盐分胁迫对植物生长和生理的影响

合集下载

盐胁迫对植物根系构建和生长的影响研究

盐胁迫对植物根系构建和生长的影响研究

盐胁迫对植物根系构建和生长的影响研究植物是生命的重要组成部分之一,能够通过吸收养分和水分进行自身的生长发育。

然而,外部环境因素的变化会产生不同的影响。

盐胁迫是影响植物生长和发育的常见因素之一。

本文旨在探讨盐胁迫对植物根系构建和生长的影响,并对相关的研究成果进行探讨。

一、盐胁迫的影响机制盐胁迫是指土壤中含盐量过高,超过植物承受范围的现象。

当植物生长在盐胁迫的环境下时,会出现一系列的生理变化。

首先,土壤中的盐会导致渗透势降低,出现水分吸收不足和水分亏缺的现象。

其次,过高的盐浓度会导致细胞内外浓度差产生变化。

最后,盐胁迫还会导致一系列的离子不平衡、内源激素变化等现象。

二、盐胁迫对植物根系结构的影响盐胁迫对植物根系结构的影响表现在多个方面,其中包括根长、根毛、表面积等部分。

1. 根长盐胁迫对植物根长的影响是影响植物根系的最主要因素之一。

由于盐浓度高,使得植物在吸收水分和养分时变得更加困难。

较高的盐浓度会使植物的根长减少,从而减缓其生长速度。

2. 根毛的形态结构变化除了影响根长以外,盐胁迫还会造成植物根毛的形态结构变化。

当植物生长在盐胁迫的环境下时,会从钙离子、镁离子等养分中看到利用碳酸钙进行代替的典型现象。

这样会使得植物根系中的其他养分变得不足。

此外,盐胁迫还可能导致植物根部中的细胞膜、细胞芯、核等结构的扭曲、变形等现象。

3. 根系表面积的变化盐胁迫还会影响植物根系表面积的变化。

由于土壤中的盐分过高,使得土壤中的微生物活动率降低,从而导致表面积减少。

当植物继续长期生长在盐胁迫环境中时,其根系表面积会进一步缩小,并最终导致植物的死亡。

三、盐胁迫对植物根系生长的影响盐胁迫不仅会影响植物根系结构的形成,还会对植物根系的生长产生影响。

其中,盐浓度是影响植物根系生长的主要因素之一。

1. 低浓度盐胁迫的影响低浓度盐胁迫下,植物的种子发芽与根系生长都可以正常进行,并不会出现严重的根系形态结构变化。

然而,一些植物对盐的敏感性很高,即使在低浓度盐胁迫的条件下也会表现出根系发育受到限制和萎缩的现象。

盐碱胁迫对植物生长的影响

盐碱胁迫对植物生长的影响

盐碱胁迫对植物生长的影响植物生长受到许多外部环境的影响,而盐碱胁迫是其中之一。

盐碱胁迫指的是植物在土壤中遭受过高盐分和碱性条件的影响,在长期的适应过程中,植物会出现一系列生理和形态上的变化,从而影响生长发育和产量。

本文将探讨盐碱胁迫对植物的影响以及影响机制。

一、盐碱胁迫带来的影响1. 形态上的变化在盐碱胁迫条件下,植物的生长状况会大幅变化。

例如,盐碱度越高的土壤中,植物的根系会变短,角质层变厚,并形成许多侧根;茎干变细,会出现萎缩和减少代谢物质的传输等等。

这些变化都会对植物的正常生长造成很大影响。

2. 生理上的变化盐碱胁迫对植物的代谢和生理过程也会产生影响。

在盐碱度高的土壤中,植物要通过吸收水分来平衡土壤水分和体内的水分,但这样会在细胞内形成浓度梯度,导致细胞收缩。

这样的过程会引起细胞膜的不同程度破裂和细胞器的功能障碍,影响植物生长。

3. 产量降低盐碱胁迫除了影响植物的生长外,对植物的产量也会有所影响。

由于受到盐碱条件的影响,植物的光合作用和水分利用效率降低,导致植物无法正常进行生长和发育,最终会导致植株的产量下降。

二、盐碱胁迫的影响机制盐碱胁迫导致植物生长受阻的原因,主要是因为土壤中的盐分和碱性离子对植物的影响,这影响植物的生理和代谢。

下面将阐述这方面的具体机制。

1. 盐分积累盐分是导致植物受盐碱胁迫的主要因素之一。

当土壤中出现过量的盐分,植物的根系将无法吸收足够的水分,且根内部的细胞也无法充分利用水分,这就会导致植株生长受阻或死亡。

2. 离子紊乱盐碱度高的土壤中主要会存在Na+、K+、Ca2+、Mg2+等阳离子和Cl-、SO42-、HCO3-等阴离子的离子紊乱现象。

这些离子会在植物体内形成浓度梯度,导致细胞膜的破裂和细胞器的功能障碍,也会影响植物无机元素的吸收和转运。

3. 水分利用效率降低在盐碱度高的土壤中,水分分配也会发生改变。

对于植物而言,将水分从根吸收并输送到叶片上,是实现光合作用和转运营养的必要条件。

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长和生理影响

盐分胁迫对植物生长生理的影响张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降。

随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。

各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。

2孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关。

叶绿素浓度和可溶性蛋白含量也存在极显著关。

SOD活性和叶绿素浓度成负相关。

从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。

说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度。

提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+>,同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于提高小麦幼苗抗盐性和对盐分胁迫的适应性5王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积。

不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。

盐胁迫对植物生长的影响研究

盐胁迫对植物生长的影响研究

盐胁迫对植物生长的影响研究随着全球气候变化和人类活动的影响,土壤中盐分的增加已经成为困扰着许多植物生长的难题。

因此,人们开始研究盐胁迫对植物生长和发育的影响,以便寻找有效的治理方法。

1. 盐胁迫的机制当土壤中盐分过高时,会对植物的水分平衡、气体交换和营养吸收造成影响,甚至导致植物死亡。

盐胁迫的机制主要包括两个方面:一是离子胁迫,即高浓度盐离子(如钠、氯等)对植物生理代谢产生不利影响,破坏细胞内外离子平衡;二是渗透胁迫,即盐分影响了植物根系吸收水分的能力,导致植物体内水分减少。

2. 盐胁迫对植物形态结构的影响盐胁迫的影响主要体现在植物的形态结构上。

由于植物体内水分减少,盐分对细胞的渗透压的影响会导致植物枯黄、倒伏等影响。

同时,盐胁迫还会引起植株根系的退化,使植株在缺水时的吸水能力下降,影响植物的生长发育。

3. 盐胁迫对植物生理代谢的影响盐胁迫对植物的生理代谢产生了不利影响。

植物在受盐胁迫后,会调整生理代谢适应环境,以适应较高盐分的环境。

其中,植物的抗氧化系统起到了重要的作用。

受盐胁迫后,植物产生的大量自由基,会破坏细胞膜的结构,影响植物的生长发育。

因此,植物在受盐胁迫后,会通过调整抗氧化系统等代谢方式来降低自由基的产生和损害细胞的程度。

4. 盐胁迫治理方法在治理盐胁迫方面,最常用的方法为提高土壤的排盐能力。

例如,可以通过人工加盐、改变灌溉系统等方式来提高土壤排盐能力。

同时,还可以通过调整植物的生理机制,来适应高盐环境。

例如,通过栽培耐盐植物、利用遗传工程技术改良植物基因等方式,增强植物对高盐环境的适应能力。

总之,盐胁迫对植物的生长和发育产生了巨大的影响,其中不仅仅包括外部形态结构上的变化,也包括内部的代谢和生理机制的调整。

为了有效治理盐胁迫问题,人们需要更深入地研究盐胁迫对植物生长的影响机制,并探索出更加有效的治理方案。

盐碱胁迫对植物生长的影响及应对措施

盐碱胁迫对植物生长的影响及应对措施

盐碱胁迫对植物生长的影响及应对措施盐碱胁迫是指土壤中盐分和碱性物质过多,超出植物所能承受的范围,对植物生长发育产生不利影响的现象。

盐碱胁迫是目前影响全球农业生产的一个严重问题,据统计,全球有约8亿公顷的土地受到盐碱胁迫,其中中国占比较大。

盐碱胁迫不仅影响着作物的产量和质量,还对土地生态环境造成了严重破坏。

了解盐碱胁迫对植物生长的影响及应对措施对于农业生产和生态环境具有重要的意义。

让我们来看一下盐碱胁迫对植物生长的影响。

(1)生理代谢的影响盐分和碱性物质过多会破坏植物的渗透调节机制,导致植物内外渗透压失衡,影响水分和营养物质的吸收和运输,进而导致植物受到脱水和营养缺乏的影响。

盐碱胁迫还会影响植物的呼吸作用、光合作用、气体交换等生理代谢过程,降低植物的光合效率和生长速率。

(2)生长发育的影响盐碱胁迫会抑制植物的根系生长,导致根系的生理功能受到影响,影响植物的吸收能力和稳定性。

盐碱胁迫还会影响植物的发芽、幼苗生长、开花结果、产量和品质等生长发育过程,导致植物生长迟缓、叶片枯黄、果实畸形等现象。

(3)生物学特性的影响盐碱胁迫也会影响植物的生物学特性,如影响植物的物种分布、数量分布、生长形态、生物量累积、繁殖特性等,导致植物的生态适应能力受到挑战。

盐碱胁迫对植物生长的影响是多方面的,严重影响植物的生长、发育和生物学特性,从而影响着作物的产量和质量。

针对这一问题,科研工作者和农民们积极探索出了一系列的应对措施,下面我们来一一进行介绍。

2. 应对措施(1)选育耐盐碱品种通过遗传改良和育种方法,选育出耐盐碱植物品种,并进行适应性试验和示范种植,选择适应性强、产量高、品质好的耐盐碱品种进行推广种植。

(2)改良土壤通过施用有机肥、化肥和石灰等改良剂,改善盐碱土壤的物理性、化学性和生物性,提高土壤的肥力和透水性,降低盐碱土壤的盐碱度。

(3)合理施肥根据盐碱土壤的特点和作物的需肥特点,科学合理施用有机肥和无机肥,提高土壤的肥力,增加对盐碱胁迫的抵抗能力。

干旱和盐胁迫对植物生长发育的影响

干旱和盐胁迫对植物生长发育的影响

干旱和盐胁迫对植物生长发育的影响随着全球气候变化的不断恶化,水危机已经成为我们必须应对的主要问题之一。

干旱已经成为许多地方的常态,而盐胁迫也在某些地区非常普遍。

这些环境压力对植物生长和发育产生了深远影响。

本文将探讨干旱和盐胁迫对植物的影响,并探索植物抵御这些压力的机制。

植物是面临干旱和盐胁迫的第一线。

在干旱条件下,植物必须面对土壤水分的不足,并采取各种策略来保持水分平衡。

例如,在干旱条件下,植物可以减少蒸腾或增加根系的表面积来获取更多的水分。

然而,不是所有植物都能够适应干旱。

在干旱条件下,植物必须维持体内的水平衡和气体交换,并减少蒸腾带来的水分流失。

如果干旱过于严重,植物会失去水分和营养物质,导致生长受限甚至死亡。

盐胁迫是指土壤中盐分浓度过高,影响植物的正常生长发育。

在盐胁迫条件下,植物必须激活各种机制来排除过量的盐分,并保持离子平衡。

例如,在盐胁迫条件下,植物可以通过利用细胞内的各种离子转运蛋白或透过根系排出外部的盐来维持离子平衡。

然而,如果盐胁迫过于严重,植物会受到组织脱水和能量耗尽的损害,并导致生长受限或死亡。

虽然干旱和盐胁迫都对植物的生长发育产生负面影响,但植物拥有各种机制来应对这些环境压力。

其中最重要的机制之一是激活保护酶系统。

保护酶是指一组酶,它们能够防止氧化损伤和抗生理胁迫。

保护酶系统包括抗氧化酶和水解酶等。

抗氧化酶可以减少由干旱或盐胁迫引起的氧化损伤,而水解酶可以使植物自我维持,对抗干旱和盐胁迫等环境压力。

在分子水平上,植物还展示出了各种响应干旱和盐胁迫的途径。

例如,在干旱条件下,植物可以通过激活特定基因来提高生长素和脱落酸的水平,从而促进上述生物化学途径的活性。

在盐胁迫条件下,植物则可以通过调节光合作用酶的活性和水分吸收能力,改善离子平衡。

尽管目前对这些响应机理的了解还不够完整,但研究人员们正在努力深入研究这些机制,以便能够开发更加耐旱耐盐的植物品种。

总的来说,干旱和盐胁迫是植物面临的一些最大的压力,在许多地区对粮食生产和生态系统都产生了不可忽视的负面影响。

盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展

盐碱胁迫对植物形态和生理生化影响及植物响应的研究进展盐碱胁迫是指土壤中盐分和碱性物质过高,超过了植物所能耐受的范围,对植物的生长和发育产生负面影响。

在全球范围内,盐碱胁迫已经成为限制植物生长和农业生产的重要因素之一。

研究盐碱胁迫对植物形态和生理生化的影响,以及植物对盐碱胁迫的响应机制,对于解决盐碱胁迫对植物生长的影响、改善土壤质量、提高农作物产量具有重要的理论和实际意义。

本文就盐碱胁迫对植物形态和生理生化的影响,以及植物响应的研究进展进行综述。

一、盐碱胁迫对植物形态的影响1.1 根系形态盐碱胁迫会导致土壤渗透压升高,阻碍植物吸水,在这种情况下,植物为了维持正常的水分平衡,根系会产生一系列形态和结构的改变。

盐碱胁迫条件下植物根系生长受到抑制,根长、根数和总根表面积减小,根尖褐化、受损,根系生物量减少。

盐碱胁迫会导致植物叶片发生黄化、枯焦、叶片边缘卷曲等现象,叶片凋零和株高减矮。

盐碱胁迫还会影响叶片的生理功能,导致叶面积减小、叶片厚度减薄。

2.1 植物水分代谢盐碱胁迫导致土壤中盐分过高,抑制了植物根系吸收水分,加重了植物体内的水分胁迫。

植物为了应对盐碱胁迫,便通过增加根系水分吸收能力,减少蒸腾量等途径来保持水分平衡。

2.2 植物光合作用盐碱胁迫会导致植物叶片中叶绿素含量减少,光合作用受到抑制。

盐碱胁迫还会影响植物叶片的气孔运动,导致植物的气体交换受到影响。

盐碱胁迫对植物的生长素代谢产生重要影响,会导致植物中内源和外源生长素含量的改变。

盐碱胁迫还会影响植物茎、叶和根部的生长素合成和代谢途径。

3.1 生长调节物质的积累和分布许多研究表明,植物在盐碱胁迫条件下会积累大量的生长调节物质,例如脯氨酸、赖氨酸、内源激素等。

这些物质可以调节植物的生长和发育,并且参与抗逆性的调节。

3.2 抗氧化系统的激活盐碱胁迫会导致植物体内大量活性氧的积累,造成氧化伤害。

植物通过激活抗氧化酶系统来清除自由基,保护细胞膜和蛋白质的完整性。

盐胁迫对作物生长的影响及其生理机制

盐胁迫对作物生长的影响及其生理机制随着环境变化和人类活动的影响越来越大,盐胁迫已成为影响作物生长和生产的最大因素之一。

盐胁迫是指在土壤中存在过量的盐分,这些盐分可以通过蒸发和灌溉水中的含盐量进行积累。

盐胁迫会直接影响可食用作物的产量和品质,极大地限制了农业的发展。

对于维持作物的生命活动,可以分为生长、发育和成熟三个阶段。

盐胁迫对作物的影响主要是通过干旱、脱水、离子平衡、生理代谢和光合作用等方面进行干扰和破坏。

具体的影响机理包括以下几个方面:1.影响离子吸收和转运盐胁迫会影响植物的吸收和利用营养元素,尤其是对钾和钙的吸收和利用减弱。

同时,在过量盐分的作用下,植物细胞内的钾、钠离子含量会显著变化,从而影响植物的代谢和生长发育。

高浓度的盐分也会影响根系的生长和发育,进而影响植物的循环。

2.影响生理代谢盐胁迫会显著影响植物的生理代谢,从而导致植物合成某些化合物的能力下降。

具体来说,如核酸、蛋白质、酶、叶绿素等主要代谢产物都会受到减弱,从而影响植物繁殖能力和植物的抗逆性能力。

3.影响光合作用盐胁迫会显著影响植物的光合作用,导致植物光合速率下降。

由于光合作用是植物获得能量的主要途径,在盐胁迫下植物通常不能完成光合作用,从而限制了作物的生长发育和抗逆性能力。

同时,盐胁迫对植物生理状况的负面影响也会进一步加剧这种失衡。

现代农业发展面临着越来越多的问题,其中一个主要问题是如何提高作物的质量和产量,尤其是在面临严峻的环境和气候变化时,需要寻找更好的方法来解决这个问题。

通过了解盐胁迫对植物的影响和相应的生理机制,可以为培育更具抗性的作物品种提供科学依据。

同时,在探究盐胁迫背后的生理机制的过程中,也可以为进一步优化农业生产提供完善的科学方法和措施。

总之,盐胁迫对作物的生长和发育有着显著的影响。

为了解决这个问题,需要从多个方面探究其具体的生理机制,并相应地采取措施以提高作物的适应能力,优化农业生产,从而更好地满足人们对食品和农村的需求。

盐度胁迫对植物生长的影响研究

盐度胁迫对植物生长的影响研究一、引言植物对环境中的盐度是非常敏感的,过高或过低的盐度会对植物生长产生不良影响。

因此,研究盐度胁迫对植物生长的影响,对于植物的高效种植和可持续发展具有重要意义。

二、盐度胁迫的定义及分类盐度胁迫,指环境中溶解的盐分浓度高于植物所能耐受的范围,从而影响植物的生长发育。

盐度胁迫按照盐度浓度的高低可以分为低盐胁迫(0.1%-1.0%)、中盐胁迫(1.0%-5.0%)和高盐胁迫(>5.0%)。

三、盐度胁迫对植物生长的影响1.根系生长受阻盐度胁迫下,植物根系的生长速度减缓,根系发育异常,根毛变少,根尖呈殆尖状甚至出现枯死现象。

这是因为高盐度会导致土壤水势下降,影响植物根系吸收水分和矿质元素,进而抑制植物根系的生长发育。

2.影响光合作用盐度胁迫会导致植物叶片光合能力下降。

特别是在高盐度环境下,高盐度环境下的氯离子和钾离子的平衡比例被打破,导致植物叶片中的氮代谢和光合作用受到抑制。

3.内部代谢受损高盐度环境下,植物内部代谢受到破坏,导致植物的生长发育异常。

例如,盐度胁迫可以导致植物细胞中的代谢产物比例失调,进而影响植物发育过程中所需要的各种生物化学和物理化学过程。

4.产量降低盐度胁迫不仅会影响植物的生长发育,也会导致植物的产量降低。

这是因为盐度胁迫导致植物的地上部分和地下部分的生长发育不平衡,进而影响植物的产量和品质。

四、盐度胁迫对植物的适应机制植物对盐度胁迫有一定的适应机制,这些适应机制可以帮助植物在盐度胁迫下维持生命。

例如,植物可以以根系培植的方式适应高盐度环境,通过适当的调整根系生长和分布来维持植物的生长发育。

此外,植物还可以通过激活渗透调节机制来调整水分和盐分的平衡,从而减轻盐度胁迫对植物的破坏。

五、减轻盐度胁迫对植物生长的影响的方法1.盐碱地改良利用生物活性有机肥、离子交换树脂、化学处理等方法对盐碱地进行改良,提高土壤的肥力和透水性。

2.选择耐盐性植物进行栽培选用抗盐、耐盐、善适应盐度环境的植物种进行栽培,例如在北中国沿海地区利用海蒿、海麻、碱蓬、碱蒿等适应盐碱地生长的植物对盐碱地进行改良。

盐胁迫对植物的影响及植物盐适应性研究进展

盐胁迫对植物的影响及植物盐适应性研究进展一、本文概述盐胁迫,作为一种常见的非生物胁迫,对植物的生长和发育具有显著影响。

在盐碱地等极端环境中,植物常常面临高盐浓度的挑战,这对其生理代谢和生存策略提出了严峻的要求。

为了适应这种环境压力,植物发展出了一系列的盐适应性机制。

本文旨在综述盐胁迫对植物的影响,包括生长抑制、光合作用降低、离子平衡失调等方面,并深入探讨植物在盐胁迫下的适应性研究进展,包括离子转运、渗透调节、抗氧化防御等多个方面。

通过对这些适应性机制的研究,我们不仅可以更好地理解植物如何应对盐胁迫,而且可以为植物耐盐性的遗传改良和盐碱地的生态恢复提供理论支持和技术指导。

二、盐胁迫对植物生理生态的影响盐胁迫是指土壤中含盐量过高,对植物的生长和发育造成不良影响的环境压力。

盐胁迫对植物的影响表现在多个层面,涉及生理、生态、形态和分子等多个方面。

在生理层面,盐胁迫首先影响植物的水分平衡。

由于土壤中的高盐浓度,植物吸水变得困难,导致细胞内外的渗透压失衡,进而引发细胞脱水和生理功能紊乱。

盐胁迫还会破坏植物的光合作用系统,降低叶绿素的含量和光合效率,从而影响植物的光能利用和有机物的合成。

在生态层面,盐胁迫导致植物群落的结构和组成发生变化。

盐胁迫下,一些耐盐性强的植物种类或品种可能获得竞争优势,而一些对盐敏感的植物则可能因无法适应而死亡或生长受阻。

这种植物群落的演替过程可能导致生物多样性的降低,影响生态系统的稳定性和功能。

在形态层面,盐胁迫会导致植物出现一系列适应性的形态变化。

例如,耐盐植物往往具有较厚的叶片和茎秆,以减少水分蒸发和盐分积累;根系也更加发达,以增加对水分和养分的吸收面积。

一些植物还会通过减少地上部分的生物量分配,增加地下部分的生物量分配来适应盐胁迫环境。

在分子层面,盐胁迫会引发植物体内一系列的生理生化反应和基因表达变化。

例如,植物会通过调节渗透调节物质的合成和积累来维持细胞内外渗透压的平衡;一些与盐胁迫相关的基因也会被诱导表达,编码耐盐相关的蛋白质或酶类,以增强植物的耐盐能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐分胁迫对植物生长生理的影响张华新,刘正祥等研究了光叶漆、银水牛果等11种树种后发现,盐胁迫后,各树种的苗高生长量下降、生物量累积减少,且随着处理浓度的增加均呈下降趋势,,各树种的根冠比值增大1王润贤,周兴元,葛晋纲等人对草的研究后发现,在草坪草适应范围之内,根系活力和蛋白质含量呈先升后降的趋势,如超过忍受范围则持续下降;随盐分胁迫强度的增加和胁迫时间的延长,草坪草叶片的WSD上升,脯氮酸含量均表现为先升后降的趋势,但因胁迫程度和草种的不同,其峰值和下降幅度有较大差异。

各项生理指标变化的趋势因草种的不同而有较大的差异,与其耐盐性有关,可以作为判定草坪草抗盐能力的评定依据。

2孙方行,李国雷对刺槐进行3天和17天盐胁迫处理后发现,MDA含量和细胞膜透性存在极显著正相关;叶绿素浓度和可溶性蛋白含量也存在极显著关;SOD活性和叶绿素浓度成负相关。

从逐步回归分析可以看出细胞膜透性是影响高生长的主要指标3张金香,钱金娥等人发现,经过前处理的1/2海水区中生长的苗木其叶、茎、根的生长量均超过淡水区中生长的苗木。

说明一定程度的耐盐锻炼能够增强苗木对盐碱、干旱环境的适应能力4张士功,高吉寅,宋景芝发现,6-苄基腺嘌呤、水杨酸、阿斯匹林,硝酸钙能够在一定程度上限制幼苗对Na+的吸收,阻滞其向地上部分运输的数量和速度;提高体内K+含量、向上运输效率,降低地上部分对Na+、K+的选择性(SNa+、K+),同时6-苄基腺嘌呤还能够促进幼苗根系对Cl-的吸收,并有效地将Cl-限制在根部,阻滞Cl-向上运输,相对降低地上部分的Cl,这些都有利于提高小麦幼苗抗盐性和对盐分胁迫的适应性5王强,石伟勇,符建荣,指出,叶面喷施海藻液肥能提高黄瓜根冠比和干物质含量,提高根系总吸收面积和活跃吸收面积;不同浓度的海藻液肥均能降低盐胁迫对叶片质膜的伤害,提高SOD、POD等酶的活性,降低膜脂过氧化产物MDA的积累,提高脯氨酸、可溶性糖、可溶性蛋白等渗透调节物质的含量6许兴,郑国琦.等指出,在等渗条件下,NaCl胁迫引起的小麦叶片组织含水量的下降、胁迫伤害率的增大及叶片和根部的脯氨酸、可溶性糖、Na+、K+含量的增加,均大于PEG胁迫引起的变化7郑国琦,许兴,徐兆桢研究了盐分胁迫对植物的伤害和探讨了植物的耐盐的生物学机理以及通过基于改良作物耐盐性的研究进程。

8吴忠东,王全九.研究发现,在不同的生育期降水量条件下,冬小麦对盐分胁迫有着不同的响应。

生育期一般年和湿润年可以采用的最高矿化度为3 g/L,而在生育期偏旱年,如果不采取其他措施的条件下,可以采用的最高矿化度为2 g/L,该结果为合理开发利用当地的地下咸水资源提供了一定的依据。

9郭淑霞,龚元石在研究盐分胁迫对菠菜生长和吸氮量的影响后发现,对菠菜进行盐分胁迫,前 44 天,随着盐分胁迫程度增加,菠菜相对生长速率(relative growth rate, RGR)降低,其中在 33~44 天时,N1 水平下,S0 处理的 RGR 最大;在生育期的后10 天,随着盐分胁迫增加,RGR 升高。

盐分胁迫导致菠菜吸氮量和干物质重下降。

10于爽,李春艳. 研究盐分胁迫对不同番茄品种生理生化指标的影响后发现,随盐分浓度的增加,植株伤害加重。

番茄叶片细胞膜透性增大,丙二醛(MDA)含量,过氧化物酶活性先升高后降低,脯氨酸含量明显增加,叶绿素含量下降。

但各指标的变化程度因番茄品种不同而异。

11王学征,韩文灏,发现,随盐分浓度的增加,植株伤害加重,植株干物质积累量减少,丙二醛含量增加,过氧化物酶活性先升高后下降,叶绿素含量下降。

12乔海龙,陈和研究盐分胁迫对大麦幼苗生理指标的影响,指出,,随 NaCl 浓度的升高,大麦茎叶中可溶性糖、脯氨酸含量增高,K+/ Na+降低; 大麦茎叶中脯氨酸含量随 NaCl 浓度升高呈倍数升高。

但不同品种间幅度有差异。

13邹丽娜,周志宇研究盐分胁迫对紫穗槐幼苗生理生化特性的影响后指出,随盐分胁迫程度的加剧,紫穗槐幼苗的净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、K+含量逐渐下降,超氧化物歧化酶(SOD)活性、过氧化物歧化酶(POD)活性、Na+、可溶性糖和游离脯氨酸含量则显著上升;叶绿素a、叶绿素b、叶绿素总量、类胡萝卜素含量随土壤盐分浓度的增加逐渐增大,而叶绿素a与叶绿素b含量之比无显著变化。

以上生理指标反映出紫穗槐幼苗对盐渍环境的适应性变化,是其抵御逆境的一种积极调节机制14李伟强,杨艳敏研究盐分胁迫对转基因抗虫棉及亲本生长发育的影响后发现,,随盐分的提高,转基因抗虫棉及其亲本表现出类似规律,叶片水势及叶绿素含量降低,光合作用在一定范围内有所升高而后下降,植株高度与干物质积累有不同程度下降等。

15衣建龙,李明亮,赵可夫研究盐分胁迫对中华补血草和高粱体内脯氨酸、脱落酸含量的影响后发现,盐分胁迫条件一下,中华补血草和高粱体内脱落酸含量在12h内随、NaCl处理浓度的增角而增高,随后则下降;脯氨酸含量则随NaCl处理浓度的增加和处理时间的延长而增加.外源脱落酸可以促进中华补血草和高粱体内脯氨酸含量的增加16高雁,研究盐分胁迫下棉花幼苗对外源甜菜碱的生理响应后指出,非盐胁迫下,甜菜碱处理显著提高脯氨酸和可溶性糖含量,而丙二醛含量和抗氧化酶活性不受甜菜碱影响;盐胁迫下棉花幼苗体内丙二醛含量显著高于对照,并且脯氨酸、可溶性糖含量增加,抗氧化酶活性提高,盐分胁迫下棉花幼苗经过甜菜碱处理后,有效抑制丙二醛的产生,同时脯氨酸、可溶性糖和抗氧化酶含量进一步提高。

甜菜碱处理有效缓解盐胁迫对棉花幼苗的伤害,以施用 5 mmol/L 甜菜碱(glycine betaine/GB)效果较好。

17李西腾,赵新政,研究盐分胁迫对油菜碳酸酐酶活性的影响后指出,随着盐浓度的提高,碳酸酐酶活性下降,油菜的光合速率降低,叶绿素含量先增加后减少。

这说明,盐胁迫抑制了碳酸酐酶的活性,不同程度地破坏了植物的光合机构,气孔关闭,碳酸酐酶对光合作用的调控作用使得碳酸酐酶活性降低的同时光合速率也下降;盐胁迫下植物叶片中叶绿素含量下降,其主要原因是由于 NaCl能增强叶绿素酶活性,促进叶绿素分解。

18张建锋,张旭东研究盐分胁迫对杨树苗期生长和土壤酶活性的影响指出,盐分对苗木的生长有一定的抑制作用。

.随着盐分浓度的提高,苗高、地上与地下部分生物量都呈下降趋势。

盐分浓度与叶片叶绿素含量之间存在线性相关关系,与脯氨酸含量之间存在抛物线形相关关系.土壤中盐分的增加不仅影响到植物的生长发育,而且对土壤自身的物理、化学性状也产生不良效应.盐分对土壤的理化性状和肥力状况都产生了不良影响19申玉香,郭文善,周影,等研究盐分胁迫对小麦籽粒蛋白质及其组分含量变化动态的影响指出,随着土壤盐分浓度的增加,小麦籽粒蛋白质含量提高,小麦籽粒蛋白质各组分含量随土壤盐分浓度的增加而增加,各处理间的清蛋白、球蛋白、醇溶蛋白、谷蛋白含量差异均达显著或极显著水平。

从各组分占总蛋白的比例来看,清蛋白、球蛋白、谷蛋白的比例随着土壤含盐量的增加而下降,醇溶蛋白的比例则随土壤含盐量的增加而增加,谷/醇比随着土壤含盐量的增加而下降。

20申玉香,王爱民等研究盐分胁迫对宁盐1号小麦群体质量·产量及蛋白质含量的影响指出,盐分胁迫导致小麦群体质量变劣,花后干物质积累少,群体叶面积指数小,灌浆速率下降,从而导致产量3因素下降,产量降低。

随着土壤盐分浓度的增加,小麦籽粒蛋白质和各组分含量提高,但小麦籽粒蛋白质积累量下降。

21王利春,石建初,左强等研究盐分胁迫条件下冬小麦根系吸水模型的构建与验证发现,盐分胁迫条件下,冬小麦根系吸水与根氮质量之间的线性正比关系仍然成立,并可用于优化盐分胁迫修正因子,从而建立相关的根系吸水模型。

22罗长寿,左强,李保国等研究盐分胁迫条件下首楷根系吸水特性的模拟,借鉴HOmaee有关盐分胁迫的部分试验研究结果及一种新的数值迭代反求方法,对无水分、养分限制条件下,Homaee首楷盐分胁迫试验中首楷根系的吸水规律进行了数值模拟与分析,提出了一种计算相对根长密度分布函数的简便计算方法,建立了盐分胁迫条件下首稽根系的吸水模型.结果表明:盐分的存在会显著降低首猜的根系吸水速率,当土壤溶液的电导率达到约sds/m时,将极大地影响首箱的根系吸水;本文提出的计算相对根长密度分布函数的计算方法较为简便、可靠;基于相对根长密度分布函数的吸水模型可以较好地模拟根系的吸水规律.23孙启忠,舜秉钧研究,盐分胁迫下植物对离子的吸收及其危害后,阐述了盆分胁迫下,介质中盐溶液向根表面移动的特点和植物对盐分的吸收、累积、分布以及盐分对植物产生的影响,同时介绍了两种盐害学说:①渗透胁迫和离子效应;②碳水化合物枯竭。

24孟康敏,于雷,郑景明等研究盐分胁迫下树木生理特性后,指出在NaCl胁迫下,群众杨、绒毛白蜡的生长受抑制。

随着Na+含量的增加,光合速率和叶绿素含量在减少,而脯氨酸、丙二醛(MDA)累积在增加;绒毛白蜡比群众杨抗逆性强,从而为筛选抗盐碱树种提供科学依据。

25吴凤芝,刘静,杨阳.研究盐分胁迫下苯丙烯酸对黄瓜根际细菌多样性的影响后指出两种盐分浓度胁迫对黄瓜根际土壤微生物多样性指数和均匀度指数均产生显著的抑制作用,施加高浓度的自毒物质苯丙烯酸加重了胁迫程度,而低浓度的苯丙烯故可以缓解盐份胁迫。

26肖爱平,研究盐分胁迫下果树管理措施后提出了许多盐分过多对果树的危害和提高果树抗盐性的措施。

27王凌晖,施福军,朱宏光,研究盐分胁迫下巨尾桉苗期生长与生理特性后指出,,盐分胁迫对巨尾桉苗高、地径生长以及叶片质膜透性、脯氨酸含量和可溶性糖含量等生理指标的影响达显著或极显著水平。

巨尾桉苗高、地径均随盐浓度增加而减少,当盐分浓度达到0.6%时,巨尾桉的生长受到了极大地抑制;叶片质膜透性随着盐浓度增大而增大,而脯氨酸和可溶性糖含量随盐浓度的增大而减少,叶绿素含量在处理30 d内变化不显著28孙仁国,赵桂琴.研究盐胁迫对燕麦地上干物质积累及灌浆期光合特性的影响后发现,盐胁迫降低了燕麦干物质积累量,抑制了燕麦生长。

随着盐浓度的增大和胁迫时间的持续,燕麦叶片光合速率、胞间CO2浓度、气孔导度和蒸腾速率显著下降。

29邹日,柏新富,朱建军,研究盐胁迫对三角叶滨藜根选择透性和反射系数的影响后指出,随着盐胁迫强度的增加,三角叶滨藜根细胞质膜透性增大、根系反射系数减小;盐胁迫导致三角叶滨藜根系对K+的总吸收量减少、对Na+的总吸收量增多,但对Na+的相对吸收量减少、对K+的相对吸收量增加.盐胁迫条件下,三角叶滨藜根系对离子吸收有较强的调节能力;而根系反射系数的减小有利于根系用较小的负压力吸收水分,减小木质部空化的危险.说明三角叶滨藜具有较高的抗盐能力。

相关文档
最新文档