统计学中的平均数与四分位数
统计学课后思考题答案

统计学课后思考题答案统计学课后思考题答案统计学课后思考题答案~~ 来源: 张倩倩Orange的日志在百度文库上下载下来的,奉献给同胞们~统计课后思考题答案第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
定量资料统计描述——集中趋势与离散程度

度量单位不同资料之间离散度的比较; 均数相差悬殊的资料之间离散度的比较。
【例4-11】
某研究收集了100例7岁男孩的身高和体重的资料,身高均数为 123.10cm,标准差为4.71cm;体重均数为22.92kg,标准差为 2.26kg,比较这100例7岁男孩的身高和体重的变异度。
身高 CV
4.71 100 % 3.83 %
M X n1
当n为奇数时,
() 2
, 位置居中的观察值
当n为偶数时,
M
(X n ()
X n )/ ( 1)
2 ,计算出位次居中的两个观察值的均数
2
2
例:7名病人患某病的潜伏期分别为2,3,4,5,6,9,16天,求其中位数。
本例n=7,为奇数
M X 71 X 4 5(天 ) () 2
例:8名患者食物中毒的潜伏期分别为1,2,2,3,5,8,15,24小时,求其中位数。
本例n=8,为偶数
M
1
2
X 8
() 2
X 8
( 1) 2
1 2
X
4
X5
1 3 5 4(小时)
2
(二) 中位数的应用
中位数可用于各种分布的资料,在正态分布资料中,中位数等于 均数,在对数正态分布资料中,中位数等于几何均数。
中位数不受极端值的影响,因此,实际工作中主要用于不对称分 布类型的资料、两端无确切值(>100)或分布不明确的资料。
患者编号:1 2 3 4 5 6 7 8 9 ... 117 118 119 120 住院天数:1 2 2 2 3 3 4 4 5 ... 40 40 42 45
n=120,120*5%=6,为整数:
P5
《统计学》名词解释及公式

第1章统计与统计数据一、学习指导统计学是处理和分析数据的方法和技术,它几乎被应用到所有的学科检验领域。
本章首先介绍统计学的含义和应用领域,然后介绍统计数据的类型及其来源,最后介绍统计中常用的一些基本概念。
本章各节的主要内容和学习要点如下表所示。
二、主要术语1. 统计学:收集、处理、分析、解释数据并从数据中得出结论的科学。
2. 描述统计:研究数据收集、处理和描述的统计学分支。
3. 推断统计:研究如何利用样本数据来推断总体特征的统计学分支。
4. 分类数据:只能归于某一类别的非数字型数据。
5. 顺序数据:只能归于某一有序类别的非数字型数据。
6. 数值型数据:按数字尺度测量的观察值。
7. 观测数据:通过调查或观测而收集到的数据。
8. 实验数据:在实验中控制实验对象而收集到的数据。
9. 截面数据:在相同或近似相同的时间点上收集的数据。
10. 时间序列数据:在不同时间上收集到的数据。
11. 抽样调查:从总体中随机抽取一部分单位作为样本进行调查,并根据样本调查结果来推断总体特征的数据收集方法。
12. 普查:为特定目的而专门组织的全面调查。
13. 总体:包含所研究的全部个体(数据)的集合。
14. 样本:从总体中抽取的一部分元素的集合。
15. 样本容量:也称样本量,是构成样本的元素数目。
16. 参数:用来描述总体特征的概括性数字度量。
17. 统计量:用来描述样本特征的概括性数字度量。
18. 变量:说明现象某种特征的概念。
19. 分类变量:说明事物类别的一个名称。
20. 顺序变量:说明事物有序类别的一个名称。
21. 数值型变量:说明事物数字特征的一个名称。
22. 离散型变量:只能取可数值的变量。
23. 连续型变量:可以在一个或多个区间中取任何值的变量。
四、习题答案1. D2. D3. A4. B5. A6. D7. C8. B9. A10.A11.C、12.C13.B14.A15.C16.D17.C18.A19.C20.D21.A22.C23.C24.B25.D26.C27.B28.D29.A30.D31.A32.B33.C34.A35.A36.A37.D38.B39.B40.C41.C42.D43.C44.D45.A46.B47.C48.A49.C50.D51.A52.C53.D54.A55.B第2章数据的图表展示一、学习指导数据的图表展示是应用统计的基本技能。
统计学 四分位用途

统计学四分位用途
四分位数在统计学中有以下用途:
1. 描述数据的分布:四分位数可以帮助描述数据的分布情况。
通过观察四分位数的位置,可以大致了解数据是集中还是分散的,以及是否有异常值出现。
2. 识别异常值:四分位数在识别异常值方面很有用。
例如,如果一个数值落在了数据的最小或最大四分位数之外,那么这个数值可能被视为异常值。
3. 比较不同组的数据:通过比较不同组的四分位数,可以了解各组数据的一般水平,以及它们之间的差异。
这对于数据分析和数据挖掘特别有用。
4. 与其他统计指标结合使用:四分位数可以与其他统计指标结合使用,如平均数、中位数等,以提供更全面的数据描述。
5. 决策制定:在某些情况下,四分位数可以为决策者提供依据,例如,在制定销售目标或预算时,可以根据历史数据的四分位数来制定更有针对性的目标。
6. 质量控制:在质量控制中,四分位数可以用于识别过程是否稳定,或者是否需要对过程进行改进。
7. 风险评估:在金融领域,四分位数经常被用来评估投资组合的风险。
通过计算不同资产收益率的四分位数,可以了解投资组合在不同市场环境下可能的收益率分布。
8. 预测模型:在预测模型中,四分位数可以用于预测未来数据点的可能性范围,例如,预测某个地区的房价范围。
总的来说,四分位数是一种非常有用的统计工具,可以在各种场景中帮助分析和解释数据。
电大社会统计学

一、基本概念1、众数众数是一组数据中出现频数最多的数值,用Mo表示。
例如,一个城市有多种产业,但如果以旅游业为最多,那么旅游业就是众数,这个城市也被称为旅游城市。
2、中位数中位数是中心趋势的一种测量,是将一组数据排序后,处于中间位置的变量值,用Me表示。
中位数处于中间位置,前后每部分均包括50%的数据,而且前面部分小于中位数、后面部分大于中位数。
例如,在职工收入水平差异比较大的单位,要了解职工收入的一般水平,用职工收入分布的中位数作为收入水平的代表值要比用算术平均数更恰当,因为它排除了极端数据的影响。
3、四分位数四分位数是将一组数据排序后,找出将该组数据等分为四等份的三个点,每份包括25%的数据,这三个点上的数据就是四分位数。
第二个四分位数就是中位数,它前面包括50%数据,后面也包括50%数据,因而,平时所说的四分位数主要是指第一个四分位数和第三个四分位数。
通常,我们将第一个四分位数称为下四分位数(QL),将第三个四分位数称为上四分位数(QU)。
4、均值均值是集中趋势最主要的测量值,它是将全部数据进行加总然后除以数据总个数,也称为算数平均数。
均值包含一组数据中所有数值,它是先将所有数值进行加总,然后进行平均,在均值中所有数值都有所体现。
因而,我们说均值是集中趋势最主要的测量值。
二、基本方法1、众数的计算(1)众数的计算比较简单,就是找出频数最大的即可。
例如“甲城居民对交通满意度调查”,调查者在甲城市随机抽取统计500人调查,调查结果发现,选择“非常不满意”的有50人,“不满意”的有98人,选择“一般”的有204人,选择“满意”的有110人,选择“非常满意”的有38人。
从调查结果可以看出,选择“一般”的居民最多,为204人,占总数的40.8%,因而众数为“一般”这一变量值,即Mo=“一般”。
对于数值型数据,计算众数时,最好先对数据进行排序,有利于计算各变量值频数,避免出错。
(2)对于分组数据,计算具体数值时,根据公式:对于任意一组数据,基本都存在频数最多的数值,这个数值可能有一个,也可能是两个,或者三个甚至更多,不管存在几个,它们均是该组数据的众数。
统计学第3章数值性的主要统计指标

统计学第3章数值性的主要统计指标统计学中,数值性的主要统计指标是描述和总结数据集中数值变量的中心趋势和离散程度。
这些指标包括平均数、中位数、众数、四分位数、极差、方差和标准差等。
1. 平均数(Mean)是数据集中所有数值的总和除以观测次数。
它是一种常见的统计指标,用于表示数据的“典型”数值。
平均数对异常值敏感,受数据的分布和范围影响较大。
2. 中位数(Median)是将数据按大小排序后,处于中间位置的数值。
它不受异常值的影响,适用于数据存在明显偏态或异常值的情况。
3. 众数(Mode)是数据集中出现频率最高的数值。
对于离散变量,可能存在多个众数;对于连续变量,众数可能不存在或不唯一4. 四分位数(Quartiles)将数据按大小排序后,将数据集分为四个部分。
第一个四分位数(Q1)是排序后数据集中25%位置处的数值,第二个四分位数(Q2)就是中位数,第三个四分位数(Q3)是75%位置处的数值。
四分位数用于描述数据的分布和离群值。
5. 极差(Range)是数据集中最大值与最小值之间的差值。
它衡量了数据的全局离散度,但忽略了数据集的内部变化。
6. 方差(Variance)是数据值与其平均数之间的差的平方和的平均值。
方差表示了数据的离散程度,反映了数据点离平均值的距离。
7. 标准差(Standard Deviation)是方差的平方根。
标准差是用于衡量数据的离散度的常用指标。
一般来说,标准差越大,数据的离散程度越高。
这些统计指标能够揭示数据的集中趋势和离散程度,帮助我们理解数据的分布情况。
根据数据的类型和分布情况,选择适当的统计指标进行描述和总结,能够更好地理解数据,进行进一步的分析和推断。
1统计学-数据的描述性分析

③ 对某些不具有数学特点或不能用数字测定的 现象,可用中位数求其一般水平。
负偏 注: (1)中位数总是介于众数和平均数之间.
正偏
(2) 皮尔逊经验法则 分布在轻微偏斜的情况下,众数、中位数和算术平均 数数量关系的经验公式为:
x M o 3( x M e )
根据卡尔· 皮尔逊经验公式,还可以推算出:
●
(1).各变量值与均值的离差之和等于零.
x
n i =1
n i
i
x =0
(2).各变量值与均值的离差平方和最小.
x
i =1
x = min
2
△ 算术平均数的特点
算术平均数适合用代数方法运算,因此运用 比较广泛; 易受极端变量值的影响,使 X 的代表性变小; 受极大值的影响大于受极小值的影响; 当组距数列为开口组时,由于组中值不易确 定,使 X 的代表性也不很可靠;同时要求各单位 标志值在组内是均匀分布的,此时各组的平均数正好 等于它的组中值。故用组中值计算得出来的平均数只 能是一个近似值。
总体均值常用X 或 表示,样本均值常用 x 表示,样本均值 的计算公式: 简单算术平均数:
x1 x2 xn x n n
x
x
i 1
n
i
加权算术平均数:
x
i 1 n
n
i
fi
i
f
权数的意义和作用
• 权数:各组次数(频数)的大小所对应的标志值对平均数 的影响具有权衡轻重的作用. • 当各组的次数都相同时,即当 f1 =f 2 =f3 = =f n 时: 加权算术平均数就等于简单算术平均数.
2.中位数(Median)
中位数是一组数据按一定顺序排列后,处于中间位置 上的变量
均数标准差中位数四分位数间距的特点

均数、标准差、中位数和四分位数是统计学中常用的描述数据分布特征的指标。
它们可以帮助我们更好地了解数据的分布规律以及数据的稳定性。
在本篇文章中,我们将深入探讨均数、标准差、中位数和四分位数的特点,以便读者更好地理解这些统计指标的含义和作用。
1. 均数均数是一组数据的平均值,它是将所有数据值相加后再除以数据的个数所得到的值。
均数的特点包括:(1) 对数据的敏感性:均数对异常值非常敏感,如果数据中存在特殊值,均数很容易受到影响而偏离真实的数据分布规律。
(2) 受数据量影响:均数的计算需要考虑所有数据值,因此数据量的增加会对均数产生影响,从而使均数趋于稳定。
2. 标准差标准差是一组数据离散程度的度量,它能够反映数据值与均数之间的偏离程度。
标准差的特点包括:(1) 衡量数据的分散程度:标准差越大,代表数据的离散程度越高,反之则数据的分布越密集。
(2) 考虑所有数据:标准差的计算需要考虑所有数据值,因此能够全面地反映数据的分布特征。
3. 中位数中位数是一组数据中位于中间位置的数值,它可以反映数据分布的中心趋势。
中位数的特点包括:(1) 不受异常值影响:与均数不同,中位数对异常值不敏感,即使数据中存在特殊值,中位数也能够稳定地反映数据的分布规律。
(2) 考虑数据的位置:中位数是按照数据值的位置来计算的,因此能够准确地反映数据分布的中心位置。
4. 四分位数四分位数是将一组数据平均分为四部分的数值,它们是数据的25分位数、50分位数和75分位数。
四分位数的特点包括:(1) 表示数据分布:四分位数可以将数据分布为四个部分,从而更加清晰地了解数据的整体分布特征。
(2) 反映分位数位置:四分位数可以准确反映数据分布在各个位置上的情况,便于进行进一步的分析和比较。
均数、标准差、中位数和四分位数在统计学中都有着重要的作用,它们各自有着独特的特点,能够帮助我们更加准确地描述和分析数据的分布规律。
在实际应用中,我们可以根据不同的需求选择合适的统计指标,从而更好地理解和利用数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计学中的平均数与四分位数
统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
在统计学中,平均数和四分位数是两个重要的概念,它们用于描述数据的集中趋势和分布情况。
本文将对这两个概念进行详细的介绍和讨论。
一、平均数
平均数是统计学中最常用的描述数据集中趋势的指标之一。
它是将一组数据求和后除以数据的个数得到的结果。
平均数可以帮助我们了解数据的集中程度,通常用于描述连续型数据,如身高、体重等。
平均数的计算方法很简单,只需要将所有数据相加后再除以数据的个数即可。
例如,有一组数据:10、12、15、18、20,那么这组数据的平均数为
(10+12+15+18+20)/5=15.平均数的优点是简单易懂,能够直观地表示数据的集中趋势。
然而,平均数也有一些局限性,特别是在极值存在的情况下。
由于平均数受到极值的影响,因此在极值较大或较小的数据集中,平均数可能并不能很好地反映数据的整体情况。
二、四分位数
四分位数是统计学中用于描述数据分布情况的指标之一。
它将数据集分为四个等分,每个等分包含25%的数据。
四分位数可以帮助我们了解数据的分布情况,特别是数据的离散程度。
四分位数包括上四分位数(Q3)、下四分位数(Q1)和中位数(Q2)。
中位数是将数据集按照大小排序后,处于中间位置的数值。
Q1是将数据集的前25%的数据划分为一组,Q3是将数据集的后25%的数据划分为一组。
四分位数可以用于判断数据的离散程度,特别是在存在异常值或极端值的情况下。
计算四分位数的方法有多种,其中最常用的是基于位置的方法。
首先,将数据
集按照大小排序。
然后,根据数据的个数和位置,确定Q1、Q2和Q3所在的位置。
如果数据的个数是奇数,那么中位数就是排序后的中间值;如果数据的个数是偶数,那么中位数就是排序后中间两个数的平均值。
Q1和Q3的计算方法与中位数类似,只是按照数据的个数和位置来确定。
例如,有一组数据:10、12、15、18、20,那么这组数据的中位数为15,Q1为12,Q3为18。
四分位数的优点是对数据的极值不敏感,能够较好地反映数据的整体分布情况。
然而,四分位数也有一些局限性,特别是在数据分布不均匀或存在缺失值的情况下。
此外,四分位数只能提供数据分布的大致情况,无法提供更详细的信息。
综上所述,统计学中的平均数和四分位数是两个重要的概念,它们用于描述数
据的集中趋势和分布情况。
平均数能够直观地表示数据的集中程度,但受到极值的影响;四分位数能够较好地反映数据的整体分布情况,但对数据的极值不敏感。
在实际应用中,根据具体的数据特点和研究目的,选择适当的指标进行分析是非常重要的。