式的括号中填上适当的项,使等式成立.(1).2x+3y-4z+5t=-( )=+( )=2x-( )=2x+3y-( );(2).2x-3y+4z-5t=2x+( )=2x-( )=2x-3y-( )=4z-5t-( );(3).a-b+c-d=a-( );(4).x+2y-z=-( );(5)a2-b2+a-b=(a2-b2)+( );(6).a2-b2-a-b=a2-a-( ). 【答案】(1)-2x-3y+4z-5t,2x+3y-4z+5t,-3y+4z-5t,4z-5t(2)-3y+4z-5t,3y-4z+5t,-4z+5t,-2x+3y.(3)b-c+d (4)-x-2y+z (5)a-b (6)b2+b【解析】在括号里填上适当的项,要特别注意括号前面的符号,考虑是否要变号.(1) 2x+3y-4z+5t=-(-2x-3y+4z-5t)=+( 2x+3y-4z+5t)=2x-(-3y+4z-5t)=2x+3y-(4z-5t)(2)2x-3y+4z-5t=2x+(-3y+4z-5t)=2x-(3y-4z+5t)=2x-3y-(-4z+5t)=4z-5t-(-2x+3y)(3)a-b+c-d=a-(b-c+d);(4)x+2y-z=-(-x-2y+z);(5)a2-b2+a-b=(a2-b2)+(a-b);(6)a2-b2-a-b=a2-a-(b2+b).4.按要求把多项式3a-2b+c-1添上括号:(1)把含a、b的项放到前面带有“+”号的括号里,不含a、b的项放到前面带有“-”号的括号里;(2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里.【答案与解析】(1) 3a-2b+c-1=(3a-2b)-(-c+1);(2) 3a-2b+c-1=(3a+c)-(2b+1).【考点3:整式加减】1.下列运算中,正确的是()A. 3a+2b=5abB. 2a3+3a2=5a5C. 3a2b﹣3ba2=0D. 5a2﹣4a2=1 【答案】C【解析】3a和2b不是同类项,不能合并,A错误;2a3和3a2不是同类项,不能合并,B错误;3a2b﹣3ba2=0,C正确;5a2﹣4a2=a2,D错误,故选:C.2.若A是一个七次多项式,B也是一个七次多项式,则A+B一定是( ).A.十四次多项式 B.七次多项式C.不高于七次的多项式或单项式 D.六次多项式【答案】C【解析】根据多项式相加的特点,多项式次数不增加,项数增加或减少可得:A+B 一定是不高于七次的多项式或单项式.故选C.3.已知一个多项式与3x2+9x的和等于3x2+4x-1,则这个多项式是( ) A.-5x-1 B.5x+1 C.-13x-1 D.13x+1【答案】A【解析】 (3x2+4x-1)-(3x2+9x)=3x2+4x-1-3x2-9x=-5x-1.4.设A,B,C均为多项式,小方同学在计算“A﹣B”时,误将符号抄错而计算成了“A+B”,得到结果是C,其中A=1x2+x﹣1,C=x2+2x,那么A﹣B=2()A.x2﹣2x B.x2+2x C.﹣2 D.﹣2x【答案】C.x2+x﹣1)﹣(x2+2x)【解析】根据题意得:A﹣B=A﹣(C﹣A)=A﹣C+A=2A﹣C=2(12=x2+2x﹣2﹣x2﹣2x=﹣2,故选C.5.已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|,则代数式|a|-|c-a|+|c-b|-|-b|的值为().A.-2c B .0 C.2c D.2a-2b+2c【答案】A【解析】由图可知:a<c<0<b,所以|a|-|c-a|+|c-b|-|-b|=-a-(c-a)+(b-c)-b=-2c.6.如图所示,阴影部分的面积是( ).A.112xy B.132xy C.6xy D.3xy【答案】A【解析】S阴=2x×3y-0.5y×x=6xy-12xy=112xy7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n(n为正整数)块石棉瓦覆盖的宽度为( ) .A.60n厘米 B.50n厘米 C.(50n+10)厘米 D.(60n-10)厘米【答案】C.【解析】观察上图,可知n块石棉瓦重叠的部分有(n-1)处,则n块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.8.若23a2b m与−0.5a n b4的和是单项式,则m=,n=.【答案】4,2.【解析】23a2b m与−0.5a n b4的和是单项式,∴23a2b m与−0.5a n b4是同类项,即可得:m=4,n=29.若5a|x|b3与-0.2a3b|y|可以合并,则x= ,y= .【答案】±3;±3【解析】∵5a|x|b3与-0.2a3b|y|可以合并∴5a|x|b3与-0.2a3b|y|为同类项即可得|x|=3.|y|=3解得:x=±3,y=±310.如图所示,长方形内有两个相邻的正方形,面积分别为9和a2(a>0).那么阴影部分的面积为________.【答案】3a-a2【解析】由图形可知阴影部分面积=长方形面积-a2-9,而长方形的长为3+a,宽为3,∴S阴=3(3+a)-9-a2=3a-a211.任意一个三位数,减去它的三个数字之和所得的差一定能被______整除. 【答案】9【解析】设任意一个的三位数为a×102+b×10+c.其中a是1~9的正整数,b,c分别是0~9的自然数.∵(a×102+b×10+c)-(a+b+c)=99a+9b=9(11a+b)=9m. (用m表示整数11a+b) . ∴任意一个三位数,减去它的三个数字之和所得的差一定能被9整除.12.合并下列各式中的同类项:(1)-2x2-8y2+4y2-5x2-5x+5x-6xy (2)3x2y-4xy2-3+5x2y+2xy2+5【答案】(1)-7x2-4y2-6xy ;(2)8x2y-2xy2+2【解析】①所有的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法则进行合并;②在进行合并同类项时,可按照如下步骤进行:第一步:准确地找出多项式中的同类项(开始阶段可以用不同的符号标注),没有同类项的项每一步保留该项;第二步:利用乘法分配律的逆运用,把同类项的系数相加,结果用括号括起来,字母和字母的指数保持不变;第三步:写出合并后的结果.(1)-2x2-8y2+4y2-5x2-5x+5x-6xy=(-2-5)x2+(-8+4)y2+(-5+5)x-6xy=-7x2-4y2-6xy(2)3x2y-4xy2-3+5x2y+2xy2+5=(3+5)x2y+(-4+2)xy2+(-3+5)=8x2y-2xy2+213.合并同类项:(1)3x-2x2+4+3x2-2x-5(2)6a2-5b2+2ab+5b2-6a2(3)-5yx2+4xy2-2xy+6x2y+2xy+5(4)3(x-1)2-2(x-1)3-5(1-x)2+4(1-x)3(注:将“x-1”或“1-x”看作整体)【答案与解析】(1)原式=(3-2)x+(-2+3)x2+(4-5)=x+x2-1(2)原式=(6-6)a2+(-5+5)b2+2ab=2ab(3)原式=(-5+6)x2y+(-2+2)xy+4xy2+5=x2y+4xy2+5(4)原式=(3-5)(x-1)2+(-2-4)(x-1)3=-2(x-1)2-6(x-1)314.一个多项式加上4x3-x2+5得3x4-4x3-x2+x-8,求这个多项式.【答案】3x4-8x3+x-13【解析】在解答此题时应先根据题意列出代数式,注意把加式、和式看作一个整体,用括号括起来,然后再进行计算,在计算过程中找同类项,可以用不同的记号标出各同类项,减少运算的错误.(3x4-4x3-x2+x-8)-(4x3-x2+5)=3x4-4x3-x2+x-8-4x3+x2-5=3x4-8x3+x-1315.已知2a3+m b5-pa4b n+1=-7a4b5,求m+n-p的值.【答案】-4【解析】两个单项式的和仍是单项式,这就意味着2a3+m b5与pa4b n+1是同类项.可得3+m=4,n+1=5,2-p=-7解这三个方程得:m=1,n=4,p=9,∴ m+n-p=1+4-9=-4.【考点4:化简求值】1.若m2-2m=1则2m2-4m+2020的值是________.【答案】2024【解析】2m2-4m+2008=2(m2-2m)+2008=2×1+2022=20242.已知a=-(-2)2,b=-(-3)3,c=-(-42),则-[a-(b-c)]的值是________.【答案】15【解析】因为a=-(-2)2=-4,b=-(-3)3=27,c=-(-42)=16,所以-[a-(b-c)]=-a+b-c=15.3.有理数a,-b在数轴上的位置如图所示,化简|1-3b|-2|2+b|+|2-3a|= .【答案】b+3a-7【解析】-b<-3,b>3,所以原式=3b-1-2(2+b)+(3a-2)=b+3a-7.4.当p=2,q=1时,分别求出下列各式的值.(1)(p−q)2+2(p−q)−13(q−p)2−3(p−q);(2)8p2−3q+5q−6p2−9【答案】(1)−123;(2)1【解析】(1)把(p−q)当作一个整体,先化简再求值:(p−q)2+2(p−q)−13(q−p)2−3(p−q)=(1−13)(p−q)2+(2−3)(p−q)=−23(p−q)2−(p−q)又p−q=2−1=1;∴原式=−23(p−q)2−(p−q)=−23×12−1=−123(2)先合并同类项,再代入求值.8p2−3q+5q−6p2−9=(8−6)p2+(−3+5)q−9=2p2+2q−9当p=2,q=1时,原式=2p2+2q−9=2×22+2×1−9=1 5.先化简,再求值:(1)3x2-8x+x3-12x2-3x3+1,其中x=2;(2)4x2+2xy+9y2-2x2-3xy+y2,其中x-2,y=1.【答案】(1)-67;(2)16【解析】(1)原式=-2x3-9x2-8x+1,当x=2时,原式=-2×23-9×22-8×2+1=-67.(2)原式=2x2-xy+10y2,当x=2,y=1时,原式=2×22-2×1+10×12=16.6. 先化简,再求各式的值:12x +(−32x +13y 2)−(2x −23y 2),其中x =−2,y =23; 【答案与解析】化简求值题一般采用“一化二代三计算”,此类题的书写格式一般为:当……时,原式=?原式=12x −32x +13y 2−2x −23y 2=−3x +y 2当x =−2,y =23时,原式=−3×(−2)+(23)2=6+49=649.7. 先化简再求值:(-x 2+5x+4)+(5x-4+2x 2),其中x =-2.【答案与解析】(-x 2+5x+4)+(5x-4+2x 2)=-x 2+5x+4+5x-4+2x 2=x 2+10x.当x =-2,原式=(-2)2+10×(-2)=-16.8. 化简:a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2.【答案】-a 2-3b 2【解析】a 2﹣2ab+b 2﹣2a 2+2ab ﹣4b 2=(a 2﹣2a 2)+(﹣2ab+2ab )+(b 2﹣4b 2)=﹣a 2﹣3b 2.9. 化简求值:(1)当a =1,b =−2时,求多项式5ab −92a 3b 2−94ab +12a 3b 2−114ab −a 3b −5的值.(2)若|4a +3b |+(3b +2)2=0,求多项式2(2a+3b)2-3(2a+3b)+8(3a+3b)2-7(2a+3b)的值.【答案与解析】(1)先合并同类项,再代入求值:原式=(−92+12)a 3b 2+(5−94−114)ab −a 3b −5=−4a 3b 2−a 3b −5 将a =1,b =−2代入,得:−4a 3b 2−a 3b −5=-4×13-(-2)2-13×(-2)-5=-19(2)把(2a+3b )当作一个整体,先化简再求值:原式=(2+8)(2a+3b)2+(-3-7)(2a+3b )=10(2a+3b)2-10(2a+3b )由|4a +3b |+(3b +2)2=0可得:4a +3b =0,3b +2=0两式相加可得:4a +6b =−2,所以有2a +3b =−1代入可得:原式=10×(-1)2-10×(-1)=2010. 已知3x a+3y 4与-2xy b-2是同类项,求代数式3b 2-6a 3b-2b 2+2a 3b 的值.【答案】228【解析】∵3x a+3y 4与-2xy b-2是同类项∴a+3=1,b-2=4.∴a=-2,b=6.∵3b 2-6a 3b-2b 2+2a 3b=(3-2)b 2+(-6+2)a 3b=b 2-4a 3b∴当a=-2,b=6时,原式=62-4×(-2)3×6=22811. 先化简,再求值:3(y+2x )-[3x-(x-y )]-2x ,其中x ,y 互为相反数.【答案与解析】3(y+2x )-[3x-(x-y )]-2x=3y+6x-3x+x-y-2x=2(x+y) 因为x ,y 互为相反数,所以x+y=0所以3(y+2x )-[3x-(x-y )]-2x=2(x+y)=2×0=012. 已知代数式3y 2-2y+6的值为8,求32y 2-y+1的值.【答案】2【解析】∵3y 2-2y+6=8,∴3y 2-2y=2.当3y 2-2y=2时,原式=12(3y 2-2y )+1=12×2+1=2 13. 已知xy=-2,x+y=3,求整式(3xy+10y )+[5x-(2xy+2y-3x )]的值.【答案】22【解析】求整式的值,一般先化简后求值,但当题目中含未知数的部分可以看 成一个整体时,要用整体代入法,即把“整体”当成一个新的字母,求关于这个新的字母的代数式的值,这样会使运算更简便.原式=3xy+10y+(5x-2xy-2y+3x )=3xy+10y+5x-2xy-2y+3x=8x+8y+xy=8(x+y )+xy 把xy=-2,x+y=3代入得,原式=8×3+(-2)=24-2=2214. 先化简,再求值:3x 2y ﹣[2x 2﹣(xy 2﹣3x 2y )﹣4xy 2],其中|x|=2,y=12,且xy <0.【答案与解析】原式去括号合并得到最简结果,利用绝对值的代数意义求出x 的值,代入原式计算即可得到结果.解:原式=3x 2y ﹣2x 2+xy 2﹣3x 2y+4xy 2=5xy 2﹣2x 2,∵|x|=2,y=12,且xy <0,∴x=﹣2,y=12,则原式=﹣52﹣8=﹣212.15. 已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值.【答案】(1)-45;(2)-10【解析】显然,由条件不能求出a 、b 的值.此时,应采用技巧求值,先进行拆项变形.解:(1)-15a 2+3b 2=-3(5a 2-b 2)=-3[(3a 2+2a 2)+(-4b 2+3b 2)]=-3[(3a 2-4b 2)+(2a 2+3b 2)]=-3×(5+10)=-45;(2)2a 2-14b 2=2(a 2-7b 2)=2[(3a 2-2a 2)+(-4b 2-3b 2)]=2×[(3a 2-4b 2)-(2a 2+3b 2)]=2×(5-10)=-10.【考点5:“无关”与“不含”型问题】1. 代数式-3x 2y-10x 3+6x 3y+3x 2y-6x 3y+7x 3-2的值( ).A .与x ,y 都无关B .只与x 有关C .只与y 有关D .与x 、y 都有关【答案】B【解析】合并同类项后的结果为-3x 3-2,故它的值只与x 有关.2. 多项式x 2﹣3kxy ﹣3y 2+xy ﹣8化简后不含xy 项,则k 为( )A .0B .−13C .13D .3【答案】C【解析】原式=x 2+(1﹣3k )xy ﹣3y 2﹣8,因为不含xy 项,故1﹣3k=0,解得:k=13.故选C .3. 如果对于某一个特定范围内x 的任意允许值,P=|1-2x|+|1-3x|+…+|1-10x|的值恒为一个常数,则此值为 ( ).A. 2B. 3C. 4D. 5【答案】B【解析】P 值恒为一常数,说明原式去绝对值后不含x 项,由此得:P =(1-2x )+(1-3x )+…+(1-7x )+(8x-1)+(9x-1)+(10x-1)=34. 当k = 时,代数式x 2−3kxy −3y 2−13xy −8中不含xy 项. 【答案】−19【解析】合并同类项得:x 2+(−3k −13)xy −3y 2−8.由题意得−3k −13=0. 故k =−19.5. 李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y-4x 3+2x 3y-2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【答案与解析】解:6x 3-2x 3y-4x 3+2x 3y-2x 3+15=(6-4-2)x 3+(-2+2)x 3y+15=15通过合并可知,合并后的结果为常数,与x 、y 的值无关,所以小明说得有道理.6. 已知关于x ,y 的代数式x 2−3kxy −3y 2−13xy −8中不含xy 项,求k 的值.【答案】k =−19【解析】x 2−3kxy −3y 2−13xy −8=x 2+(−3k −13)xy −3y 2−8 因为不含xy 项,所以此项的系数应为0,即有:−3k −13=0,解得:k =−19.7. 试说明多项式x 3y 3-12x 2y+y 2-2x 3y 3+0.5x 2y+y 2+x 3y 3-2y-3的值与字母x 的取值无关.【答案】5【解析】根据题意得:m﹣1=2,n=2,则m=3,n=2.故m+n=3+2=5.8.要使关于x,y的多项式mx3+3nxy2+2x3-xy2+y不含三次项,求2m+3n的值.【答案】-3【解析】原式=(m+2)x3+(3n-1)xy2+y要使原式不含三次项,则三次项的系数都应为0,所以有:m+2=0,3n-1=0,即有:m=-2,n=13所以2m+3n=2×(-2)+3×13= -3.9.已知:ax2+2xy-x与2x2-3bxy+3y的差中不含2次项,求a2-15ab+9b2的值. 【答案】28【解析】(ax2+2xy-x)-(2x2-3bxy+3y)=ax2+2xy-x-2x2+3bxy-3y=(a-2)x2+(2+3b)xy-x-3y. ∵此差中不含二次项,∴a-2=0,2+3b=0解得:a=2,3b=-2当a=2且3b= -2时,a2-15ab+9b2=a2-5a(3b)+(3b)2=22-5×2×(-2)+(-2)2=4+20+4=28.10.若多项式-2+8x+(b-1)x2+ax3与多项式2x3-7x2-2(c+1)x+3d+7恒等,求ab-cd. 【答案】-27【解析】由已知 ax3+(b-1)x2+8x-2≡2x3-7x2-2(c+1)x+(3d+7)∴{a=2b−1=−78=−2(c+1)−2=3a+7解得:{a=2b=−6c=−5d=−3∴ab-cd=2×(-6)-(-5)×(-3)=-12-15=-27.11.若关于x的多项式-2x2+mx+nx2+5x-1的值与x的值无关,求(x-m)2+n的最小值.【答案】2【解析】 -2x2+mx+nx2+5x-1=(n-2)x2+(m+5)x-1∵此多项式的值与x的值无关,∴{n−2=0m+5=0解得:{n=2m=−5当n=2且m=-5时, (x-m)2+n=[x-(-5)]2+2≥0+2=2.∵(x-m)2≥0,∴当且仅当x=m=-5时,(x-m)2=0,使(x-m)2+n有最小值为2.12.若关于x,y的多项式:x m-2y2+mx m-2y+nx3y m-3-2x m-3y+m+n,化简后是四次三项式,求m+n的值.【答案】4【解析】分别计算出各项的次数,找出该多项式的最高此项:因为x m-2y2的次数是m,mx m-2y的次数为m-1,nx3y m-3的次数为m,-2x m-3y的次数为m-2,又因为是三项式 ,所以前四项必有两项为同类项,显然x m-2y2与nx3y m-3是同类项,且合并后为0,所以有m=5,1+n=0 m+n=5+(-1)=4.13.有一道题目:当a=2,b=-2时,求多项式:3a3b3-2a2b+b-(4a3b3-a2b-b2)+(a3b3+a2b)-2b2+3的值.甲同学做题时把a=2错抄成a=-2,乙同学没抄错题,但他们做出的结果恰好一样。
复习课(整式的加减中的易错题)

处理复杂的整式加减问题,以及 合并同类项的技巧
学生易错题的原因分析
对整式加减运算规则 理解不透彻,导致计 算错误
计算过程中粗心大意, 导致计算结果出错
对合并同类项的技巧 掌握不够熟练,无法 准确识别和合并同类 项
对学生解题思路的指导建议
强化对整式加减运算规则的理 解,通过多做练习题加深理解
熟练掌握合并同类项的技巧, 通过多做练习题提高识别和合 并同类项的能力
04
练习题与答案
基础练习题
01
02
03
总结词
考察整式加减的基本概念 和运算规则
详细描述
包括整式的加减运算、合 并同类项、去括号等基本 技能的练习题。
示例
计算 (2x + 3y) - (x - y) 的结果。
进阶练习题
总结词
考察整式加减的复杂运算 和变形能力
详细描述
包括整式的乘法、除法、 复杂合并同类项等进阶技 能的练习题。
去括号是整式加减中的重要步骤,需要细心 处理。
详细描述
去括号时,需要注意括号前是加号还是减号 ,因为这会影响到括号内各项的符号。如果 括号前是加号,则直接去掉括号;如果括号 前是减号,则需要将括号内的各项符号都取 反。此外,还需要注意括号内各项的运算优
先级,遵循先乘除后加减的原则。
系数相乘的技巧
要点一
系数相乘时的常见错误
总结词
系数相乘时,学生容易忽略指数的影响 ,导致计算错误。
VS
详细描述
在整式的加减中,当两个整式相乘时,其 系数相乘的结果与字母的指数无关。学生 在计算时,常常会忽略指数的影响,从而 造成计算错误。例如,将“2x^2”和 “3x^3”相乘时,学生可能会错误地得出 “6x^5”,而正确的结果应该是 “6x^5”。
《整式的加减》知识点及典型试题(带解析)

解析《整式的加减》知识点一、代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
二、整式多项式和单项式统称为整式。
特别注意:分母中不能含字母三、单项式与多项式单项式1、都是数字与字母的相乘的代数式叫做单项式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是1或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
9、单项式的系数包括它前面的符号。
10、单项式的系数是带分数时,应化成假分数。
11、单项式的系数是1或―1时,通常省略数字“1”。
12、单项式的次数仅与字母有关,与单项式的系数无关。
多项式1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
整式1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
4、整式不一定是多项式。
5、分母中含有字母的代数式不是整式。
四、整式的加减1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
2、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
合并同类项:1).合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
2).合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(完整版)整式的加减知识点总结及常考题提高难题压轴题练习(含答案及解析]
![(完整版)整式的加减知识点总结及常考题提高难题压轴题练习(含答案及解析]](https://img.taocdn.com/s3/m/6a88282fa58da0116d174999.png)
整式的加减知识点总结1. 单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2. 单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数。
3. 单项式的次数:单项式中所有字母的指数的和,叫单项式的次数。
4. 多项式:几个单项式的和叫做多项式。
5. 多项式的项与项数:多项式中每个单项式叫多项式的项; 不含字母的项叫做常数项,多项式里所含单项式的个数就是多项式的项数。
6. 多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0。
注意:若a 、b 、c 、p 、q 是常数,ax 2+bx+c 和x 2+px+q 是常见的两个二次三项式。
7. 多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列;多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列.注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。
8。
整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。
9.整式分类:⎩⎨⎧多项式单项式整式 注意:分母上含有字母的不是整式.10。
同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。
11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变.12。
去括号的法则:(1)括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变;(2)括号前面是“—”号,把括号和它前面的“-"号去掉,括号里各项的符号都要改变。
13。
添括号的法则:(1)若括号前边是“+"号,括号里的各项都不变号;(2)若括号前边是“—"号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。
整式的加减重难点和易错点

整式的加减重难点和易错点一、选择题1、整式-(a-(b-c))去括号为()A。
-a-b+cB。
-a+b-cC。
-a+b+cD。
-a-b-c2、在(a-b+c)(a+b-c)=[a+(b-c)][a-(b-c)]的括号内填入的代数式分别()A。
c-b,c-bB。
b+c,b+cC。
b+c,b-cD。
c-b,c+b3、当k取1/3时,多项式x^2-3kxy-3y^2+xy-8中不含xy 项。
A。
0B。
1C。
1/9D。
-1/34、如果多项式(a+1)x^4-bx-3x-5是关于x的四次三项式,则ab的值是()A、4B、-4C、5D、-55、若|a|=2,|b|=3,且a>b,则|a-b|的值是()A、-5或-1B、1或-1C、5或3D、5或16、若|m|=3,|n|=7.且m-n>0,则m+n的值()A、10B、4C、-10或-4D、4或-47、若M=3x^2-5x-2,N=3x^2-4x-2,则M,N的大小关系()A、M>NB、M=NC、M<ND、以上都有可能8、设a是最小的自然数,b是最大的负整数,c,d分别是单项式-xy^2的系数和次数,则a,b,c,d四个数的和是()A、-1B、0C、1D、39、若多项式y^2+(m-3)xy+2x|m|是三次三项式,则m的值为()A、-3B、3C、3或-3D、210、如果a是最小的正整数,b是绝对值最小的数,c与a^2互为相反数,那么(a+b)^2009-c^2009=11、当a<3时,|a-3|+a=12、有理数a,b满足a|b|,则代数式|a+b|+|2a-b|化简后结果为___________13、去括号a-b)-(-c-d)a-b)+(c-d)________________14、化简(x+2)-(x-3x)4x-(-6x)+(-9x)=15、化简3-5x-4(x-x+3x)/22=16、当a^2+b^2=1时,(a+b)^2的最小值为__________17、计算m+n-(m-n)的结果为2n。
中考数学专题复习《整式的加减》考点专题讲解

整式的加减考点图解技法透析1.代数式代数式是用基本的运算符号(运算包括:加、减、乘、除、乘方、开方)把数或字母连接而成的式子.用字母表示数,是代数的基本特征,在同一个问题中,一个字母只能表示同一个数量,字母不仅可表示具体的数,还可以表示带运算符号的式子,它表示了数量间的关系,括号不是运算符号,它是表示运算顺序的符号.代数式的书写要规范,字母与字母相乘、数与字母相乘,乘号通常写作“·”,或省略不写;数字因数要写在字母因数的前面,但数与数相乘,仍要用乘号;带分数与字母相乘时,若省略乘号,应把带分数写成假分数.如2315a b 应写成:285a b 或285a b . 2.整式整式是最基本的代数式,分为单项式和多项式,只含有数与字母的积的代数式叫单项式,单独的一个数或字母也叫单项式.单项式由数字因数和字母因数两部分组成,其中数字因数部分叫单项式的系数,字母因数部分中所有字母的指数和叫单项式的次数.如:在单项式-23a 2b 5中,其系数为-23,次数为7.几个单项式的和叫多项式.多项中,次数最高项的次数叫多项式的次数,如在多项式:-2x 3y +12xy 2-xy -2010中,多项式的项有:-2x 3y ,12xy 2,-xy ,-2010,次数为:4次,这个多项式为四次四项式,单项式和多项式统称为整式.3.与同类项有关的知识(1)同类项的意义:在多项式中,所含字母相同,且相同字母的指数也分别相同的项叫同类项,几个常数项也是同类项,同类项的判定可概括为“两同两无关”.即:所含字母相同,且相同字母指数也分别相同,与系数无关,与字母顺序无关,如-12a 2b 3和2b 3a 2是同类项.(2)合并同类项法则:在合并同类项时,把同类项的系数相加,字母和字母指数保持不变.合并同类项的依据是逆用乘法分配律,即:ab +ac =a(b +c).4.去括号法则(1)括号前面是“+”号,去掉括号及括号前面的“+”号,括号内各项都不改变符号;括号前面是“-”号,去掉括号及括号前面的“-”号,括号内各项都改变符号.(2)去括号时要注意:①去括号时,应将括号及括号前面的符号一起去掉;②注意括号前面的符号,若括号前面是“-”号时,括号内各项都变号,不能只变第一项或某几项;③若括号前面有数字因数时应利用乘法分配律,先将该数与括号内各数分别相乘,再去掉括号;④遇到多重括号时,其方法一般是由里到外,逐层去括号,也可由外向里,应灵活运用.5.整式的加减法的一般步骤整式的加减法是考查学生运算能力的重要途径之一,其实质是去括号和合并同类项,其一般步骤为:(1)如果有括号,按去括号法则先去括号;(2)运用合并同类项的法则,合并同类项,并将其结果按某一字母的降幂或升幂排列.需注意的是:不是同类项的不能合并.6.与整式的加减法有关的竞赛题的主要类型(1)先化简再求值;(2)整体代入法,如:若2a -b =7,则5+18a -9b =_______.(3)特殊值法,如:设(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a .求a 0+a 1+a 2+a 3+a4+a5的值.名题精讲考点1 用字母表示代数式例1 某商店经销一批衬衣,进价为每件m元,零售价比进价高a%,后因市场变化,该店把零售价调整为原来的零售价的b%出售,那么调价后每件衬衣的零售价为 ( ) A.m(1+a%)(1-b%)元B.m·a%(1-b%)元C.m(1+a%)·b%元D.m(1+a%·b%)元【切题技巧】零售价比进价高a%,即零售价为m(1+a%)元,因市场变化再将零售价调整为原来零售价的b%出售,则调价后的零售价为m(1+a%)·b%元.【规范解答】 C【借题发挥】要深入生活实际,了解相关常识,理解相关词语的意义,熟悉基本关系式,善于理顺数量关系.如本例中原来的零售价为m(1+a%)元,而不号ma%元,m·a%元是比进价高出的价格数,当零售价再次调整为原零售价的b%出售,则调价后的零售价为:m(1+a%)·b%元,而不是m(1+a%)(1-b%)元.【同类拓展】1. a的两倍与b的一半之和的平方减去a、b两数平方和的4倍,用代数式表示应为_______.考点2 用代数式揭示规律例2 一根绳子弯曲成如图①所示的形状,当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段,当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子被剪为9段,若用剪刀在虚线a、b之间把绳子再剪(n-2)次(剪口的方向与a平行)这样一共剪n次时,绳子的段数为 ( )A.4n+1 B.4n+2 C.4n+3 D.4n+5【切题技巧】本题其实就是找规律,当用剪刀剪1次时,绳子就被剪成5段,而原来的绳子只有1段,增加了5-1-4段,当用剪刀剪2次时,绳子被剪成9段,比剪1次多剪9-5=4段,……这样我们可以发现每多剪1次就多增加4段绳子,那么剪n次,就应该增加4n段,所以剪n次时,绳子的段数共为(4n+1)段.【规范解答】 A【借题发挥】用字母表示代数式更能简洁地揭示数与式之间的数量关系,准确地抽象出数与式的内在联系,而用代数式表达的数量关系,实质上反映的是算式的一般规律,它是对满足条件的各个数量之间的通用公式.【同类拓展】2.托运行李p千克(p为整数)的费用为c,已知托运第1个1千克付费2元,以后每增加1千克(不足1千克按1千克计)需加费用0.5元,则计算托运行李费用c的公式为_______考点3 与整式有关的概念例3 若单项式-4x m-2y3与23x3y7-2n的和仍是单项式,求m2+n2-(2m-2n)的值.【切题技巧】单项式与单项式的和仍为单项式,则说明这两个单项式可以合并同类项,即这两个单项式为同类项,所以本例中的两个单项式-4x m-2y3和23x3y7-2n是同类项,再由同类项的定义,相同字母的指数相同建立m与n之间的等量关系,从而求出m、n的值.【规范解答】【借题发挥】若n个单项式的和仍为单项式,则这n个单项式为同类项,因为不是同类项的不能合并.因此要理解题意,理解单项式及同类项的概念,再由同类项的定义找到相应的相等关系.【同类拓展】3.已知多项式a(x3-x2+3x)+b(2x2+x)+x3-5是关于x的二次三项式,当x=2时,多项式的值为-17,那么当x=-2时,多项式的值为多少?考点4 整式的加减例4 若代数式(x2+ax-2y+7)-(bx2-2x+9y-2002)的值与字母x的取值无关,求(a+b)2010的值.【切题技巧】先将代数式经过去括号、合并同类项后,再讨论多项式的值与x的取值无关,说明该多项式中含有x项的系数为0,进而得到关于a、b的两个相等关系,求出a、b的值.【规范解答】【借题发挥】一个多项式的值与某一字母的取值无关,先要将该多项式整理化简后,再说明含该字母的项的系数为0;同样的一个多项式中缺哪一项,也是先要将该多项式按某一字母的升幂或降幂排列并整理化简后,再说明该项的系数为0,从而建立相应的相关关系,如当k=_______时,多项式2x2-2kxy+3y2+12xy-4中不含xy项,先合并同类项整理为:3x2+(-2k+12)xy+3y2-4,于是有-2k+12=0 ∴k=14.【同类拓展】4.已知有理数a、b满足多项式A和B,其中A=(-2x5+3x4+2x3+2010)-(ax4+bx3-2x+1)缺四次项和三次项,且x<-2,B=x a x b-++,试化简B=x a x b-++.例5 已知(2x-1)5=a5x5+a4x4+a3x4+a3x3+a2x2+a1x+a. (1)当x=0时,有何结论; (2)当x=1时,有何结论;(3)当x=-1时,有何结论; (4)求a5+a3+a1的值.【切题技巧】【规范解答】【借题发挥】求一个多项式展开式中的各项系数之和或部分系数之间的关系,要消去多项式中所含未知数,因此可令未知数为一些特殊值代人多项式展开式中,可得到相应的结论.【同类拓展】5.已知ax4+bx3+cx2+dx+e=(x-2)4(1)求a+b+c+d+e的值. (2)试求a+c的值.参考答案1.(2a+12b)2-4(a2+b2 ) 2.c=2+0.5(p-1) 3.-1. 4.-2x+1. 5.25。
《整式的加减》知识点归纳及典型例题分析

整式的加减典型例题一、认识单项式、多项式1、下列各式中,书写格式正确的是 ( ) A .4·21 B.3÷2y C.xy ·3 D.ab2、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 3、在整式5abc ,-7x 2+1,-52x ,2131,24y x -中,单项式共有 ( )A.1个B.2个C.3个D.4个4、代数式,21a a +43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( )A 、3B 、4C 、5D 、65、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。
6、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 二、整式列式.1、一个梯形教室内第1排有n 个座位,以后每排比前一排多2个座位,共10排.(1)写出表示教室座位总数的式子,并化简;(2)当第1排座位数是A 时,即n =A ,座位总数是140;当第1排座位数是B ,即n =B 时,座位总数是160,求A 2+B 2的值.2、若长方形长是2a +3b ,宽为a +b ,则其周长是( ) A.6a +8bB.12a +16bC.3a +8bD.6a +4b3、a 是一个三位数,b 是一个两位数,若把b 放在a 的左边,组成一个五位数,则这个五位数为( ) A.b+a B.10b+a C. 100b+a D. 1000b+a4、(1)某商品先提价20%,后又降价20%出售,现价为a 元,则原价为 元。
(2)香蕉每千克售价3元,m 千克售价____________元。
(3)温度由5℃上升t ℃后是__________℃。
(4)每台电脑售价x 元,降价10%后每台售价为____________元。
(5)某人完成一项工程需要a 天,此人的工作效率为__________。
整式的加减知识梳理+考点例题分析+巩固练习

个性化辅导教案学生姓名:授课教师:所授科目:学生年级: 上课时间:2016 年月日时分至时分共小时教学标题整式的加减教学重难点一、知识点回顾1、单项式的概念单项式:由数与字母的乘积组成的代数式称为单项式。
补充:单独一个数或一个字母也是单项式,如a,5……单项式系数和次数:单项式是由数字因数和字母因数两部分组成的。
系数:单项式中的字母因数次数:单项式中所有字母的指数和2、单项式的规范书写数与字母相乘,数写在字母的前面数与字母相乘、字母与字母相乘省略乘号。
除号要写成分数线3、多项式的概念几个单项式的和叫做多项式。
在多项式中每个单项式叫做多项式的项,其中不含字母的项叫常数项。
多项式里次数最高项的次数,就是这个多项式的次数。
例如,多项式3x-2最高的项就是一次项3x,这个多项式的次数是1,它是一次二项式4、整式的概念:单项式与多项式统称整式二、整式的加减1、同类项:所含字母相同,相同字母的指数也分别相同的项叫做同类项,所有的常数项都是同类项。
合并同类项:把多项式中同类项合并在一起,叫做合并同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数保持不变。
2、去括号的法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号.3、整式加减的运算法则(1)如果有括号,那么先去括号。
(2)如果有同类项,再合并同类项。
三、重要考点例析考点1、考查整式的有关概念1、代数式2356y xy x +-中共有 项,36x 的系数是 ,5xy -的系数是 ,2y +的系数是 2、在代数式26358422-+-+-x x x x 中,24x 和 是同类项,x 8-和 是同类项,2-和 也是同类项,合并后是 .3、若y x n 21与m y x 3是同类项,则=m ,=n . 考点2、去括号、化简绝对值1、若53<<a ,则_________35=-+-a a .2、若x<y<z,则│x-y │+│y-z │+│z-x │的值为( )A.2x-2zB.0C.2x-2yD.2z-2x3、)]([n m ---去括号得 ( )A.n m -B.n m --C.n m +-D.n m +考点3、计算(1)144mn mn -; (2)2237(43)2x x x x ⎡⎤----⎣⎦;(3)(2)()xy y y yx ---+ ; (4) 2 222223(2)a b a b --+考点4、化简求值(1))522(2)624(22-----a a a a 其中 1-=a .(2))3123()21(22122b a b a a -----其中 32,2=-=b a .考点5、根据题意列代数式1.“m的倒数的3倍与m的差”用式子表示为.2.一个两位数的个位数字是a,十位数字是b,则用式子表示这个数为.3.三个连续的自然数,中间的一个为n,则第一个为,第三个为.4.如图1,三角尺的面积为.5.如图2,阴影部分的面积为.6.某轮船顺水航行3小时,逆水航行1.5小时,已知轮船在静水中的速度为a千米/时,水流速度为y千米/时,则轮船共航行千米.7.三个植树队,第一队植树x棵,第二队植的比第一队植树的2倍少25棵,第三队植的树比第一队植树的一半多42棵,则三个队共植树棵.8.某商场进行促销活动,将一批电脑打7折销售,小强花a元买了一台,那么打折前这台电脑的售价是_________元.巩固练习 姓 名所授科目年级 授课老师 完成时间1. 单项式243ab c -的系数是 , 次数是 ,多项式222389x y x y --的最高次项为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题3.6 整式的加减-重难点题型【知识点1 整式的加减】【题型1 整式的加减(比较大小)】【例1】(2020秋•铜官区期末)设M=x2+3x+7,N=﹣x2+3x﹣4,那么M与N的大小关系是()A.M<N B.M=N C.M>N D.无法确定【分析】M、N作差,利用整式的加减运算法则计算进而得出答案.【解答】解:M﹣N=x2+3x+7+x2﹣3x+4=2x2+11>0.∴M>N.故选:C.【变式1-1】(2020秋•澄海区期末)若A=2x2﹣x+1,B=x2﹣x﹣m2,则A,B的大小关系是()A.A<B B.A=BC.A>B D.与x的值有关【分析】将A和B作差,然后化简,即可得到A﹣B的结果与0的大小关系,从而可以解答本题.【解答】解:∵A=2x2﹣x+1,B=x2﹣x﹣m2,∴A﹣B=(2x2﹣x+1)﹣(x2﹣x﹣m2)=2x2﹣x+1﹣x2+x+m2=x2+1+m2>0,∴A>B,故选:C.【变式1-2】(2020秋•南京期末)若M=3x2+5x+2,N=4x2+5x+3,则M与N的大小关系是()A.M<N B.M>N C.M≤N D.不能确定【分析】直接利用整式的加减运算法则结合偶次方的性质得出答案.【解答】解:∵M=3x2+5x+2,N=4x2+5x+3,∴N﹣M=(4x2+5x+3)﹣(3x2+5x+2)=4x2+5x+3﹣3x2﹣5x﹣2=x2+1,∵x2≥0,∴x2+1>0,∴N>M.故选:A.【变式1-3】(2020秋•广信区期中)设A=x2﹣4x﹣3,B=2x2﹣4x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【分析】把A与B代入A﹣B中,判断差的正负,即可确定出大小关系.【解答】解:∵A=x2﹣4x﹣3,B=2x2﹣4x﹣1,∴A﹣B=(x2﹣4x﹣3)﹣(2x2﹣4x﹣1)=x2﹣4x﹣3﹣2x2+4x+1=﹣x2﹣2<0,则A<B.故选:A.【题型2 整式的加减(项与系数)】【例2】(2021春•萧山区月考)若P和Q都是关于x的五次多项式,则P+Q是()A.关于x的五次多项式B.关于x的十次多项式C.关于x的四次多项式D.关于x的不超过五次的多项式或单项式【分析】根据合并同类项法则判断即可.【解答】解:若P和Q都是关于x的五次多项式,则P+Q是关于x的不超过五次的多项式或单项式.故选:D.【变式2-1】(2020秋•射洪市期末)两个三次多项式相加,和的次数是()A.三B.六C.大于或等于三D.小于或等于三【分析】根据合并同类项法则的即可求出答案.【解答】解:由合并同类项法则可知:两个同类项合并,其次数不能超过该单项式次数,所以两个三次多项式相加,和的次数小于或等于三,故选:D.【变式2-2】(2020秋•凤凰县期末)若A与B都是二次多项式,则关于A﹣B的结论,下列选项中正确的有()A.一定是二次式B.可能是四次式C.可能是一次式D.不可能是零【分析】多项式相减,也就是合并同类项,合并同类项时只是把系数相加减,字母和字母的指数不变,所以结果的次数一定不高于2次,由此可以判定正确个数.【解答】解:∵多项式相减,也就是合并同类项,而合并同类项时只是把系数相加减,字母和字母的指数不变,∴结果的次数一定不高于2次,当二次项的系数相同时,合并后结果为0,故只有选项C符合题意.故选:C.【变式2-3】(2020秋•铜官区期末)若A是五次多项式,B是三次多项式,则A﹣B一定是次式.【分析】根据合并同类项的法则即可求解.【解答】解:根据题意,五次项没有同类项,所以差的最高次是五次.所以A﹣B的一定是五次多项式或单项式.故答案为:五、多项或单项【题型3 整式的加减(错看问题)】【例3】(2020秋•来宾期末)小文在做多项式减法运算时,将减去2a2+3a﹣5误认为是加上2a2+3a﹣5,求得的答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2+a﹣4C.a2+a﹣4D.﹣3a2﹣5a+6【分析】直接利用整式的加减运算法则计算得出答案.【解答】解:设原多项式为A,则A+2a2+3a﹣5=a2+a﹣4,故A=a2+a﹣4﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则﹣a2﹣2a+1﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6.故选:D.【变式3-1】(2020秋•罗庄区期末)有一道题目是一个多项式减去x2+14x﹣6,小强误当成了加法计算,结果得到2x2﹣x+3,则原来的多项式是.【分析】根据多项式加法的运算法则,用和减去这个多项式,即可求出另外一个.【解答】解:2x2﹣x+3﹣(x2+14x﹣6)=2x2﹣x+3﹣x2﹣14x+6=x2﹣15x+9.原来的多项式是x2﹣15x+9.【变式3-2】(2020秋•伊通县期末)某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A﹣2B”的正确答案.【分析】根据题意可以求得A,从而可以求得“A﹣2B”的正确答案.【解答】解:∵B=2x2+3x﹣4,A+2B=5x2+8x﹣10,∴A=5x2+8x﹣10﹣2(2x2+3x﹣4)=5x2+8x﹣10﹣4x2﹣6x+8=x2+2x﹣2,∴A﹣2B=x2+2x﹣2﹣2(2x2+3x﹣4)=x2+2x﹣2﹣4x2﹣6x+8=﹣3x2﹣4x+6.【变式3-3】(2020秋•新邵县期末)一位同学做一道题:已知两个多项式A、B,计算A﹣3B他误将“A﹣3B”看成“3A﹣B”,求得的结果为x2﹣14xy﹣4y2,其中B=2x2+2xy+y2,(1)请你计算出多项式A.(2)若x=﹣3,y=2,计算A﹣3B的正确结果.【分析】(1)根据3A﹣B=x2﹣14xy﹣4y2,先求出3A,然后再求多项式A;(2)先化简A﹣3B,然后代入求值.【解答】解:(1)由题意:3A﹣B=x2﹣14xy﹣4y2,∴3A=x2﹣14xy﹣4y2+B,=x2﹣14xy﹣4y2+2x2+2xy+y2=3x2﹣12xy﹣3y2,∴A=13(3x2﹣12xy﹣3y2)=x2﹣4xy﹣y2,即多项式A为x2﹣4xy﹣y2;(2)A﹣3B=x2﹣4xy﹣y2﹣3(2x2+2xy+y2)=x2﹣4xy﹣y2﹣6x2﹣6xy﹣3y2=﹣5x2﹣10xy﹣4y2,当x=﹣3,y=2时,原式=﹣5×(﹣3)2﹣10×(﹣3)×2﹣4×22=﹣5×9+60﹣4×4=﹣45+60﹣16=﹣1.即A﹣3B的正确结果为﹣1.【题型4 整式的加减(遮挡问题)】【例4】(2020秋•海淀区校级期末)下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.(﹣x2+3xy−12y2)﹣(−12x2+4xy−32y2)=−12x2+y2,阴影部分即为被墨迹弄污的部分.那么被墨汁遮住的一项应是()A.﹣7xy B.+7xy C.﹣xy D.+xy 【分析】根据题意得出整式相加减的式子,再去括号,合并同类项即可.【解答】解:由题意得,被墨汁遮住的一项=(﹣x2+3xy−12y2)﹣(−12x2+4xy−32y2)﹣(−12x2+y2)=﹣x2+3xy−12y2+12x2﹣4xy+32y2+12x2﹣y2=﹣xy.故选:C.【变式4-1】(2020秋•卫辉市期末)下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x2+3xy−12y2)﹣(−12x2+4xy−12y2)=−12x2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是()A.﹣xy B.+xy C.﹣7xy D.+7xy 【分析】原式去括号合并得到结果,即可确定出背墨汁遮住的一项.【解答】解:原式=﹣x2+3xy−12y2+12x2﹣4xy+12y2=−12x2﹣xy,则被墨汁遮住的一项应是﹣xy.故选:A.【变式4-2】(2020秋•喀喇沁旗期末)某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)=5a2﹣6b2,空格的地方被墨水弄脏了,请问空格中的一项是()A.+2ab B.+3ab C.+4ab D.﹣ab【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【解答】解:依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选:A.【变式4-3】(2020秋•射洪市期末)印卷时,工人不小心把一道化简题前面一个数字遮住了,结果变成:■x2y−[5xy2−2(−23xy+32x2y)−43xy]+5xy2.(1)某同学辨认后把“■”猜成10,请你帮他算算化简后该式是多少;(2)老师说:“你猜错了,我看到该题目遮挡部分是单项式−4m2n3的系数和次数之积.”遮挡部分是多少?(3)若化简结果是一个常数,请算算遮挡部分又该是多少?【分析】(1)把“■”换成10,原式去括号合并即可得到结果;(2)求出单项式的系数和次数之积,确定出遮挡部分即可;(3)设遮挡部分为a,原式去括号合并后,根据化简结果为常数,确定出a的值即可.【解答】解:(1)根据题意得:原式=10x2y﹣(5xy2+43xy﹣3x2y−43xy)+5xy2=10x2y﹣5xy2−43xy+3x2y+43xy+5xy2=13x2y;(2)是单项式−4m2n3的系数和次数之积为:−43×3=﹣4,答:遮挡部分应是﹣4;(3)设遮挡部分为a,原式=ax2y﹣5xy2+3x2y+5xy2=ax2y+3x2y=(a+3)x2y,因为结果为常数,所以遮挡部分为﹣3.【题型5 整式的加减(不含某项)】【例5】(2020秋•鹿邑县期末)若多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,则m等于()A.2B.﹣2C.4D.﹣4【分析】直接利用整式的加减运算法则得出8+2m=0,进而得出答案.【解答】解:∵多项式2x3﹣8x2+x﹣1与多项式3x3+2mx2﹣5x+3的差不含二次项,∴2x3﹣8x2+x﹣1﹣(3x3+2mx2﹣5x+3)=﹣x3﹣(8+2m)x2+6x﹣4,∴8+2m=0,解得:m=﹣4.故选:D.【变式5-1】已知多项式4x2﹣2kxy﹣3(x2﹣5xy+x)不含xy项,则k的值为.【分析】首先去括号再合并同类项,根据题意可得xy的系数为0,再解即可.【解答】解:原式=4x2﹣2kxy﹣3x2+15xy﹣3x=x2+(15﹣2k)xy﹣3x,∵不含xy项,∴15﹣2k=0,解得:k=7.5,故答案为:7.5.【变式5-2】(2020秋•九龙坡区校级期末)已知关于x,y的多项式x2+mx﹣2y+n与nx2﹣3x+4y﹣7的差的值与字母x的取值无关,则n﹣m=.【分析】先作差,然后合并同类型,根据差与字母x的取值无关,便可求出m.n的值.【解答】解:x2+mx﹣2y+n﹣(nx2﹣3x+4y﹣7)=x2+mx﹣2y+n﹣nx2+3x﹣4y+7=(1﹣n)x2+(m+3)x+n﹣6y+7.∵差与字母x的取值无关.∴1﹣n=0,m+3=0.∴n=1,m=﹣3.∴n﹣m=4.故答案为:4.【变式5-3】(2020秋•清涧县期末)已知代数式A=a4﹣3a2b2﹣ab3+5,B=2b4﹣2a2b2+ab3,C=a4﹣5a2b2+2b4﹣2.小丽说:“代数式A+B﹣C的值与a,b的值无关.”她说得对吗?说说你的理由.【分析】把A,B,C代入A+B﹣C中,去括号合并后即可做出判断.【解答】解:小丽的说法正确,理由如下:∵A=a4﹣3a2b2﹣ab3+5,B=2b4﹣2a2b2+ab3,C=a4﹣5a2b2+2b4﹣2,∴A+B﹣C=(a4﹣3a2b2﹣ab3+5)+(2b4﹣2a2b2+ab3)﹣(a4﹣5a2b2+2b4﹣2)=a4﹣3a2b2﹣ab3+5+2b4﹣2a2b2+ab3﹣a4+5a2b2﹣2b4+2=7,则结果为常数,与a,b的值无关.【题型6 整式的加减的应用】【例6】(2020秋•南充期末)计算:(1)3(a+b)﹣(3a﹣2b);(2)xy2﹣[x+12(6y+2xy2)﹣3x].【分析】(1)根据去括号法则即可求出答案.(2)根据整式的运算法则即可求出答案.【解答】解:(1)原式=3a+3b﹣3a+2b=5b.(2)原式=xy2﹣(x+3y+xy2﹣3x)=xy2﹣(3y+xy2﹣2x)=xy2﹣3y﹣xy2+2x=2x﹣3y.【变式6-1】(2020秋•陇县期末)化简:(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].【分析】(1)先去括号,然后合并同类项即可求解;(2)先去括号,然后合并同类项即可求解.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn.【变式6-2】(2020秋•渝中区期末)已知A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2.计算:(1)B+2A;(2)4A﹣3B.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)∵A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2∴B+2A=﹣2m2+8mn﹣3n2+2(m2﹣3mn+n2)=﹣2m2+8mn﹣3n2+2m2﹣6mn+2n2=2mn﹣n2,(2)∵A=m2﹣3mn+n2,B=﹣2m2+8mn﹣3n2∴4A﹣3B=4(m2﹣3mn+n2)﹣3(﹣2m2+8mn﹣3n2)=4m2﹣12mn+4n2+6m2﹣24mn+9n2=10m2﹣36mn+13n2.【变式6-3】(2021秋•织金县期末)已知:A=x2﹣2xy+y2,B=x2+2xy+y2.(1)求﹣A+B;(2)如果2A﹣3B+C=0,那么C的表达式是什么?【分析】(1)根据整式的运算法则即可求出答案.(2)根据等式的性质以及整式的运算法则即可求出答案.【解答】解:(1)﹣A+B=﹣(x2﹣2xy+y2)+(x2+2xy+y2)=﹣x2+2xy﹣y2+x2+2xy+y2=4xy(2)因为2A﹣3B+C=0所以C=3B﹣2A=3(x2+2xy+y2)﹣2(x2﹣2xy+y2)=3x2+6xy+3y2﹣2x2+4xy﹣2y2=x2+10xy+y2。