空间直线异面直线间的距离

合集下载

10.5 异面直线间的距离-讲义-2021-2022学年高二下学期数学沪教版(2020)必修第三册

10.5  异面直线间的距离-讲义-2021-2022学年高二下学期数学沪教版(2020)必修第三册

【学生版】*10.5异面直线间的距离【知识梳理与拓展】 1、定理:对于任意给定的两条异面直线,存在唯一的一条直线与这两条直线都垂直并且相交; 2、两条异面直线之间的距离我们将与两条异面直线都垂直且相交的直线称为这两条异面直线的公垂线,公垂线的两个垂足之间的线段称为异面直线的公垂线段;两条异面直线的公垂线段的长度就叫做两条异面直线的距离;我们还可以证明:两条异面直线的公垂线段,是连接两条异面直线所有线段中的最短线段求两条异面直线之间的距离问题,除了可转化为求直线与平面间的距离,还可以转化为求两个平行平面之间的距离;即:构造分别含两条异面直线的两平行平面,则两平行平面之间的距离就是两条异面直线的距离; 【典例注解】例1、已知A 是边长为a 的正△BCD 所在平面外一点,AB =AC =AD =a , E ,F 分别是AB ,CD 的中点;(1)求证:EF 为异面直线AB 与CD 的公垂线段; (2)求异面直线AB 与CD 的距离. 【提示】; 【答案】例2、在矩形ABCD 中,AB a ,()AD b b a =>,沿对角线AC 将ADC 折起, 使AD 与BC 垂直,求异面直线AD 与BC 间的距离. 【提示】【答案】 【解析】【精炼实践】1、有如下命题,其中错误的命题是( )A .若直线a α⊂,且αβ∥,则直线a 与平面β的距离等于平面α、β间的距离;B .若平面α∥平面β,点A α∈,则点A 到平面β的距离等于平面α、β间的距离;C .两条平行直线分别在两个平行平面内,则这两条直线间的距离等于这两个平行平面间的距离;D .两条异面直线分别在两个平行平面内,则这两条直线间的距离等于这两个平行平面间的距离1.C2、棱长为1的正四面体ABCD 中,对棱AB 、CD 之间的距离为_________.3、(1)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1B B 与AD 公垂线是______. (2)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A A 与11B C 距离是______. (3)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A B 与11D C 公垂线是______. (4)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A C 与11B C 距离是______.4、设a b 、为异面直线,在直线a 上有三点、、A B C ,且AB BC =,过、、A B C 分别作直线b 的垂线 AD BE CF 、、,垂足分别为D E F 、、.已知715,102AD BE CF ===、; 则异面直线a 与b 之间的距离为______.5、四面体ABCD 中,BCD ∆为等腰直角三角形,90BDC ∠=︒,6BD =,且60ADB ADC ∠=∠=︒, 求异面直线AD 与BC 的距离;6、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是A 1D 1和CC 1的中点;求: (1)求异面直线EF 与AB 所成角的余弦值; (2)求异面直线EF 与AB 之间的距离;(3)在棱BB 1上是否存在一点P ,使得二面角P -AC -B 的大小为30°?若存在, 求出BP 的长,若不存在,请说明理由.【教师版】*10.5异面直线间的距离【知识梳理与拓展】 1、定理:对于任意给定的两条异面直线,存在唯一的一条直线与这两条直线都垂直并且相交; 2、两条异面直线之间的距离我们将与两条异面直线都垂直且相交的直线称为这两条异面直线的公垂线,公垂线的两个垂足之间的线段称为异面直线的公垂线段;两条异面直线的公垂线段的长度就叫做两条异面直线的距离;我们还可以证明:两条异面直线的公垂线段,是连接两条异面直线所有线段中的最短线段求两条异面直线之间的距离问题,除了可转化为求直线与平面间的距离,还可以转化为求两个平行平面之间的距离;即:构造分别含两条异面直线的两平行平面,则两平行平面之间的距离就是两条异面直线的距离; 【典例注解】例1、已知A 是边长为a 的正△BCD 所在平面外一点,AB =AC =AD =a , E ,F 分别是AB ,CD 的中点;(1)求证:EF 为异面直线AB 与CD 的公垂线段; (2)求异面直线AB 与CD 的距离.【提示】(1)连接EC ,ED ,可以证得EF ⊥CD ,同理可得EF ⊥AB ; (2)根据勾股定理即可求解; 【答案】(1)证明见解析;(2)22a ; 【解析】(1)连接EC ,ED ,因为AB =AC =AD =BC =BD =CD =a ,所以ABC ABD △≌△, 又E 为AB 的中点,所以EC =ED , 因为F 为CD 的中点,所以EF ⊥CD ,同理,可得EF ⊥AB ,又AB EF E ⋂= ,CD EF F ⋂= ,所以EF 即为异面直线AB 与CD 的公垂线段;(2)在Rt CEF △中,∠CFE =90°,12CF a =,32CE a =,所以22EF a =,所以异面直线AB 与CD 的距离为22a .例2、在矩形ABCD 中,AB a ,()AD b b a =>,沿对角线AC 将ADC 折起, 使AD 与BC 垂直,求异面直线AD 与BC 间的距离.【提示】由线面垂直的判断定理可得BC ⊥平面ABD ,AD ⊥平面BCD , 再由线面垂直的性质定理可得BD 是异面直线AD 与BC 的公垂线,即可求解; 【答案】22a b -【解析】由于原平面四边形ABCD 是矩形,则AB BC ⊥, 因为AD BC ⊥,AD AB A ⋂=,AD 、AB 平面ABD ,所以BC ⊥平面ABD ,即BC BD ⊥, 又AD DC ⊥,AD BC ⊥,DCBC C =,DC 、BC ⊂平面BCD ,所以AD ⊥平面BCD ,得BD AD ⊥, 则BD 是异面直线AD 与BC 的公垂线, 在直角三角形ABD 中,AB a ,()AD b b a =>, 所以22BD a b =-; 【精炼实践】1、有如下命题,其中错误的命题是( )A .若直线a α⊂,且αβ∥,则直线a 与平面β的距离等于平面α、β间的距离;B .若平面α∥平面β,点A α∈,则点A 到平面β的距离等于平面α、β间的距离;C .两条平行直线分别在两个平行平面内,则这两条直线间的距离等于这两个平行平面间的距离;D .两条异面直线分别在两个平行平面内,则这两条直线间的距离等于这两个平行平面间的距离1.C 【提示】根据异面直线间距离的概念以及两平行平面间距离的概念即可得出答案 【答案】C【解析】点到平面距离是指空间内一点到平面内一点的最小长度;两条异面直线间的距离指的是两条异面直线的公垂线与这两条异面直线间的线段的长度;两平行平面间的距离指的是其中一个平面内一点到另外一个平面的最短距离,两个平行平面的公垂线段都相等,其长度等于两个平行平面的距离,所以ABD 都正确,两条平行直线间距离不一定是两个平行平面的公垂线段,所以C 错误 2、棱长为1的正四面体ABCD 中,对棱AB 、CD 之间的距离为_________.【提示】作出并证明表示棱AB 、CD 之间的距离的线段,再借助直角三角形计算即得.【答案】22【解析】设A B ,CD 的中点为E ,F ,连接AF ,BF , 因为ABCD 为正四面体,各面均为等边三角形, 边长为1,则AF =BF =32,于是得EF ⊥AB , 同理可得EF ⊥CD ,即EF 的长即为AB 、CD 之间的距离,此时,EF =22AF AE -=2231()()22-=22, 即AB 、CD 之间的距离为22. 3、(1)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1B B 与AD 公垂线是______. (2)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A A 与11B C 距离是______. (3)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A B 与11D C 公垂线是______. (4)已知正方体1111ABCD A B C D -的棱长为a ,则异面直线1A C 与11B C 距离是______. 【提示】根据正方体的性质找出异面直线的公垂线,即可求出异面直线的距离; 【答案】AB (BA ) a 11A D ##11D A22a (22a ) 【解析】由正方体的性质可知,1AB BB ⊥,AB AD ⊥AB ∴是异面直线AD 与1BB 的公垂线,因为111AA A B ⊥,1111A B B C ⊥,所以11A B 是异面直线1A A 与11B C 的公垂线, 所以异面直线1A A 与11B C 的距离等于11A B a =;1111A D D C ⊥,11A D ⊥平面11ABB A ,1A B ⊂面11ABB A ,111A D A B ∴⊥,11A D ∴是异面直线1A B 与11D C 的公垂线,如图取AD 的中点G ,11B C 的中点M ,BC 的中点N ,11A D 的中点H ,连接GM 交1A C 于点O ,连接GN 、GH 、MH 、MN 、OM 、ON 、MC 、1A M , 由正方体的性质可知O 是正方体的中心,即O 为MG 的中点,且11B C ⊥平面MNGH , 又OM ⊂平面MNGH ,所以11B C MN ⊥,又1A M CM =,所以1MO A C ⊥,所以MO 为异面直线1A C 与11B C 的公垂线,1112222MO MG AB a ===,所以异面直线1A C 与11B C 距离为22a ; 故答案为:AB ;a ;11A D ;22a ; 4、设ab 、为异面直线,在直线a 上有三点、、A B C ,且AB BC =,过、、A B C 分别作直线b 的垂线 AD BE CF 、、,垂足分别为D E F 、、.已知715,102AD BE CF ===、; 则异面直线a 与b 之间的距离为______. 【答案】6;【解析】设异面直线a b 、之间的距离为x ,作直线a b 、的公垂线段,MN N a ∈,过点M 作直线'a a ,且直线b 与直线'a 确定平面a .由题设,知MN x =,且AB BC =,则2222222BE x AD x CF x -=-+-.解得6x =;5、四面体ABCD 中,BCD ∆为等腰直角三角形,90BDC ∠=︒,6BD =,且60ADB ADC ∠=∠=︒, 求异面直线AD 与BC 的距离;【提示】画出空间几何体,取BC 中点M,先根据余弦定理求得ADM ∠;连接AM DM 、,作MN AD ⊥交AD 于N,则MN 即为异面直线AD 与BC 的距离; 【答案】3【解析】根据题意, 取BC 中点M, 连接AM DM 、,作MN AD ⊥交AD 于N,空间几何图形如下图所示:6BD CD ==,90BDC ∠=︒所以62BC = 因为M 为BC 中点所以,AM BC DM BC ⊥⊥,且DM AM M ⋂= 则BC ⊥平面ADM ,所以BC MN ⊥且32BM DM CM === ,设AD x = 因为60ADB ADC ∠=∠=︒所以由余弦定理可得2222cos AB AD BD AD BD ADB =+-⨯⨯⨯∠ 2222cos AC AD CD AD CD ADC =+-⨯⨯⨯∠代入可解得222636AB AC x x ==-+在Rt AMB ∆中,可得2222618AM AB BM x x =-=-+在ADM ∆中,由余弦定理可得222cos 2AD DM AM ADM AD DM--∠=⨯⨯ 代入可得()22186182cos 2232x x x ADM x +--+∠==⨯⨯ 所以222sin 122ADM ⎛⎫∠=-= ⎪ ⎪⎝⎭而MN AD ⊥所以MN 即为异面直线AD 与BC 的距离 则2sin 3232MN DM ADM =⨯∠=⨯= 故答案为: 3【说明】本题考查了异面直线的距离问题,找出异面直线的公垂线是解决问题的关键,综合性较强,; 6、如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别是A 1D 1和CC 1的中点;求: (1)求异面直线EF 与AB 所成角的余弦值; (2)求异面直线EF 与AB 之间的距离;(3)在棱BB 1上是否存在一点P ,使得二面角P -AC -B 的大小为30°?若存在, 求出BP 的长,若不存在,请说明理由.【提示】(1)作出异面直线所成的角,解三角形求解;(2)转化异面直线间距离为线面距离,再转化为点面距离,计算即可; (3)假设存在,利用二面角P -AC -B 的大小为30求解即可. 【答案】(1)63;(2)322;(3)存在,63BP =. 【解析】(1)取B C ''中点G ,连结EG ,如图, 又E 为A D ''中点,////EG A B AB ∴'',连结GF ,则FEG ∠或其补角即为异面直线EF 与AB 所成角,F 为CC '中点,正方体边长为2, 2EG A B =''=,2221216EF =++=,6cos 3EG FEG EF ∴∠==, ∴异面直线EF 与AB 所成角的余弦值为63.(2)因为//EG AB ,所以异面直线EF 与AB 之间的距离即为直线AB 与平面EFG 间的距离, 即点B 与平面EFG 的距离,连接BC ',交FG 于M , 因为//FG B C ',所以BM GF ⊥,又,EG BM EG FG G ⊥=,所以BM ⊥平面EFG ,即BM 为点B 到平面EFG 的距离.因为22122222,2BC MC GF ''=+==所以322BM BC MC ''=-=即异面直线EF 与AB 32. (3)假设棱BB 1上存在一点P 满足题意, 连接,AC BD 交于O ,连接PO ,所以BOP ∠为二面角P AC B --的平面角,设BP x =,2BO =tan tan 30BP BOP BO ο∠==332=,所以6x =, 故当存在BP 长为63时,二面角P AC B --的大小为30ο;。

空间直线异面直线间距离的一个简明公式

空间直线异面直线间距离的一个简明公式

异面直线间距离的一个简明公式本文先给出两条异面直线间的距离公式,然后指出其在解题中的应用.定理 如图1,异面直线AB ,CD 分别在二面角α—AC —β的面α和β内,二面角α—AC —β的大小为θ,AC =l ,∠ACD =x ,∠BAC =y .那么异面直线AB 与CD 间的距离d =.cos ctg ctg 2ctg ctg sin sin 222θθθy x y x l +++证:如图1,过点D 作平面α的垂线DF ,F 为垂足.在平面α内,过点F 作FG ⊥AB 于G ,FE ⊥AC 于E ,连结DE ,DG .则∠DEF =θ,且(DG )min =d .设DF =t ,在Rt △DFE 中,EF =t ctg θ.在Rt △DEC 中,EC =DE ctg x =t csc θ·ctg x .∴AE =AC -EC =l -t csc θctg x .图1 图2在四边形AEFG 中(图2),过点F 作AE 的平行线交AG 于M ,过点M 作MN ⊥AE 于N .则MF =NE =AE -AN =.ctg ctg ctg csc ctg )ctg csc (y t x t l y EF x t l θ-θ-=-θ-在Rt △MGF 中,FG =.sin )ctg ctg ctg csc (sin y y t x t l y MF θ-θ-=所以在22222]sin )ctg ctg ctg csc [(,Rt y y t x t l t DF GF GD DGF θ-θ-+=+=∆中 .sin )cos ctg sin sin ctg (sin 2])cos ctg sin sin ctg (1[2222y l t y y x y l t y y x +θ+θ⋅-θ+θ+= 根据二次函数的极值公式可得)4/()4()(2min 2a b ac GD -=])cos ctg csc sin ctg (1[4)]cos ctg csc sin ctg (sin 2[])cos ctg csc sin ctg (1[4sin ])cos ctg csc sin ctg (1[4222222y y x y y x y l y y x y l y y x θ+θ+θ+θ-θ+θ+θ+θ+.cos ctg ctg 2ctg ctg sin sin .cos ctg ctg 2ctg ctg sin sin ]cos ctg ctg 2cos ctg ctg )ctg 1(/[sin sin )cos ctg ctg (sin sin 1sin )cos ctg csc sin ctg (1sin 22222222222222222222222θθθθθθθθθθθθθy x y x l d y x y x l y x y x y l y x y y l y y y x y l +++=+++=++++=++=++=故例 2.已知正方形ABCD 和正方形ADD 1A 1所在平面互相垂直,AB =a ,求异面直线DB 与AD 1的距离.解:由已知及定理得,,90,451a l BDA AD D y x =︒=θ︒=∠=∠==.3/345ctg 45ctg 90sin 90sin 222a a d =︒+︒+︒︒=所以图3例3.已知圆锥的轴截面为等边△AVB ,AC 为∠VAB 的平分线,点D 在底面圆周上,且∠ABD =30°,底面圆的直径AB =2R .求异面直线AC 与BD 的距离.解:由已知得x =y =30°,θ=90°,l =2R .由定理可得d =.77230ctg 2190sin 22R R =︒+︒两条异面直线的距离问题,之所以一直被人们所关注,是因为其公垂线段不易作出,其长更不易求出.由于任意两条异面直线,均可视为某个二面角的两个平面内的二直线,这就使定理具有广阔的应用范围,而定理的本身,结构整齐、 图4简明,因此它成为解决两条异面直线间距离问题的有力武器.。

异面直线之间的距离公式 解释说明以及概述

异面直线之间的距离公式 解释说明以及概述

异面直线之间的距离公式解释说明以及概述1. 引言1.1 概述在几何学中,异面直线是指位于不同平面上的两条直线。

由于它们存在于不同的平面中,因此无法以常规的方法来测量它们之间的距离。

然而,解决这个问题十分重要,因为在许多实际应用中,我们需要确定异面直线之间的距离。

1.2 文章结构本文将围绕着异面直线之间的距离公式展开讨论。

首先,我们将介绍异面直线的定义和性质,以便更好地理解这个概念。

接下来,我们将引入并推导出一种计算异面直线距离的公式,并探讨该公式的应用举例。

最后,我们将总结距离公式的重要性及适用范围,并展望进一步研究方向和应用领域。

1.3 目的本文旨在提供一个清晰明了的解释和说明,帮助读者理解异面直线之间距离计算的基本原理和方法,并认识到这个概念在实际生活中和各个领域中的广泛应用价值。

通过深入研究距离公式及其应用举例,我们将了解如何解决异面直线距离计算问题,并有望引发更多关于其进一步研究和应用的思考。

2. 正文:2.1 异面直线的定义与性质在几何学中,异面直线是指不在同一个平面上的两条直线。

异面直线之间存在一些特定性质,例如永远不会相交、平行于同一个平面等。

了解这些性质有助于我们更好地理解异面直线之间的距离。

2.2 距离公式的引入与推导为了计算异面直线之间的距离,我们可以引入一种距离公式。

该距离公式能够准确地计算出任意两条异面直线之间的最短距离。

推导这个距离公式主要依赖于向量和点积的概念。

首先,我们需要将两条异面直线上的一点作为原点,并用向量来表示另外一个点相对于原点的位置。

然后,通过求解这两个向量之间的点积来求得最短距离。

具体而言,在三维空间中,假设有两条异面直线L1和L2。

L1可以表示为P1+r * V1(其中P1是L1上某一点,V1是L1的方向向量),L2可以表示为P2+s * V2(其中P2是L2上某一点,V2是L2的方向向量)。

我们可以通过求解r 和s 的值来确定L1 和L2 间的最短距离。

空间的平行直线与异面直线——基础知识

空间的平行直线与异面直线——基础知识

空间的平行直线与异面直线——基础知识
平行直线是指在同一个平面上,方向相同且不相交的直线。

异面直线是指在不同的平面上,不存在任何交点的直线。

平行直线与异面直线之间存在以下关系:
1. 平行直线与异面直线之间没有任何交点。

2. 平行直线与异面直线之间没有任何公共点,也没有任何公共平面。

3. 平行直线与异面直线之间的夹角可以为任意值,没有特定的关系。

4. 平行直线之间的距离是恒定的,而异面直线之间的距离是不恒定的。

平行直线位于同一个平面上,而异面直线位于不同的平面上,它们之间的关系可以通过它们的位置、方向和距离来进行描述。

向量法求异面直线的距离公式

向量法求异面直线的距离公式

向量法求异面直线的距离公式
异面直线之间的距离公式可以通过向量法来求解。

假设有两条异面直线,它们的方向向量分别为a和a,直线上的一点分别为a和a。

则异面直线的距离可以通过以下步骤来计算:
1.首先,我们计算两条直线上的一点,记为aa和aa,它们为两条直线的最近点。

2.然后,我们计算直线上的向量,记为a=aa−aa,它表示从一条直线上的点到另一条直线上的点的向量。

3.最后,我们计算异面直线的距离,记为a,它等于向量a在两条直线的法向量上的投影长度。

根据以上步骤,异面直线的距离公式可以表示为:
a=|a⋅(a×a)|/|a×a|
其中,⋅表示向量的内积,×表示向量的叉积,|a⋅(a×a)|表示向量a在向量(a×a)上的投影长度,|a×a|表示向量(a×a)的模长。

需要注意的是,如果向量a和a不垂直,则上述公式给出的结果为两条直线之间的最短距离。

如果向量a和a垂直,则它们之间的夹角为a/2,此时两条直线之间的距离为0。

这就是使用向量法求解异面直线的距离公式。

通过计算两条直线之间的最短距离,我们可以更好地理解两条异面直线之间的关系。

求异面直线的距离的若干方法

求异面直线的距离的若干方法

求异面直线的距离的若干方法本文将通过一道例题的多种解法向大家介绍求异面直线的距离的若干方法,希望对同学们的学习能够有所帮助。

例1 已知正方体ABCD 1111A B C D -的棱长为1,求异面直线1A D 与AC 的距离。

一、直接利用定义求解如图1,取AD 中点M ,连1MD 、MB 分别交1A D 、AC 于E 、F ,连1BD ,由平面几何知识,易证1ME MD =,13MF MB =,1MD MB =,则1BD EF 。

由11A D AD =,1A D AB ⊥得1A D ⊥平面1ABD ,则11A D BD ⊥,同理AC ⊥1BD ,所以,EF ⊥1A D ,EF ⊥AC ,即EF 为异面直线与AC 的距离,故有EF=1133BD =。

评注:此法的关键是作出异面直线的公垂线段。

二、转化为线面距离求解如图2,连11A C 、1C D ,则AC ∥平面11AC D 。

设AC 、BD 交于O ,11A C 、11B D 交于1O ,连1O D ,作OE ⊥1O D 于E ,由11A C ⊥平面11BB D D 知11A C OE ⊥,故OE ⊥平面11AC D 。

所以OE 为异面直线1A D 与AC 的距离。

在△中,,则。

所以异面直线与AC 的距离为。

三、转化为面面距离求解如图3,连1AB 、1CB 、11A C 、1DC 、1BD ,易知平面11//A C D 平面ACB ,则异面直线1A D 与AC 的距离就是平面11//A C D 与平面1ACB 的距离,易证1BD ⊥平面1ACB 、1BD ⊥平面11AC D ,且1BD 被平面1ACB 和平面11AC D 三等分,又1BD。

所以异面直线1A D 与AC的距离为3。

四、构造函数求解如图4,在1A D 上任取一点E ,作EM ⊥AD 于M ,再作MF ⊥AC 于F ,连EF ,则∠EMF=。

设MD=,则ME=,AM,在中,∠FAM=,则)MF x =-所以EF ==3=,当且仅当13x =时,EF所以异面直线1A D 与AC的距离为3。

求异面直线的方法

求异面直线的方法

七种求异面直线距离的方法陶双喜 湖南省长沙县一中数学组异面直线的距离是空间距离的一种重要类型,也是高考经久不衰的热点问题。

求这种 距离的方法多种多样,本文通过一个例题的多种解法来谈其求解方略,以供大家参考 例:正方体ABCD - AB^I C J U 的棱长为a ,求异面直线AC 和BG 的距离. 解法1 (直接法): 如图1,取BC 的中点E ,连接DE 、BE ,分别交AC 、 BG 于M 、N 两点,连接MN 、B 1D ,则可证空 ENMD NB 1.MN // B 1D ,由三垂线定理可得 B 1D _ AC , RD —BG , . MN_AC,MN_BG 。

故 MN 的长即为异 面直线AC 和BC 1的距离。

显然,MN =1 3D 3a . 3 3 MB C图1D 1B 1即异面直线 AC 和BG 的距离为 a . 3 评注:此法叫定义法,即根据定义作出异面直线的公垂线段,但难度较大 解法2 (线线距=线面距): V AC // AC 1 -AC 与BC 1的距离等于AC 与 平面ABG 的距离。

如图2,过AC 的中点0作0E -BO 1于E ,易证平面BDD 1B 1 -平面ABG , OE —平面A 1BC 1 o OE 的长即为AC 与BG 的距离。

图272 46 在 Rt BOO 中,BO aQO^i =a,BO 1 a ,2 2 B !■ OE 二B0 0013a .即异面直线AC 和BC 1的距离为3BO 1、3a .3评注:此法是将线线距离转化为线面距离来求,这是求线线距离的一种常用方法解法3 (线线距=•线面距=•点面距)T AC // A1C1. AC与BG的距离等于AC与平面ABG 的距离,即点C到平面ABG的距离,记为h,则由V C^B C I二V~CC1二V A」B I C I得1•氾C、.2a)2.h ,h -a。

即AC 和BC1的距离为—a.3 4 3 2 3 3评注:此法是将线线距离转化为线面距离,然后转化为点面距离来求。

异面直线上两点间的距离公式的应用

异面直线上两点间的距离公式的应用

异面直线上两点间的距离公式的应用异面直线上两点间的距离公式在传统教材中以例题出现,仅用于求异面直线上两点的距离或异面直线的距离,在新课标教材中,这部分内容近一步加强,但仍只以例题的形式分散于多个地方,一般不会引起学生和老师的重视,本文总结、介绍这个知识点在“空间计算”中的应用。

一、异面直线上两点间的距离公式:如图1,a 、b 是两条异面直线,夹角为θ,MN 是公垂线,P 、Q 分别是a 、b 上的点,则由向量知识得:><+++=++=NQ PM NQ PM NQ MN PM NQ MN PM PQ ,cos 2222(1)其中θπθ-,或>=<NQ PM ,若MN=d,MP =m,NQ=n,PQ=l则l=θcos 2222mn n m d ±++ (2),公式(1)、(2)分别是异面直线上两点间的向量公式,数量公式,基本构图为两条异面直线及公垂线,符合上述基本构图即数量关系,即可用公式来解决问题,下面介绍几种常见用法二、公式的应用1.求异面直线上两点间的距离例1,如图2:600的二面角的棱上有A,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于A,B ,已知AB=4,AC=6,BD=8,求CD 的长?分析:AC ,BD 是两异面直线,AB 是公垂线,AC 与BD 的夹角即是二面角的平面角,θ=60,0符合基本构图即数量关系,代公式即得CD=172 2.求异面直线的距离由公式(2)变形得d=θcos 2222mn n m c --3.求异面直线的夹角由公式(2)变形得cos θ=mn c n m d 22222-++4.求二面角在直角坐标系xoy 中A (-2,3),B (3,-2),沿x 轴把直角坐标平面折成大小为θ的二面角后112=AB ,求θ的大小?分析:分别过A 、B 作AA ˊ⊥x 轴于A ˊ,BB ˊ⊥x 轴于B ˊ,翻折后,AA ˊ与BB ˊ为异面直线,A ˊB ˊ为公垂线,而><B B A A ','=θ,AA ˊ=3,A ˊB ˊ=5,B ˊB=2则==∴cos ><B B AA ','=21∴><B B AA ','=600∴θ=1200 5.求直线与平面所成的角如图4,线段AB 在平面α内,线段AC ⊥面α,BD ⊥AB ,且AB=7,AC=BD=24,CD=25,求线段BD 与平面α所成的角分析:图中AC ,BD 是两条异面直线,AB 是公垂线段,符合基本构图,又直线BD 与平面α所成的角θ与异面直线AC ,BD 所成的角满足关系:sin θ=><BD AC ,cos 利用上述关系及公式即可得出θ=300。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间直线(四)—异面直线间的距离
一、 教学目的:(1)理解两条异面直线垂直的概念;(2)了解两条异面直线的公垂线;(3)会求两条异面直线间的距离及主要方法。

二、 教学重点、难点:异面直线间的距离。

三、 教学过程:1、复习:
(1)异面直线的定
义: ;
(2)两条异面直线所成的
角: ;
⇒当两条异面直线互相垂直
时 ;
两条异面直线所成的角的范围
是 ;
2、观察正方体ABCD —1111D C B A 中,正方体的棱1AA 和1
1C B 所在的直线,直线11B A
直线1AA 和11D C 直线,直线 。

3
4 练习(1);设上图中,已知正方体ABCD —1111D C B A 的棱为a .
(1)则异面直线AB 和11C B 的公垂线为 ;它们的距离
是 ;
(2)则异面直线1AA 和C B 1的公垂线为 ;它们的距离
是 ;
(3)则异面直线AC 和11D B 的公垂线为 ;它们的距离
是 ;
[思考题]:则异面直线AC 和1BD 的公垂线为 ;它们的距离
是 ;
[例1]:如图,PA ⊥矩形ABCD ,已知PA=AB=8,BC=15. (1) 求直线PA 、BC 间的距离;
(2) 求直线PA 、BD 间的距离; (3) 求直线AD 与PC 所成角的余切值。

[例2]:已知正四面体ABCD 中(各边均相等的四面体),若AB=1。

求:AB 和CD 间的距离。

A
B D
C 1
P A B C D
练习(2)1、判断题;
(1)d c b a ,,,是4条直线,;////,//,//d a d c c b b a ⇒-------------( )
(2)若b a ,是直线,βα,是平面,
且,,βα⊂⊂b a 则b a ,一定是异面直线( ) (3)b c a c b a ⊥⇒⊥,//---------------------------------------------------------------( )
(4)b a c b c a //,⇒⊥⊥--------------------------------------------------------------( )
2、填空题:
(1)已知b a ,是两条直线,且b a //,φ=⋂b a ,那么a 与b ;
(2)已知c b a ,,是三条直线,且a b a ,//和c 所成的角为030,那么b 和c 所
成的角的大小为 ;
(3)1AA 是长方体的一条棱,这个长方体中与1AA 垂直的棱共
有 ;
(4)如果b a ,是异面直线,直线c 与b a ,都相交,那么由这三条直线中的
两条所确定的平面共有 个。

3、如图,已知长方体的长和宽都是cm 32,
高是cm 2. (1) BC 和11C A 所成的角是多少度?
(2) 1AA 和1BC 所成的角是多少度? 11B A 和1DD ,以及11C B 和CD 的距离各是多少? 作业: P 15 7、8 A B C D A 1 B 1 C 1 D 1。

相关文档
最新文档