大跨度桥梁的抗风措施
土木工程中的桥梁抗风设计技术

土木工程中的桥梁抗风设计技术桥梁作为连接两地交通的重要通道,在土木工程中占据着举足轻重的地位。
然而,在桥梁的设计和建设过程中,抗风是一个不可忽视的重要因素。
本文将介绍土木工程中的桥梁抗风设计技术,重点分析桥梁的抗风设计原则、设计方法和常用技术。
一、桥梁抗风设计原则在土木工程中,桥梁抗风设计的原则是保证桥梁在遭受风力作用时能够保持结构的稳定和安全。
具体而言,桥梁抗风设计需要考虑以下几个方面:1. 桥梁的形状设计:合理的桥梁形状设计可以减小桥梁受风的面积,降低风力对桥梁的影响。
例如,在大跨度桥梁的设计中,采用空腹箱梁或曲线形状的桥面板可以减小风阻力,提高桥梁的抗风性能。
2. 桥墩和支座的布置:桥墩和支座的布置对桥梁的抗风性能有着重要影响。
合理的桥墩布置可以增加桥梁的稳定性,减小风力对桥梁的作用力。
同时,在桥梁的设计中还需要考虑桥墩的高度和断面形状,以减小斜向风对桥梁的冲击力。
3. 桥面横向刚度的设计:桥面横向刚度对桥梁的抗风性能起着至关重要的作用。
适当增加桥面的横向刚度可以提高桥梁的自振周期,减小动力响应,增加桥梁的抗风能力。
二、桥梁抗风设计方法基于桥梁抗风设计原则,桥梁的抗风设计方法也日趋成熟。
常用的桥梁抗风设计方法包括静力分析和动力分析两种。
1. 静力分析:静力分析是桥梁抗风设计中较为简单和常用的分析方法。
它通过对桥梁结构所受风力的静力平衡分析,确定桥梁在不同风速下的受力状态,进而判断桥梁是否满足设计要求。
静力分析方法在桥梁设计初期用于快速评估桥梁的抗风能力具有一定的优势。
2. 动力分析:动力分析是桥梁抗风设计中较为精确和全面的分析方法。
它通过考虑风力的频谱特性,结合桥梁结构的固有振动特性,综合计算桥梁的响应和变形情况。
动力分析方法可以更加准确地评估桥梁的抗风性能,并对桥梁的关键部位进行优化设计。
三、常用的桥梁抗风技术为了提高桥梁的抗风性能,土木工程师们还开发了许多创新的桥梁抗风技术。
下面介绍两种常用的技术:1. 风洞试验技术:风洞试验是桥梁抗风设计中常用的实验方法,通过模拟真实风场的风洞试验,获取桥梁结构在不同风速下的受力和变形情况。
桥梁防风措施

桥梁防风措施
桥梁是城市中的重要交通设施,因此需要采取防风措施来保护桥梁的安全。
以下是一些常见的桥梁防风措施案例:
1. 网络护栏:在桥梁两侧设置网络护栏,可以有效阻挡强风对桥梁的影响,并防止物品被吹落桥梁。
2. 加固结构:对桥梁的支撑结构进行加固,提高桥梁的抗风能力。
常见的方法包括增加支撑柱的数量和直径,加大桥梁的梁宽等。
3. 减小风阻:对桥梁的设计进行优化,减小桥梁的风阻面积。
例如通过改变桥梁的形状或者采用空气动力学的原理进行设计,减小风对桥梁的冲击。
4. 定期检查和维护:定期对桥梁进行检查和维护,确保桥梁的结构和设备处于良好的状态。
及时发现并修复风吹倒的部件,预防风险的发生。
5. 安装风速传感器:安装风速传感器监测桥梁周围的风速,一旦风速超过预警值,及时采取措施保护桥梁的安全。
这些措施的选择和实施应根据具体的桥梁和当地的环境条件进行评估,并在合适的时候进行调整和改进。
经验交流:大跨桥梁的抗风对策(二)

风荷载 桥梁是处于⼤⽓边界层内的结构物,由于受到地理位置、地形条件、地⾯粗糙程度、离地⾯(或⽔⾯)⾼度、外部温度变化等诸多因素的影响,作⽤于桥梁结构上的风荷载是随时间和空间不断变化的。
从⼯程抗风设计的⾓度考虑,可以把⾃然风分解为不随时间变化的平均风和随时间变化的脉动风的叠加,分别确定它们对桥梁结构的作⽤。
对于桥梁结构来说,风荷载⼀般由三部分组成:⼀是平均风的作⽤;⼆是脉动风背景作⽤;三是由脉动风诱发结构抖振⽽产⽣的惯性⼒作⽤,它是脉动风谱和结构频率相近部分发⽣的共振响应。
在本规范中将平均风作⽤和脉动风的背景作⽤两部分合并,总的响应和平均风响应之⽐称为等效静阵风系数Gv,它是和地⾯粗糙程度、离地⾯(或⽔⾯)⾼度以及⽔平加载长度相关的系数。
为了便于理解新规范中有关风荷载的条⽂,我们列出了国内外规范中有关风荷载的规定,供参考。
1.在我国1987年的设计规范中,定义横向设计风压为: 该公式仅仅考虑了平均风的静⼒作⽤,没有考虑脉动风的背景响应和结构的振动惯性⼒的影响,是偏于不安全的。
2.⽇本《道路桥抗风设计便览》适⽤于跨径⼩于200m的桥梁。
其设计风速和设计风荷载定义为: 其中:ρ为空⽓密度;E1为⾼度及地表粗糙度修正系数;CD为桥⾯阻⼒系数;An为桥梁顺风向投影⾯积;G=1、9,为阵风响应系数,是⼀个常数。
在上式中,引⼊了阵风响应系数,体现了风的紊流成分的影响,但没有考虑风的空间相关,跨径⼩平200的桥梁是可以适⽤的。
3.在⽇本《本州四国联络桥抗风设计指南》中,⼤跨度桥梁的设计风速和设计风荷载分别表达为: 其中:ν1为⾼度修正系数;ν2为⽔平长度阵风修正系数;ν4司为动⼒效应风载修正系数;其余参数意义同上。
该式反映了因考虑风的⽔平相关使风荷载的脉动影响随跨长增加的折减效应。
4.英国BS5400规范也采⽤等效静阵风荷载的概念,设计风速取为阵风风速,其风速与设计风荷载分别表达为: 其中:K1为重现期系数;S1为穿⾕系数;S2为阵风系数,该系数考虑了⽔平长度折减。
桥梁抗风措施

桥梁抗风措施1. 引言桥梁是连接陆地上两个地点的重要交通工具,然而在风力较大的地区,桥梁所面临的风灾风险也相对较高。
为了确保桥梁的安全运行以及保护周边环境和使用者的安全,必须采取有效的抗风措施。
本文将介绍几种常见的桥梁抗风措施,并讨论其优缺点以及适用范围。
2. 桥梁抗风措施分类2.1 结构抗风措施结构抗风措施是指通过优化桥梁结构的设计和材料的选择来增强桥梁的抗风能力。
常见的结构抗风措施包括:•加固桥台和桥墩:对于桥梁的支撑结构,采取加固桥台和桥墩的措施来提高桥梁的整体稳定性。
可以采用加大桥台和桥墩的尺寸、改变结构类型或者使用高强度材料等方式,来抵抗风力的作用。
•增加桥面宽度:通过增加桥面的宽度,可以增加桥梁与风的相对距离,减少风对桥梁的作用力。
•减小桥面高度:降低桥面的高度可以减小桥面受到的风力作用,进而提高桥梁的抗风能力。
•改善桥面表面细节:对于一些特殊形状的桥梁,可以在桥面表面采取一些特殊的设计,如凹凸交叉纹理等,来减轻风的作用力。
2.2 风洞试验风洞试验是通过模拟真实的风场环境,对桥梁进行风力荷载测试和结构响应分析的方法。
通过风洞试验可以获取桥梁在不同风速下的应力响应数据,从而评估桥梁的抗风能力。
根据风洞试验的结果,可以调整桥梁的结构设计和材料选择,以满足抗风的要求。
风洞试验在桥梁设计和改进中起到了重要的作用。
2.3 风险评估与监测风险评估与监测是指通过风力监测和结构状态监测等手段,对桥梁的风险进行识别和评估,进而采取相应的措施进行预防和保护。
具体的方法包括:•安装风力监测设备:在桥梁周围设置风速、风向检测设备,实时监测风场情况,并及时采取措施。
•结构状态监测:通过安装应变计、振动传感器等设备,实时监测桥梁的结构状况,如变形、应力和振动等,并根据监测结果采取相应的抗风措施。
3. 抗风措施的优缺点及适用范围3.1 结构抗风措施的优缺点及适用范围结构抗风措施的优点是通过优化桥梁的结构设计和材料选择,从根本上提高桥梁的抗风能力。
经验交流:大跨桥梁的抗风对策(三)

颤振稳定性和静风稳定性 ⼤跨度桥梁在风荷载的静⼒作⽤下有可能发⽣因计⼒矩过⼤⽽发⽣扭转发散,或因顺风向的阻⼒过⼤⽽引起横向屈曲这两种静⼒失稳。
桥梁在风的作⽤下还有可能发⽣⼀种⾃激振动,风的能量的不断输⼊使振幅逐渐加⼤。
根据断⾯的不同形状,这种发散性的振动可以是弯曲型的驰振、扭转型的颤振或弯扭耦合型的颤振,统称为动⼒失稳。
静⼒先稳和动⼒失稳的临界风速的较低者将控制⼤跨度桥梁的抗风安全。
静⼒失稳和动⼒先稳两者都是危险性的,都必须在桥梁设计时加以避免。
此次规范除对颤振稳定性和驰振稳定性作了规定外,还对桥梁的横向静⼒稳定性和静⼒扭转发散作了规定。
本⽂将主要介绍有关颤振稳定性检算的⽅法。
桥梁的颤振检验风速按下式确定: 式中:[Vcr]为颤振检验风速(m/s);Vd为设计基准风速(m/s);K为考虑风洞试验误差及设计、施⼯中不确定因素的综合安全系数,⼀般可取K=1.2。
µf为考虑风速脉动影响及⽔平相关特性的⽆量纲修正系数,根据不同的地表粗糙类别,按表3取值: 在风攻⾓-3≤α≤+范围内,颤振临界风速必须满⾜以下准则; Vcr≥[Vcr](13) 式中:Vcr为桥梁颤振临界风速(m/s)。
本条⽂采⽤的颤振检验风速的表达式和⽇本《本州四国联络桥抗风设计指南》以及⽇本的⼀些其他桥梁的抗风设计指南在形式上是⼀样的。
由于采⽤的风谱以及地表粗糙度值有所不同,⽇本《本州四国联络桥抗风设计指南》给出的颤振检验风速修正系数µf的取值⽐本条⽂要稍微⼩⼀些,但⽇本的设计基准风速的重现或为150年,其总体的结果与本条⽂接近。
英国BS5400E规范采⽤在00风攻⾓时的检验风速基于为120年1min的风速值(与10min间的时距系数为对Ⅰ类地貌为1.1),其分项安全系数为:νfl=1.38,νm=1.05,νf3=1.1。
在±2..50,折减系数为0.8。
丹麦⼤海带桥规定的动⼒稳定性检验风速采⽤失效概率为Pf<10-7的基准,从⽽得到在±30攻⾓范围内的颤振检验风速为1.5Ud。
特大跨度桥梁抗风研究的新进展

特大跨度桥梁抗风研究的新进展随着科技的不断发展,特大跨度桥梁的设计与建设已成为工程界的热点话题。
然而,风荷载作为桥梁设计中的重要因素,对特大跨度桥梁的安全性与耐久性具有重大影响。
因此,开展特大跨度桥梁抗风研究具有重要的现实意义。
本文将介绍近年来特大跨度桥梁抗风研究的新进展,以期为相关领域的研究提供参考。
在过去的几十年里,特大跨度桥梁抗风研究得到了广泛。
通过对桥梁抗风性能的深入探讨,研究者们不断发展新的理论、技术和方法,以提高桥梁的抗风能力。
如今,特大跨度桥梁抗风研究已经取得了显著的成果,为世界各地的桥梁设计提供了有力支持。
近年来,特大跨度桥梁抗风研究在理论模型、数值模拟和实验研究等方面取得了重要进展。
例如,基于CFD(计算流体动力学)技术的数值模拟方法在特大跨度桥梁抗风性能分析中得到了广泛应用。
通过模拟不同风速、风向和地形条件下的桥梁响应,研究者们可以更准确地评估桥梁的抗风性能并优化其设计方案。
在特大跨度桥梁抗风研究中,一些关键技术发挥了重要作用。
例如,通过采用高精度模型模拟桥梁的风致振动效应,可以获得更准确的响应数据。
利用多目标优化算法进行抗风优化设计,可以显著提高桥梁的抗风性能。
然而,这些技术也存在一定的局限性。
例如,CFD模拟结果的准确性和可靠性仍需进一步验证,而多目标优化算法的效率和应用范围也需要进一步拓展。
一些成功的案例为特大跨度桥梁抗风研究的可靠性提供了有力证明。
例如,中国的苏通大桥采用先进的抗风设计和施工工艺,成功地抵抗了多次强风事件,确保了桥梁的安全运行。
法国的诺曼底大桥也采用了创新性的抗风措施,成功地减少了桥面风荷载和风致振动,为特大跨度桥梁的抗风设计提供了有益的参考。
特大跨度桥梁抗风研究在理论模型、数值模拟和实验研究等方面取得了重要进展。
然而,这些研究仍存在一定的局限性,需要进一步加以完善。
未来,随着计算技术和实验设备的不断发展,特大跨度桥梁抗风研究将会有更多新的突破。
例如,利用高性能计算平台进行大规模数值模拟计算,可以进一步提高计算效率和准确性;采用先进的传感器和测试技术,可以更准确地获取桥梁在风荷载作用下的响应数据;开展更加系统和深入的实验研究,可以更全面地了解桥梁抗风性能的影响因素和变化规律。
《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策

《公路桥梁抗风设计规范》概要及大跨桥梁的抗风对策摘要:随着我国桥梁工程的不断发展,迫切需要编制适合我国国情的《公路桥梁抗风设计规范》。
本文介绍了该规范编制中的几个主要问题,其中包括基本风速图和风压图、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等,此外,还讨论了大跨桥梁成桥和施工阶段的各种抗风对策。
关键词:桥梁抗风、设计规范0. 前言1999年10月,江阴长江大桥正式建成通车标志着中国有了第一座超千米的悬索桥,同时也成为世界上能够建造千米级大桥的第六个国家。
自从80年代初中国改革开放以来,中国已建成了一百余座各种类型的斜拉桥,成为世界上建造斜拉桥最多的国家。
如果把即将于2001年建成的南京长江二桥和福州闽江大桥统计在内,在跨度超过500m的世界斜拉桥中中国的斜拉桥已占有十分重要的地位。
1996年我国人民交通出版社出版了我国第一部由同济大学和中交公路规划设计院编写的《公路桥梁抗风设计指南》,几年来已被广泛用于多座大路桥梁的抗风设计中。
在此基础上,受交通部的委托,同济大学、中交公路规划设计院、中央气象研究院以及西安公路交通大学针对其中的几个关键问题进行了专题研究,为形成最终的《公路桥梁抗风设计规范》奠定了基础。
这几个专题的内容以及通过多次修改形成的报批稿的目录如表1所示。
本文将主要介绍该规范编制中的几个主要问题,其中包括基本风速的确定、风荷载的表达方式、桥梁动力稳定性检验和风洞试验要求等二、全国基本风速图和风压图基本风速定义为桥梁所在地区的开阔平坦地貌条件下,地面以上10m高度处,100年重现期的10min 平均年最大风速。
本次规范编制,采用我国657个基本台站1961年至1995年间自己记录的风速资料,以极值I型分布曲线进行拟合,将基准高度从原来的20m高改为10m高,并考虑100年重现期,得到相应各气象台站百年一遇的最大风速值。
鉴于目前我国有相当多的气象台站,由于近年来城市建设的快速发展,使得台站环境不能满足空旷无遮挡的要求,致使风速记录明显受人为因素的影响而偏小。
大跨度结合梁斜拉桥抗风稳定分析

[ ( 6 .) /, — b ]6 1 — 5 x—7 , b + 0 o  ̄/
() 3
式中: 田为截 面形状系数 ; 为扭转基频 ; 为
竖 向 弯 曲 基 频 ; 为 桥 宽 的 一 半 ;=、 , ; 6 r // m
= /p z , m ̄ b; 分别为单位长度梁的质量与惯性矩。 m、
桥 址 位 于 甘 肃 省 兰 州 市 西 固区 新 城 镇 ,线路
收 稿 日期 :0 2 0 — 7 2 1— 3 2
作者简介 : 李林(9 0 ) 男 , 17 一 , 甘肃 兰州人 , 高级 工程 师, 事桥 从 梁设 计工作 。
面; 钢横 梁采 用 22 0m 8 m×70m × 0 2 ) m× 0 m 2 (8 m 1 m工 字型截 面 。斜拉 索 采用 直径 7m 6m m镀 锌 低 松 弛 平 行 钢 丝 束 , 大 索 长 192 1m, 索 与 水 最 8 .0 边 平 面最 小 夹 角 为 2 . 1 。 29 。 7
簧=r Be f o
( 2 )
式中 : 为全桥宽 i 为基本扭转频率 ; = .・ 野 5 2 、 / ,称为西欧多森数的倒数 ; 为单位长度 桥梁与空气密度 比; 6 r 为惯性半径 比。 / 当桥梁发生弯扭耦合颤振时 ,其临界风速常
用克 罗 伯公 式计 算 :
以 =
5 0mm×1 0 m×5 ( 0 m 0 0m 0 0 8 ) m×2 8mm工字 型截
式 中: K为 综 合 安 全 系 数 , 1 ; 考 虑 风 速 取 . 为 2 脉 动影 响 和水 平 相关 特性 的系 数 。根 据计 算 结 果 , 主 梁 成 桥 状 态 颤 振 检 验 风 速 [ = 0ms 主 梁 施 V, 4 /, ] 工 状态 颤 振检 验 风速 ['= .4Vr 3 . ms Vc O8 [ = 36 /。 r ] ] 22 颤 振 临界 风 速 . H r g 建 议 的桥 跨 结 构 颤 振 临 界 风 速 实 用 ez 所 o 公 式 如下 :
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
力失稳。
2) 为了确保桥梁的抗风安全性,桥梁发生自激发散振动( 如颤振) 的临 界风速必须高于桥梁的设计风速,并具备一定的安全储备。
大跨度桥梁抗风的目的
3) 对于限幅振动,可能会引起结构的疲劳损伤或影响结构正常
使用,使行人感到不适以及影响施工的顺利进行等,所以也应将桥梁
可能发生的限幅振动的振幅减小到可以接受的程度。
抗风措施
采取气动控制措施,在主梁断面中心线上增设了不同高度的稳 定板。
参考文献
大跨度桥梁风振问题综述----刘智虎 桥梁抗风设计-----刘长宏 大跨度缆索支撑体系桥梁抗风分析---牛力强
抗风措施
措施一:施工过程中要始终保证临时固结的牢固可靠,防止主 梁竖向及平面内转动。 措施二:采用斜拉风缆(钢铰线)连接两侧主梁与主塔承台, 以提高结构的刚度。
抗风措施
措施三:在塔梁交接处梁段与塔柱之间设置临时横向型钢挡块,
型钢的一端与钢箱梁焊接,另一端紧顶在桥塔上,采取此措施的
目的是为了防止主梁水平面内的刚体转动。
大跨度桥梁的抗风措施
011140211 梅其泉
大跨度桥梁的介绍
大跨度桥梁抗风的目的
大跨度桥梁的抗风措施 工程实例
大跨度桥梁的介绍 大跨度桥梁抗风的目的 大跨度桥梁的抗风措施 工程实例
世界大跨径斜拉桥排名
排名 1 2 3 4 5 桥梁名称 江苏苏通长江大桥 香港昂船洲大桥 湖北鄂东长江大桥 多多罗大桥 诺曼底大桥 国家 中国 中国 中国 日本 法国 建成年份 2008 2009 2010 1999 1995 主跨(m) 1088 1018 926 890 856
大跨度桥梁的介绍
大跨度桥梁抗风的目的
大跨度桥梁的抗风措施
工程实例
大跨度桥梁的抗风措施
(1)结构措施 (2)气动措施
结构措施
增加扭转刚性对提高大跨度桥梁设计的发散振连的行车道桥面结 构时,采用设置上下横梁的方法形成准闭合断面可以显著增加扭 转刚性。
1 2 3 4 5 6 7 8
重庆朝天门长江大桥 卢浦大桥 西弗吉尼亚大桥 贝尔桥 悉尼港桥 巫山长江大桥 万县长江公路大桥 重庆菜园坝长江大桥
552 550 518 504 503 460 420 420
钢桁架拱 钢箱拱 钢桁架拱 钢桁架拱 钢桁架拱 钢管混凝土拱 钢管混凝土劲性骨架拱 钢管混凝土拱
气动措施
①改善主粱断面两端的气动外形,如增设风嘴、抑流板或扰流 板、导流板,以改善气流绕流的流态 ②在主粱的中央分隔带处开槽,乃至将闭口箱拓展成分离箱断 面,以减少粱体上下表面的压力差.
气动措施
③增加栏杆的透风率,避免采用过高的人行道及路缘石,不致
使断面钝化.
④提高断面的流线化程度,使其具有良好的气动性能。
工程实例2
润扬长江大桥工程全长35.66公里,主要由南汊悬索桥与北汊斜 拉桥组成,南汊桥主桥为钢箱梁悬索桥,索塔高有209.9m,两 根主缆直径为0.868m,跨径布置470m+1490m+470m;北汊 桥为主双塔双索面钢箱梁斜拉桥,跨径布置是 175.4m+406m+175.4m,倒Y型索塔高146.9m,钢绞线斜拉 索,钢箱梁桥面宽。
中国 中国 美国 美国 澳大利亚 中国 中国 中国
9
10
(克尔克)KRK大桥
Fermont大桥
390
383
钢筋混凝土拱
钢桁架拱
克罗地亚
美国
1979
1973
重庆朝天门长江大桥
卢浦大桥
悉尼港桥
大跨度桥梁的介绍
大跨度桥梁抗风的目的
大跨度桥梁的抗风措施
工程实例
大跨度桥梁抗风的目的
1) 对于可能出现的最大静风荷载,桥梁不会发生强度破坏、变形和静
结构措施
另外,还可以在缆索支撑桥梁上加一些辅助设施同样可以提高
其抗风稳定性。比如,在悬索桥的主缆与主梁之间加中央扣可以
大大提高发散风速。
无论是悬索桥或斜拉桥,主梁断面主要采用闭口扁平箱梁、桁梁、开口的结 合梁、分离箱梁、肋板粱等.这些不同形式的主粱断面在与空气的相互作用下, 其气动响应特性是不一样的.
6
7 8 9 10
湖北荆岳大桥
Incheon Bridge 上海长江大桥 上海闵浦大桥 南京长江三桥
中国
韩国 中国 中国 中国
2010
2009 2009 2009 2005
816
800 730 708 648
江苏苏通大桥
多多罗大桥
湖北荆岳大桥
世界大跨径悬索桥排名
序号 桥名 主跨(米) 主梁结构形式 所在国家 建成年限
丹麦 中国 英国 中国 中国 美国 美国 中国
1998 2005 1981 1999 1997 1964 1937 2007
日本明石海峡大桥
润扬长江大桥
香港青马大桥
金门大桥
世界大跨径拱桥排名
序号 桥名 主跨(m) 结构形式 所在国家 建成年 限 2009 2003 1976 1931 1932 2005 1997 2007
1
明石海峡大桥
1991
简支钢桁
日本
1998
2
浙江舟山西堠门大桥
1650
钢箱梁
中国
2009
3 4 5 6 7 8 9 10
大带桥 润扬长江大桥 亨柏桥 江阴长江大桥 香港青马大桥 费雷泽诺桥 金门大桥 武汉阳逻长江大桥
1624 1490 1410 1385 1377 1298 1280 1280
连续钢箱 钢箱梁 钢箱 简支钢箱 连续钢箱 简支钢桁 简支钢桁 钢箱梁
大跨度桥梁的介绍
大跨度桥梁抗风的目的
大跨度桥梁的抗风措施
工程实例
工程实例1
杭州湾跨海大桥的北航道桥全长908m,为钻石型双塔双索面五跨连续 半漂浮体系钢箱梁斜拉桥,跨径布置为70m+160m+448m+16 0m+70m。北通航孔斜拉桥钢箱梁采用悬臂施工,因此确立最大双悬臂、 最大单悬臂及成桥状态作为抗风研究的施工控制状态。