金版教程2017高考数学文二轮复习第三编考前冲刺攻略第二步高考题型大突破第三讲10大模板规范解答题3

合集下载

2017版高考数学文江苏专用大二轮总复习与增分策略配套课件第三篇建模板看细则突破高考拿高分

2017版高考数学文江苏专用大二轮总复习与增分策略配套课件第三篇建模板看细则突破高考拿高分

典例5 (14分)海关对同时从A,B,C三个不同地区进口的某种商品进行 抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人 员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 A
B
C
数量 50 150 100
(1)求这6件样品中来自A,B,C各地区商品的数量;
(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商
典例4 (14分)如图,四棱锥P—ABCD的底面为正方形,侧面PAD⊥底面 ABCD,PA⊥AD,E,F,H分别为AB,PC,BC的中点. (1)求证:EF∥平面PAD; (2)求证:平面PAH⊥平面DEF.
评分细则
构建答题模板
规范解答·评分标准
审题路线图
跟踪演练 4 (2015·北京)如图,在三棱锥 V-ABC 中,平面 VAB⊥平面 ABC, △VAB 为等边三角形,AC⊥BC 且 AC=BC= 2,O,M 分别为 AB,VA 的中点. (1)求证:VB∥平面 MOC; 证明 因为O,M分别为AB,VA的中点, 所以OM∥VB, 又因为VB⊄平面MOC,OM⊂平面MOC, 所以VB∥平面MOC.
(1)求椭圆 C 的方程; (2)设椭圆 E:4xa22+4yb22=1,P 为椭圆 C 上任意一点,过点 P 的直线 y=kx+m
交椭圆 E 于 A,B 两点,射线 PO 交椭圆 E 于点 Q. (ⅰ)求OOQP的值;
(ⅱ)求△ABQ 面积的最大值.
评分细则
构建答题模板
规范解答·评分标准
审题路线图
由题意知 f(x)的最小正周期 T=π2,T=22ωπ =ωπ =π2,
所以 ω=2,所以 f(x)=sin(4x+π6).

高三数学二轮复习 第二编 考前冲刺攻略 4.3解答题的解题程序模板课件 理

高三数学二轮复习 第二编 考前冲刺攻略 4.3解答题的解题程序模板课件 理

∴PBMP =MNBD=12.又QQAB=12.
∴QQBA=PBMP .
∴在△MAB中,QP∥AM.
又QP⊄面AMD,AM⊂面AMD,
∴QP∥面AMD.
(2)求平面BNC与平面MNC所成锐二面角的余弦值.
解 (2)以DA、DC、DM所在直线分别为x轴,y轴,z轴建立空间直角坐标系如图,则D(0,0,0),B(2,2,0),
2sinA+π6取最大值2. 综上可知, 3sinA-cosB+π4的最大值为2, 此时A=π3,B=51π2.
(3)若a2+c2-b2=ac,且c=2.求△ABC的面积.
解 (3)由a2+c2-b2=ac及余弦定理,得
cosB=a2+2ca2c-b2=2aacc=12.
又0<B<34π,因此B=π3.
(1)P是△ABM的一边BM上的点→在另一边AB上一定存在一点Q使PQ∥AM→
BQ QA

BP PM

MNBD=12.
(2)建立坐标系→构造法向量→求夹角.
构建解题程序 第一步:作出(或找出)具有公共交点的三条相互垂直的直线.
第二步:建立空间直角坐标系,写出特殊点坐标.
第三步:求(或找)两个半平面的法向量.
第四步:求法向量n1,n2的夹角或cos〈n1,n2〉(若为锐二面角则求|cos〈n1,n2〉|). 第五步:将法向量的夹角转化为二面角的夹角.
第六步:反思回顾,查看关键点、易错点及解题规范.如本题求得cos〈n1,n2〉=-
构建解题程序 第一步:运用正弦定理,将边化为角的关系,进而由角的范围及tanC=1,求角C. 第二步:化三角函数为 a2+b2sin(x+φ)的形式. 第三步:根据三角函数性质,求出A,B. 第四步:利用余弦定理与面积公式求S△ABC. 第五步:反思回顾,查看关键点、易错点,规范解题步骤. 批阅笔记 1.①本题第(1)、(3)问的求解关键充分运用条件特征,灵活运用正余弦定理,完成边角的转 化. ②第(2)问注意到A、B关系,逆用两角和的正弦公式. 2.本题易错点:①第(2)问中,忽视角的取值范围,推理计算不严谨; ②不会将cosB+π4转化为cos(π-A),导致求解复杂化,使得求错结论; ③抓不住第(3)问的条件特征,盲目代入,无果而终.

(全国新课标)2017年高考数学大二轮温习 第三编 考前冲刺攻略 第一步 八大提分笔记 八 推理与证明、复数、

(全国新课标)2017年高考数学大二轮温习 第三编 考前冲刺攻略 第一步 八大提分笔记 八 推理与证明、复数、
第三编 考前冲刺攻略
第一步 考前必看 八大提分笔记 八、推理与证明、复数、算法
1 推理方法 (1)合情推理 合情推理是根据已有的事实和正确的结论(包括定义、 公理、定理等),实验和实践的结果,以及个人的经验和直 觉等推测某些结果的推理过程,归纳和类比是合情推理常见 的方法,在解决问题的过程中,合情推理具有猜测和发现结 论、探索和提供思路的作用,有利于创新意识的培养.
(2)间接证明——反证法
一般地,假设原命题不成立,经过正确的推理,最后得 出矛盾,因此说明假设错误,从而证明原命题成立,这种证 明方法叫反证法.
(3)数学归纳法 一般地,证明一个与正整数 n 有关的命题,可按下列步 骤进行: ①(归纳奠基)证明当 n 取第一个值 n0(n0∈N*)时命题成 立;
②(归纳递推)假设 n=k(k≥n0,k∈N*)时命题成立,证 明当 n=k+1 时命题也成立.
解析 进行第一次循环时,S=1050=20,i=2,S=20>1; 进行第二次循环时,S=250=4,i=3,S=4>1;进行第三次 循环时,S=45=0.8,i=4,S=0.8<1,此时结束循环,输出 的 i=4.
归纳不严密致误
例3
[2016·湖北七市联考]观察下列等式
1+2+3+…+n=12n(n+1);
复数的实部是a-2 2,虚部是a+2 2.
由题意,知a+2 2=2×a-2 2.
解得 a=6.故选 A.
循环结构判断不准致误
例2
[2016·山西质检]运行如图所示的程序框图,若
输出的点恰有 5 次落在直线 y=x 上,则判断框中可填写的
条件是( )
A.i>6
B.i>7
C.i>8

金版教程高考数学文二轮复习讲义:第二编专题整合突破专题三三角函数与解三角形第一讲三角函数的图象与性质

金版教程高考数学文二轮复习讲义:第二编专题整合突破专题三三角函数与解三角形第一讲三角函数的图象与性质

专题三三角函数与解三角形第一讲三角函数的图象与性质必记公式]1.三角函数的图象与性质重要结论]1.三角函数的奇偶性(1)函数y =A sin(ωx +φ)是奇函数⇔φ=k π(k ∈Z ),是偶函数⇔φ=k π+π2(k ∈Z );(2)函数y =A cos(ωx +φ)是奇函数⇔φ=k π+π2(k ∈Z ),是偶函数⇔φ=k π(k ∈Z );(3)函数y =A tan(ωx +φ)是奇函数⇔φ=k π(k ∈Z ). 2.三角函数的对称性(1)函数y =A sin(ωx +φ)的图象的对称轴由ωx +φ=k π+π2(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π(k ∈Z )解得;(2)函数y =A cos(ωx +φ)的图象的对称轴由ωx +φ=k π(k ∈Z )解得,对称中心的横坐标由ωx +φ=k π+π2(k ∈Z )解得;(3)函数y =A tan(ωx +φ)的图象的对称中心由ωx +φ=k π2(k ∈Z )解得.失分警示]1.忽视定义域求解三角函数的单调区间、最值(值域)以及作图象等问题时,要注意函数的定义域.2.重要图象变换顺序在图象变换过程中,注意分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.3.忽视A ,ω的符号在求y =A sin(ωx +φ)的单调区间时,要特别注意A 和ω的符号,若ω<0,需先通过诱导公式将x 的系数化为正的.4.易忽略对隐含条件的挖掘,扩大角的范围导致错误.考点三角函数的定义域、值域(最值)典例示法典例1 (1)2016·合肥一模]函数y =lg (2sin x -1)+1-2cos x 的定义域是________.解析] 由题意,得⎩⎪⎨⎪⎧2sin x -1>0,1-2cos x ≥0,即⎩⎪⎨⎪⎧sin x >12,cos x ≤12,首先作出sin x =12与cos x =12表示的角的终边(如图所示).由图可知劣弧和优弧的公共部分对应角的范围是⎣⎢⎡2k π+π3,2k π+⎭⎪⎫5π6(k ∈Z ). 所以函数的定义域为⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6(k ∈Z ).答案] ⎣⎢⎡⎭⎪⎫2k π+π3,2k π+5π6(k ∈Z ) (2)已知函数f (x )=-2sin ⎝⎛⎭⎪⎫2x +π4+6sin x cos x -2cos 2x +1,x ∈R .①求f (x )的最小正周期;②求f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. 解] ①f (x )=-sin2x -cos2x +3sin2x -cos2x =2sin2x -2cos2x =22sin ⎝ ⎛⎭⎪⎫2x -π4.所以f (x )的最小正周期T =2π2=π. ②由①知f (x )=22sin ⎝ ⎛⎭⎪⎫2x -π4.因为x ∈⎣⎢⎡⎦⎥⎤0,π2, 所以2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,则sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1.所以f (x )在⎣⎢⎡⎦⎥⎤0,π2上最大值为22,最小值为-2.1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.三角函数值域(最值)的三种求法 (1)直接法:利用sin x ,cos x 的值域.(2)化一法:化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(最值).(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题.针对训练2015·天津高考]已知函数f (x )=sin 2x -sin 2⎝ ⎛⎭⎪⎫x -π6,x ∈R . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最大值和最小值.解 (1)由已知,有f (x )=1-cos2x 2-1-cos ⎝⎛⎭⎪⎫2x -π32=12⎝ ⎛⎭⎪⎫12cos2x +32sin2x -12cos2x=34sin2x -14cos2x =12sin ⎝ ⎛⎭⎪⎫2x -π6.所以,f (x )的最小正周期T =2π2=π.(2)解法一:因为f (x )在区间⎣⎢⎡⎦⎥⎤-π3,-π6上是减函数,在区间⎣⎢⎡⎦⎥⎤-π6,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π3=-14,f ⎝ ⎛⎭⎪⎫-π6=-12,f ⎝ ⎛⎭⎪⎫π4=34.所以,f (x )在区间-π3,π4]上的最大值为34,最小值为-12.解法二:由x ∈⎣⎢⎡⎦⎥⎤-π3,π4得2x -π6∈⎣⎢⎡⎦⎥⎤-5π6,π3,故当2x -π6=-π2,x =-π6时,f (x )取得最小值为-12,当2x -π6=π3,x =π4时,f (x )取最大值为34.考点三角函数的性质典例示法典例2 2015·山东枣庄质检]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6+sin ⎝⎛⎭⎪⎫ωx -π6-2cos 2ωx2,x ∈R (其中ω>0).(1)求函数f (x )的值域;(2)若函数f (x )的图象与直线y =-1的两个相邻交点间的距离为π2,求函数f (x )的单调递增区间.解] (1)f (x )=32sin ωx +12cos ωx +32sin ωx -12cos ωx -(cos ωx +1)=2⎝ ⎛⎭⎪⎫32sin ωx -12cos ωx -1 =2sin ⎝ ⎛⎭⎪⎫ωx -π6-1 由-1≤sin ⎝ ⎛⎭⎪⎫ωx -π6≤1,得-3≤2sin ⎝ ⎛⎭⎪⎫ωx -π6-1≤1, 所以函数f (x )的值域为-3,1].(2)由题设条件及三角函数的图象和性质可知, f (x )的周期为π,所以2πω=π,即ω=2. 所以f (x )=2sin ⎝⎛⎭⎪⎫2x -π6-1,再由2k π-π2≤2x -π6≤2k π+π2(k ∈Z ), 解得k π-π6≤x ≤k π+π3(k ∈Z ).所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3 (k ∈Z ).1.求解函数y =A sin(ωx +φ)的性质问题的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式.(2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入求解.①令ωx +φ=k π+π2(k ∈Z ),可求得对称轴方程. ②令ωx +φ=k π(k ∈Z ),可求得对称中心的横坐标.③将ωx +φ看作整体,可求得y =A sin(ωx +φ)的单调区间,注意ω的符号.(3)讨论意识:当A 为参数时,求最值应分情况讨论A >0,A <0. 2.求解三角函数的性质的三种方法 (1)求单调区间的两种方法①代换法:求形如y =A sin(ωx +φ)(或y =A cos(ωx +φ))(A ,ω,φ为常数,A ≠0,ω>0)的单调区间时,令ωx +φ=z ,则y =A sin z (或y =A cos z ),然后由复合函数的单调性求得.②图象法:画出三角函数的图象,结合图象求其单调区间. (2)判断对称中心与对称轴:利用函数y =A sin(ωx +φ)的对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点这一性质,通过检验f (x 0)的值进行判断.(3)三角函数周期的求法 ①利用周期定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 针对训练1.2015·湖南高考]已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.答案 π2解析 由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎪⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝ ⎛⎭⎪⎫2π2ω2+(22)2,ω=π2. 2.2014·北京高考]设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.答案 π解析 由f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=-f ⎝ ⎛⎭⎪⎫π6知,f (x )有对称中心⎝ ⎛⎭⎪⎫π3,0,由f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫23π知f (x )有对称轴x =12(π2+23π)=712π.记f (x )的最小正周期为T ,则12T ≥π2-π6,即T ≥23π.故712π-π3=π4=T4,解得T =π.考点三角函数的图象及应用典例示法题型1 利用图象求y =A sin(ωx +φ)的解析式典例3 函数f (x )=2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2的部分图象如图所示,则ω,φ的值分别是( )A .2,-π3 B .2,-π6 C .4,-π6D .4,π3解析] 从图中读出此函数的周期情况为34T =34·2πω=5π12-⎝ ⎛⎭⎪⎫-π3=3π4,所以ω=2.又读出图中最高点坐标为⎝ ⎛⎭⎪⎫5π12,2,代入解析式f (x )=2sin(2x +φ),得到2=2sin ⎝ ⎛⎭⎪⎫2×5π12+φ,所以2×5π12+φ=2k π+π2(k ∈Z ),则φ=2k π-π3.因为-π2<φ<π2,所以令k =0,得到φ=-π3,故选A. 答案] A题型2 函数y =A sin(ωx +φ)的图象变换典例4 2015·山东高考]要得到函数y =sin ⎝⎛⎭⎪⎫4x -π3的图象,只需将函数y =sin4x 的图象( )A .向左平移π12个单位 B .向右平移π12个单位 C .向左平移π3个单位D .向右平移π3个单位解析] 因为y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin ⎣⎢⎡⎦⎥⎤4⎝ ⎛⎭⎪⎫x -π12,所以只需将y =sin4x的图象向右平移π12个单位,即可得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图象,故选B.答案] B题型3 函数y =A sin(ωx +φ)的图象和性质的综合应用 典例5 2016·太原一模]已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期是π,若将其图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称解析] ∵f (x )的最小正周期为π,∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=sin ⎝ ⎛⎭⎪⎫2x -2π3+φ的图象,又g (x )的图象关于原点对称,∴-2π3+φ=k π,k ∈Z ,φ=2π3+k π,k ∈Z ,又|φ|<π2,∴⎪⎪⎪⎪⎪⎪2π3+k π<π2,∴k =-1,φ=-π3,∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3,当x =π12时,2x -π3=-π6,∴A ,C 错误,当x =5π12时,2x -π3=π2,∴B 正确,D 错误.答案] B本例中条件不变,若平移后得到的图象关于y 轴对称,则f (x )的图象又关于谁对称?( )答案 D解析 g (x )的图象关于y 轴对称,则-2π3+φ=π2+k π,k ∈Z ,可求φ=π6,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,2x +π6=k π,可得x =k π2-π12,令k =1,则x =5π12,故选D.1.函数表达式y =A sin(ωx +φ)+B 的确定方法2.三角函数图象平移问题处理策略(1)看平移要求:首先要看题目要求由哪个函数平移得到哪个函数,这是判断移动方向的关键点.(2)看移动方向:移动的方向一般记为“正向左,负向右”,看y =A sin(ωx +φ)中φ的正负和它的平移要求.(3)看移动单位:在函数y =A sin(ωx +φ)中,周期变换和相位变换都是沿x 轴方向的,所以ω和φ之间有一定的关系,φ是初相,再经过ω的压缩,最后移动的单位是⎪⎪⎪⎪⎪⎪φω.3.研究三角函数图象与性质的常用方法(1)求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在定义域内,先化简三角函数式,尽量化为y =A sin(ωx +φ)的形式,然后再求解.(2)对于形如y =a sin ωx +b cos ωx 型的三角函数,要通过引入辅助角化为y =a 2+b 2sin(ωx +φ)⎝⎛cos φ=a a 2+b 2,⎭⎪⎫sin φ=b a 2+b 2的形式来求.全国卷高考真题调研]1.2016·全国卷Ⅱ]若将函数y =2sin2x 的图象向左平移π12个单位长度,则平移后图象的对称轴为( )A .x =k π2-π6(k ∈Z ) B .x =k π2+π6(k ∈Z ) C .x =k π2-π12(k ∈Z ) D .x =k π2+π12(k ∈Z )答案 B解析 函数y =2sin2x 的图象向左平移π12个单位长度,得到的图象对应的函数表达式为y =2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x +π12,令2⎝⎛⎭⎪⎫x +π12=k π+π2(k ∈Z ),解得x =k π2+π6(k ∈Z ),所以所求对称轴的方程为x =k π2+π6(k ∈Z ),故选B.2.2015·全国卷Ⅰ]函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A.⎝ ⎛⎭⎪⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈ZC.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z答案 D解析 由图象可知ω4+φ=π2+2m π,5ω4+φ=3π2+2m π,m ∈Z ,所以ω=π,φ=π4+2m π,m ∈Z ,所以函数f (x )=cos ⎝⎛⎭⎪⎫πx +π4+2m π=cos ⎝ ⎛⎭⎪⎫πx +π4的单调递减区间为2k π<πx +π4<2k π+π,k ∈Z ,即2k -14<x <2k +34,k ∈Z ,故选D.其它省市高考题借鉴]3.2016·北京高考]将函数y =sin ⎝ ⎛⎭⎪⎫2x -π3图象上的点P ⎝ ⎛⎭⎪⎫π4,t 向左平移s (s >0)个单位长度得到点P ′.若P ′位于函数y =sin2x 的图象上,则( )A .t =12,s 的最小值为π6 B .t =32,s 的最小值为π6 C .t =12,s 的最小值为π3 D .t =32,s 的最小值为π3 答案 A解析 因为点P ⎝ ⎛⎭⎪⎫π4,t 在函数y =sin ⎝ ⎛⎭⎪⎫2x -π3的图象上,所以t =sin ⎝ ⎛⎭⎪⎫2×π4-π3=sin π6=12.又P ′⎝ ⎛⎭⎪⎫π4-s ,12在函数y =sin2x 的图象上,所以12=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π4-s ,则2⎝ ⎛⎭⎪⎫π4-s =2k π+π6或2⎝ ⎛⎭⎪⎫π4-s =2k π+5π6,k ∈Z ,得s =-k π+π6或s =-k π-π6,k ∈Z .又s >0,故s 的最小值为π6.故选A.4.2015·陕西高考]如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+k .据此函数可知,这段时间水深(单位:m)的最大值为( )A .5B .6C .8D .10答案 C解析 由题图可知-3+k =2,k =5,y =3sin ⎝ ⎛⎭⎪⎫π6x +φ+5,∴y max=3+5=8.5.2015·湖南高考]将函数f (x )=sin2x 的图象向右平移φ⎝ ⎛⎭⎪⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( )A.5π12B.π3C.π4D.π6答案 D解析 由已知得g (x )=sin(2x -2φ),满足|f (x 1)-g (x 2)|=2,不妨设此时y =f (x )和y =g (x )分别取得最大值与最小值,又|x 1-x 2|min =π3,令2x 1=π2,2x 2-2φ=-π2,此时|x 1-x 2|=⎪⎪⎪⎪⎪⎪π2-φ=π3,又0<φ<π2,故φ=π6,选D.6.2015·湖北高考]某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y =g (x )图象的一个对称中心为⎝ ⎛⎭⎪⎫5π12,0,求θ的最小值.解 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表: 且函数表达式为f (x )=5sin ⎝⎛⎭⎪⎫2x -π6.(2)由(1)知f (x )=5sin ⎝ ⎛⎭⎪⎫2x -π6,得g (x )=5sin ⎝ ⎛⎭⎪⎫2x +2θ-π6.因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝ ⎛⎭⎪⎫5π12,0成中心对称,令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z .由θ>0可知,当k =1时,θ取得最小值π6.一、选择题1.2016·贵阳监测]下列函数中,以π2为最小正周期的奇函数是( )A .y =sin2x +cos2xB .y =sin ⎝ ⎛⎭⎪⎫4x +π2C .y =sin2x cos2xD .y =sin 22x -cos 22x答案 C解析 A 中,y =sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π4,为非奇非偶函数,故A 错;B 中,y =sin ⎝⎛⎭⎪⎫4x +π2=cos4x ,为偶函数,故B 错;C 中,y=sin2x cos2x =12sin4x ,最小正周期为π2且为奇函数,故C 正确;D 中,y =sin 22x -cos 22x =-cos4x ,为偶函数,故D 错,选C.2.2016·唐山统考]将函数y =3cos2x -sin2x 的图象向右平移π3个单位长度,所得图象对应的函数为g (x ),则g (x )=( )A .2sin2xB .-2sin2xC .2cos ⎝ ⎛⎭⎪⎫2x -π6D .2sin ⎝ ⎛⎭⎪⎫2x -π6答案 A解析 因为y =3cos2x -sin2x =2sin ⎝⎛⎭⎪⎫π3-2x =-2sin ( 2x -π3 ),将其图象向右平移π3个单位长度得到g (x )=-2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3-π3=-2sin(2x -π)=2sin2x 的图象,所以选A.3.2016·武昌调研]已知函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +π6-1(ω>0)的图象向右平移2π3个单位后与原图象重合,则ω的最小值是( )A .3 B.32 C.43 D.23答案 A解析 将f (x )的图象向右平移2π3个单位后得到图象的函数解析式为2sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x -2π3+π6-1=2sin ⎝ ⎛⎭⎪⎫ωx -2ωπ3+π6-1,所以2ωπ3=2k π,k∈Z ,所以ω=3k ,k ∈Z ,因为ω>0,k ∈Z ,所以ω的最小值为3,故选A.4.2016·沈阳质检]某函数部分图象如图所示,它的函数解析式可能是( )A .y =sin ⎝ ⎛⎭⎪⎫-56x +3π5B .y =sin ⎝ ⎛⎭⎪⎫65x -2π5C .y =sin ⎝⎛⎭⎪⎫65x +3π5D .y =-cos ⎝⎛⎭⎪⎫56x +3π5答案 C解析 不妨令该函数解析式为y =A sin(ωx +φ)(ω>0),由图知A =1,T 4=3π4-π3=5π12,于是2πω=5π3,即ω=65,π3是函数的图象递减时经过的零点,于是65×π3+φ=2k π+π,k ∈Z ,所以φ可以是3π5,选C.5.2016·广州模拟]已知sin φ=35,且φ∈⎝ ⎛⎭⎪⎫π2,π,函数f (x )=sin(ωx +φ)(ω>0)的图象的相邻两条对称轴之间的距离等于π2,则f ⎝ ⎛⎭⎪⎫π4的值为( )A .-35 B .-45 C.35 D.45答案 B解析 由函数f (x )=sin(ωx +φ)的图象的相邻两条对称轴之间的距离等于π2,得到其最小正周期为π,所以ω=2,f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫2×π4+φ=cos φ=-1-sin 2φ=-45.6.2016·重庆测试]设x 0为函数f (x )=sinπx 的零点,且满足|x 0|+f ⎝⎛⎭⎪⎫x 0+12<33,则这样的零点有( )A .61个B .63个C .65个D .67个答案 C解析 依题意,由f (x 0)=sinπx 0=0得,πx 0=k π,k ∈Z ,x 0=k ,k ∈Z .当k 是奇数时,f ⎝ ⎛⎭⎪⎫x 0+12=sin ⎣⎢⎡⎦⎥⎤π⎝ ⎛⎭⎪⎫k +12=sin ⎝ ⎛⎭⎪⎫k π+π2=-1,|x 0|+f ⎝ ⎛⎭⎪⎫x 0+12=|k |-1<33,|k |<34,满足这样条件的奇数k 共有34个;当k 是偶数时,f ⎝⎛⎭⎪⎫x 0+12=sin ⎣⎢⎡⎦⎥⎤π⎝⎛⎭⎪⎫k +12=sin ⎝⎛⎭⎪⎫k π+π2=1,|x 0|+f ⎝⎛⎭⎪⎫x 0+12=|k |+1<33,|k |<32,满足这样条件的偶数k 共有31个.综上所述,满足题意的零点共有34+31=65个,选C.二、填空题7.函数f (x )=sin(ωx +φ)(x ∈R )⎝⎛⎭⎪⎫ω>0,|φ|<π2的部分图象如图所示,如果x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=________.答案 32解析 由题图可知,T 2=π3-⎝ ⎛⎭⎪⎫-π6=π2,则T =π,ω=2,又∵-π6+π32=π12,∴f (x )的图象过点⎝ ⎛⎭⎪⎫π12,1,即sin ⎝ ⎛⎭⎪⎫2×π12+φ=1,得φ=π3,∴f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 而x 1+x 2=-π6+π3=π6,∴f (x 1+x 2)=f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫2×π6+π3=sin 2π3=32.8.2016·贵阳监测]为得到函数y =sin ⎝ ⎛⎭⎪⎫x +π3的图象,可将函数y=sin x 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则|m -n |的最小值是________.答案 2π3解析 由题意可知,m =π3+2k 1π,k 1为非负整数,n =-π3+2k 2π,k 2为正整数,∴|m -n |=⎪⎪⎪⎪⎪⎪2π3+2(k 1-k 2)π,∴当k 1=k 2时,|m -n |min =2π3.9.2016·湖南岳阳质检]已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4的图象向左平移π6个单位后与函数g (x )=sin ⎝ ⎛⎭⎪⎫ωx +π6的图象重合,则正数ω的最小值为________.答案 232解析 将f (x )=sin ⎝⎛⎭⎪⎫ωx +π4的图象向左平移π6个单位后,得到函数f 1(x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6+π4的图象.又f 1(x )=sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π6+π4的图象与g (x )=sin ( ωx +π6 )的图象重合,故ωx +π6ω+π4=2k π+ωx +π6,k ∈Z .所以ω=12k -12(k ∈Z ).又ω>0,故当k =1时,ω取得最小值,为12-12=232.三、解答题10.2014·山东高考]已知向量a =(m ,cos2x ),b =(sin2x ,n ),函数f (x )=a ·b ,且y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解 (1)由题意知f (x )=a ·b =m sin2x +n cos2x .因为y =f (x )的图象过点⎝ ⎛⎭⎪⎫π12,3和⎝ ⎛⎭⎪⎫2π3,-2, 所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得⎩⎪⎨⎪⎧m =3,n =1.(2)由(1)知f (x )=3sin2x +cos2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2), 由题意知x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得sin ⎝ ⎛⎭⎪⎫2φ+π6=1, 因为0<φ<π,所以φ=π6, 因此g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z , 所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z. 11.2016·天津五区县调考]已知函数f (x )=3sin x cos x -cos 2x +12(x∈R ).(1)求函数f (x )的单调递增区间;(2)函数f (x )的图象上所有点的横坐标扩大到原来的2倍,再向右平移π6个单位长度,得到g (x )的图象,求函数y =g (x )在x ∈0,π]上的最大值及最小值.解 (1)f (x )=3sin x cos x -cos 2x +12=32sin2x -12cos2x =sin ⎝⎛⎭⎪⎫2x -π6由2k π-π2≤2x -π6≤2k π+π2得k π-π6≤x ≤k π+π3(k ∈Z ), 所以函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)函数f (x )的图象上所有点的横坐标扩大到原来的2倍,再向右平移π6个单位,得g (x )=sin ⎝ ⎛⎭⎪⎫x -π3, 因为x ∈0,π]得:x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以sin ⎝ ⎛⎭⎪⎫x -π3∈⎣⎢⎡⎦⎥⎤-32,1所以当x =0时,g (x )=sin ⎝ ⎛⎭⎪⎫x -π3有最小值-32, 当x =5π6时,g (x )=sin ⎝⎛⎭⎪⎫x -π3有最大值1.12.2016·福建质检]已知函数f (x )=sin x cos x +12cos2x . (1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解 (1)因为tan θ=2,所以f (θ)=sin θcos θ+12cos2θ=sin θcos θ+12(2cos 2θ-1)=sin θcos θ+cos 2θ-12=sin θcos θ+cos 2θsin 2θ+cos 2θ-12=tan θ+1tan 2θ+1-12=110.(2)由已知得f (x )=12sin2x +12cos2x =22sin ⎝ ⎛⎭⎪⎫2x +π4.依题意,得g (x )=22sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π4+π4,即g (x )=22sin ⎝⎛⎭⎪⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎪⎫-π4,2m -π4.又因为g (x )在区间(0,m )内是单调函数,所以2m -π4≤π2,即m ≤3π8,故实数m 的最大值为3π8.。

2017年高考数学倒计时三周冲刺策略(无例题)

2017年高考数学倒计时三周冲刺策略(无例题)

2017年高考数学倒计时两周冲刺策略一、数学试题的特点数学试题有填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)、选择题(本大题共有4题,满分20分,每题5分)解答题(本大题共有5题,满分76分).解答下列各题必须在答题纸的相应位置写出必要的步骤.17.本题满分14分,第1小题满分6分,第2小题满分8分;18.本题满分14分,第1小题满分6分,第2小题满分8分;19.本题满分14分,第1小题满分6分,第2小题满分8分;20.本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分;21.本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分.高考数学试卷中,代数占65%左右,几何占35%左右,试题的分值与课时数匹配。

试题有考查知识点的掌握,数学思想和方法的掌握,有对数学能力的考查。

试题考查:数学基础知识与基本技能、逻辑推理能力、运算能力、空间想象能力、数学应用与探究能力——详见《2017年上海卷考试手册》P11~13。

数学素养的考查:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析。

试题分为容易题、中档题、难题,三种题型的比例为3:5:2=45:75:30,做好容易题和中档题,总分有120,而多年来全市数学均分90多分。

最佳难度系数0.65,均分约为97.5。

二、学习策略1、容易题特点:容易题一般考查知识点的掌握情况,考查的知识点比较单一,考查的知识点不会很多,很少把知识点与数学思想方法结合在一起考,如果结合也是简单的、明显的。

对策:掌握《考试手册》中所涉及到的知识点,打开课本逐条落实,这也是查漏补缺必须做的。

可以做一些小的练习,这些练习难度不大,时间在半小时左右,对于小练习错误的题目,认真订正及时小结。

对于数学的方法要掌握具体内容和操作点。

比如换元法、数形结合、分类讨论、等价转化都要掌握好。

一般容易题所涉及到的数学方法都是明显的、简单的,题目本身涉及到的数学法都是想让答题者知道的。

金版教程2017高考数学文二轮复习第三编考前冲刺攻略第二步高考题型大突破第三讲10大模板规范解答题3

金版教程2017高考数学文二轮复习第三编考前冲刺攻略第二步高考题型大突破第三讲10大模板规范解答题3

题型特点
首先,解答题应答时不仅要得出最后的结论,还要写出 解答过程的主要步骤,给出合情合理的说明;其次,解答题 的内涵丰富,考点相对较多,综合性强,区分度高,难度较 大.
解题策略 (1)常见失分原因及应对办法: ①对题意缺乏正确的理解,应做到慢审题、快做题; ②公式记忆不牢,一定要熟记公式、定理、性质等;
又 0<A<π,∴sinA>0,从而 sinC=cosC.
又 cosC≠0,∴tanC=1.又 C∈(0,π),则 C=π4.
(2)
由 (1) 知

B = 34
π
-A

B

π 4
=π

A,

3 sinA -
cosB+π4= 3sinA-cos(π-A)= 3sinA+cosA=2sinA+π6. 因为 0<A<34π,则π6<A+π6<1112π.
b,c,且满足 csinA=acosC.
(1)求角 C 的大小;
(2)求 3sinA-cosB+π4的最大值,并求取得最大值时角 A,B 的大小;
(3)若 a2+c2-b2=ac,且 c=2.求△ABC 的面积.
解 (1)∵csinA=acosC,由正弦定理,得 sinCsinA=
sinAcosC.
①缺步解答; ②跳步解答; ③辅助解答; ④退步解答. 总之,解解答题的基本原则是“步步为营”.
模板一 三角函数的图象与性质 例1 [2016·山东淄博实验中学模拟]已知函数 f(x)= 2sinωxcosωx+2 3sin2ωx- 3(ω>0)的最小正周期为 π. (1)求函数 f(x)的单调递增区间;
所以 f(x)=2sin2x-π3, 令 2kπ-π2≤2x-π3≤2kπ+π2,k∈Z, 得 kπ-1π2≤x≤kπ+51π2,k∈Z, 所以函数 f(x)的单调递增区间是kπ-1π2,kπ+51π2,k∈Z.

【金版学案】高考数学(文)二轮专题复习课件:考前增分策略 专题三 解答题的解题方法与技巧(共43张PPT)


Z 重点 方法 讲 解
思路点 (1)设过 C(-1,0)的直线方程 y=k(x +拨1),:利用待定系数法求 k.
(2)从假设存在点 M(m,0)出发,求M→A·M→B.
若能找到一个 m 值使M→A·M→B为常数,即假设正
确,否则不正确.
Z 重点 方法 讲 解
【解题模版】 解 (1)依题意,直线 AB 的斜率存在,设直线 AB 的
Z 重点 方法 讲 解
(3)从 10 名女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢 足球的各 1 名,其一切可能的结果组成的基本事件为:(A1,B1,C1), (A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1, B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2, C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2), (A3,B2,C1),(A3,B3,C2),(A3,B2,C2),(A3,B3,C1),基本事 件总数为 18. 用 M 表示“B1,C1 不全被选中”这一事件,则其对立事件 M 表示 “B1,C1 全被选中”. ∵M 由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)3 个基本事件组 成,
Z
重点
方法
讲 解
【名师心语】
(1)本题综合考查直线方程、 直线与椭圆的位置关系等基础知 识,考查探索问题以及分析解决 问题的能力.
(2)本题常见的错误是:解题 不严谨不完整,如第(1)题中忽视
Z 重点 方法 讲 解
题型6 函数的单调性、极值与最值问 题
Z 重点 方法 讲 解
解题模板
解 (1)由题设知 f(x)=211+cos2x+π6 .

金版教程高考数学文二轮复习课件:2-4-3 解答题的解题程序模板


(1)由正弦定理得sinC sinB=sinB cosC,
又sinB≠0,所以sinC=cosC,C=45° . 因为bcosC=3,所以b=3 2.
(2)若△ABC的面积为

21 ,求c. 2
1 21 (2)因为△ABC的面积S= acsinB= ,csinB=3, 2 2
所以a=7. 又c2=a2+b2-2abcosC=25,所以c=5.
模板一 例1
三角函数 MOBAN
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(1)求角C的大小;
解 (1)∵csinA=acosC,由正弦定理,得sinCsinA=sinAcosC.
又0<A<π,∴sinA>0,从而sinC=cosC. π 又cosC≠0,∴tanC=1.又C∈(0,π),则C= . 4
构建解题程序 第一步:弄清折叠前后两图的变化与不变的量. 第二步:明确线 MN 与面 ABC 平行的条件,线线垂直的判定. 第三步:转化锥体的顶点与底面. 批阅笔记 1.立体几何中折叠问题要注意,折叠前后异同;通过数数形结合、转化与化归思想. 2.常见错误:(1)折叠前后关系判断错误.(2)计算错误.(3)空间立体感不强.
解 (3)由a2+c2-b2=ac及余弦定理,得 a2+c2-b2 ac 1 cosB= = = . 2ac 2ac 2 3 π 又0<B< π,因此B= . 4 3 5π A=π-(B+C)= . 12 又c=2,csinA=acosC.从而2sin 即 2× 5 π π=acos , 12 4
6+ 2 2 = a,∴a= 3+1. 4 2
第一步:运用正弦定理,将边化为角的关系,进而由角的范围及 tanC=1,求角C.

2017高考数学提分的全攻略

2017 年高考数学提分的全攻略在高考二轮复习不一样阶段复习策略也是不一样的:第一阶段:怎么做:看课本,仔细的看课本,掌握每一个公式定理。

怎么掌握呢,去认识它的推理过程,最后做到自己可以推出这个公式,别认为这一项没用,要知道 10 、11 年的题都考到了公式证明。

做课本的例题,课本的例题的思路比较简单,其知识点也是单一不会交织的,假如课本上的例题你取出来都会做了,说明你已经具备了必定的理解力。

做课后练习题,前方的题是和课本例题一个级其余,假如课本上全部的题都会做了,那么基础夯实可以告一段落。

第二阶段:是进行专题训练的阶段。

高中数学,大概是区分为三角函数、立体几何、数列、统计、导数和圆锥曲线这么些部分的(若有遗漏,纯属我忘了)。

我记得在经过了基础知识的夯实过后,我的三角函数基本是不用再复习了,立体几何因为不用计算二面角以后,也失掉了它的战略意义,统计呢,因为文数貌似是没有摆列组合的,也比较简单,所以重心就放在了其余几个专题上边。

专题怎么练呢,我的方法是学习指导书上给的小技巧,仔细研究例题,而后先试试自己重做例题(必定要理解认识题过程和原理再去做),再做指导书上专题章节后边的题。

抓住每一分,高考才能得高分审题分数学考试假如是因为审题不明是会以致大家丢分的,原来会做的题目,但是假如是因为审题犯错了,可能会以致丢分。

那么怎么防范丢分状况呢:1.划出要点词考试中紧张情绪难以防范,但是为了防范你紧张到忘掉了看过的题目条件,在审题时把题目中的已知条件、未知条件等要点词用笔画出,帮助回看题目时一下就找到要点词,节约时间也防范犯错。

2.速度要慢常常有考生还没看清楚题目就下笔计算,这样的失分必定要防范。

所以考生在考试时需要尽量平复紧张情绪,踏扎实实一字一句地读题,看清每一个字,要牢记“磨刀不误砍柴工”。

二轮复习中连忙养成这个习惯,审题时轻轻地划出要点条件,别放过任何一处蜘丝马迹。

运算分在高考数学中,整张试卷都表现对考生计算能力的观察。

全国新课标2017年高考数学大二轮复习第三编考前冲刺攻略第三步应试技能专训一客观题专练文

第三步 应试技能专训 一、客观题专练(一)一、选择题1.设U =R ,集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪x -1x -2>0,B ={x ∈R |0<x <2},则(∁U A )∩B =( ) A .(1,2] B .[1,2) C .(1,2) D .[1,2]答案 B解析 依题意得∁U A ={x |1≤x ≤2},(∁U A )∩B ={x |1≤x <2}=[1,2),选B. 2.设z =1+i(i 是虚数单位),则2z-z =( )A .iB .2-iC .1-iD .0答案 D解析 因为2z -z =21+i -1+i =2 1-i1+i 1-i -1+i =1-i -1+i =0,故选D.3.[2016·沈阳监测]下列函数中,在其定义域内是增函数而且又是奇函数的是( ) A .y =2x B .y =2|x |C .y =2x-2-xD .y =2x +2-x答案 C解析 A 虽为增函数却是非奇非偶函数,B 、D 是偶函数,对于选项C ,由奇偶函数的定义可知是奇函数,由复合函数单调性可知在其定义域内是增函数(或y ′=2xln 2+2-xln 2>0),故选C.4.已知数列{a n }是公差为3的等差数列,且a 1,a 2,a 5成等比数列,则a 10等于( ) A .14 B.532 C.572 D .32答案 C解析 由题意可得a 22=a 1·a 5,即(a 1+3)2=a 1(a 1+4×3),解之得a 1=32,故a 10=32+(10-1)×3=572,故选C.5.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -1≤0,3x -y +1≥0,x -y -1≤0,则z =2x +y 的最大值为( )A .1B .2C .3D .4答案 B解析 画出可行域得知,当直线y =z -2x 过点(1,0)时,z 取得最大值2. 6. 已知函数f (x )的图象如图所示,则f (x )的解析式可能是( )A .f (x )=e1-x 2B .f (x )=e x 2-1C .f (x )=e x 2-1D .f (x )=ln (x 2-1) 答案 A解析 A 中,令f (x )=e u,u =1-x 2,易知当x <0时,u 为增函数,当x >0时,u 为减函数,所以当x <0时,f (x )为增函数,当x >0时,f (x )为减函数,故A 可能是;B 、C 中同理可知,当x <0时,f (x )为减函数,当x >0时,f (x )为增函数,故B 、C 不是;D 中,当x =0时,无意义,故D 不是,选A.7.已知函数f (x )=A sin(ωx +φ)的图象如图所示,则该函数的解析式可能是( )A .f (x )=34sin ⎝ ⎛⎭⎪⎫32x +π6B .f (x )=45sin ⎝ ⎛⎭⎪⎫45x +15C .f (x )=45sin ⎝ ⎛⎭⎪⎫56x +π6D .f (x )=45sin ⎝ ⎛⎭⎪⎫23x -15答案 B解析 由图可以判断|A |<1,T >2π,则|ω|<1,f (0)>0,f (π)>0,f (2π)<0,只有选项B 满足上述条件.8.已知一个算法的程序框图如图所示,当输出的结果为0时,输入的x 值为( )A .-2B .-2或-1C .1或-3D .-2或13答案 D解析 当x ≤0时,由y =⎝ ⎛⎭⎪⎫12x-4=0得x =-2;当x >0时,由y =log 3x +1=0得x =13.第三编/第三步 应试技能专训金版教程|大二轮·文数9. 高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的( )A.34B.14C.12D.38 答案 C解析 由侧视图、俯视图知该几何体是高为2、底面积为12×2×(2+4)=6的四棱锥,其体积为4.易知直三棱柱的体积为8,则该几何体的体积是原直三棱柱的体积的48=12,故选C.10.[2016·贵阳监测]已知双曲线x 2a 2-y 2b2=1(a >0,b >0)与函数y =x 的图象交于点P ,若函数y =x 的图象在点P 处的切线过双曲线左焦点F (-2,0),则双曲线的离心率是( )A.5+12 B. 2 C.3+12D.32答案 B解析 设P (x 0,x 0),因为函数y =x 的导数为y ′=12x ,所以切线的斜率为12x 0.又切线过双曲线的左焦点F (-2,0),所以12x 0=x 0x 0+2,解得x 0=2,所以P (2,2).因为点P在双曲线上,所以4a 2-2b2=1 ①.又c 2=22=a 2+b 2②,联立①②解得a =2或a =22(舍),所以e =ca=22=2,故选B.11.[2016·山西四校联考]在正三棱锥S -ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =22,则正三棱锥S -ABC 的外接球的表面积为( )A .6πB .12πC .32πD .36π答案 B解析 如图,取CB 的中点N ,连接MN ,AN ,则MN ∥SB .由于AM ⊥SB ,所以AM ⊥MN .由正三棱锥的性质易知SB ⊥AC ,结合AM ⊥SB 知SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC .又正三棱锥的三个侧面是全等的三角形,所以SA ⊥SC ,所以正三棱锥S -ABC 为正方体的一个角,所以正三棱锥S -ABC 的外接球即为正方体的外接球.由AB =22,得SA =SB =SC =2,所以正方体的体对角线为23,所以所求外接球的半径R =3,其表面积为4πR 2=12π,故选B.12.[2016·商丘二模]设函数f (x )的导函数为f ′(x ),对任意x ∈R 都有f (x )>f ′(x )成立,则( )A .3f (ln 2)<2f (ln 3)B .3f (ln 2)=2f (ln 3)C .3f (ln 2)>2f (ln 3)D .3f (ln 2)与2f (ln 3)的大小不确定 答案 C解析 构造新函数g (x )=f xex,则求导函数得:g ′(x )=f ′ x -f xex,因为对任意x ∈R ,都有f (x )>f ′(x ),所以g ′(x )<0,即g (x )在实数域上单调递减,所以g (ln 2)>g (ln 3),即f ln 2 eln 2>f ln 3eln 3,解得3f (ln 2)>2f (ln 3),故本题正确答案为C.二、填空题13.若向量a ,b 满足:|a |=1,|b |=2,(a -b )⊥a ,则a ,b 的夹角是________. 答案π3解析 依题意得(a -b )·a =0,即a 2-a ·b =0,1-2cos 〈a ,b 〉=0,cos 〈a ,b 〉=12;又〈a ,b 〉∈[0,π],因此〈a ,b 〉=π3,即向量a ,b 的夹角为π3.14.若不等式x 2+y 2≤2所表示的平面区域为M ,不等式组⎩⎪⎨⎪⎧x -y ≥0,x +y ≥0,y ≥2x -6表示的平面区域为N ,现随机向区域N 内抛一粒豆子,则豆子落在区域M 内的概率为________.答案π24解析 作出不等式组与不等式表示的可行域如图所示,平面区域N 的面积为12×3×(6+2)=12,区域M 在区域N 内的面积为14π(2)2=π2,故所求概率P =π212=π24.15.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,b cos C +c cos B =3R (R 为△ABC 外接圆半径)且a =2,b +c =4,则△ABC 的面积为________.答案3解析 因为b cos C +c cos B =3R , 得2sin B cos C +2sin C cos B =3, sin(B +C )=32,即sin A =32. 由余弦定理得:a 2=b 2+c 2-2bc cos A , 即4=b 2+c 2-bc ,∴4=(b +c )2-3bc , ∵b +c =4,∴bc =4,∴S △ABC =12bc sin A = 3.16.存在实数φ,使得圆面x 2+y 2≤4恰好覆盖函数y =sin ⎝ ⎛⎭⎪⎫πkx +φ图象的最高或最低点共三个,则正数k 的取值范围是________.答案 ⎝⎛⎦⎥⎤32,3 解析 当函数y =sin ⎝ ⎛⎭⎪⎫πk x +φ的图象取到最高或最低点时,πk x +φ=π2+n π(n ∈Z )⇒x =k 2+kn -kπφ(n ∈Z ),由圆面x 2+y 2≤4覆盖最高或最低点,可知-3≤x ≤3,再令-3≤k 2+kn -k πφ≤3,得-3k +φπ-12≤n ≤3k +φπ-12,分析题意可知存在实数φ,使得不等式-3k +φπ-12≤n ≤3k +φπ-12的整数解有且只有3个,∴2≤3k +φπ-12-⎝ ⎛⎭⎪⎫-3k +φπ-12<4⇒32<k ≤3,即实数k 的取值范围是⎝ ⎛⎦⎥⎤32,3.(二) 一、选择题1.在复平面内,复数21-i+2i2对应的点位于( ) A.第一象限B.第二象限C.第三象限D.第四象限答案 B解析21-i+2i2=-1+i,故选B.2.已知集合A={x|-2≤x≤3},B={x|x2+2x-8>0},则A∪B=( )A.(-∞,-4)∪[-2,+∞)B.(2,3]C.(-∞,3]∪(4,+∞)D.[-2,2)答案 A解析因为B={x|x>2或x<-4},所以A∪B={x|x<-4或x≥-2},故选A.3.设x,y∈R,则“x≥1且y≥1”是“x2+y2≥2”的( )A.既不充分又不必要条件 B.必要不充分条件C.充要条件 D.充分不必要条件答案 D解析当x≥1,y≥1时,x2≥1,y2≥1,所以x2+y2≥2;而当x=-2,y=-4时,x2+y2≥2仍成立,所以“x≥1且y≥1”是“x2+y2≥2”的充分不必要条件,故选D.4.据我国西部各省(区,市)2013年人均地区生产总值(单位:千元)绘制的频率分布直方图如图所示,则人均地区生产总值在区间[28,38)上的频率是( )A.0.3 B.0.4C.0.5 D.0.7答案 A解析 依题意,由题图可估计人均地区生产总值在区间[28,38)上的频率是1-(0.08+0.06)×5=0.3,选A.5. 如图,在三棱锥P -ABC 中,不能证明AP ⊥BC 的条件是( )A .AP ⊥PB ,AP ⊥PC B .AP ⊥PB ,BC ⊥PBC .平面BPC ⊥平面APC ,BC ⊥PCD .AP ⊥平面PBC 答案 B解析 A 中,因为AP ⊥PB ,AP ⊥PC ,PB ∩PC =P ,所以AP ⊥平面PBC ,又BC ⊂平面PBC ,所以AP ⊥BC ,故A 正确;C 中,因为平面BPC ⊥平面APC ,BC ⊥PC ,所以BC ⊥平面APC ,AP ⊂平面APC ,所以AP ⊥BC ,故C 正确;D 中,由A 知D 正确;B 中条件不能判断出AP ⊥BC ,故选B.6.执行如下程序框图,则输出结果为( )A .2B .3C .4D .5答案 C解析 依次执行框图中的语句:n =1,S =0,T =20;T =10,S =1,n =2;T =5,S =3,n =3;T =52,S =6,n =4,跳出循环,输出的n =4,故选C.7.已知α∈⎝ ⎛⎭⎪⎫π4,π2,tan ⎝ ⎛⎭⎪⎫2α+π4=17,那么sin2α+cos2α的值为( ) A .-15B.75 C .-75D.34答案 A解析 由tan ⎝⎛⎭⎪⎫2α+π4=17,知tan2α+11-tan2α=17, ∴tan2α=-34.∵2α∈⎝ ⎛⎭⎪⎫π2,π,∴sin2α=35,cos2α=-45. ∴sin2α+cos2α=-15,故选A.8.甲、乙两个几何体的正视图和侧视图相同,俯视图不同,如图所示,记甲的体积为V甲,乙的体积为V 乙,则( )A .V 甲<V 乙B .V 甲=V 乙C .V 甲>V 乙D .V 甲、V 乙大小不能确定答案 C解析 由三视图知,甲几何体是一个以俯视图为底面的四棱锥,乙几何体是在甲几何体的基础上去掉一个角,即去掉一个三个面是直角三角形的三棱锥后得到的一个三棱锥,所以V 甲>V 乙,故选C.9.[2016·江西南昌调研]设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是方程x 2+x +c =0的两个实根,且0≤c ≤18,则这两条直线之间的距离的最大值和最小值分别是( )A.22,12B.2,22C.2,12D.24,14答案 A解析 因为a ,b 是方程x 2+x +c =0的两个实根,所以ab =c ,a +b =-1.又直线x +y +a =0,x +y +b =0的距离d =|a -b |2,所以d 2=⎝ ⎛⎭⎪⎫|a -b |22=a +b 2-4ab 2= -1 2-4c 2=12-2c ,因为0≤c ≤18,所以12-2×18≤12-2c ≤12-2×0,得14≤12-2c ≤12,所以12≤d ≤22,故选A.10.[2016·郑州质检]已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈⎣⎢⎡⎦⎥⎤12,1,∃x 2∈[2,3],使得f (x 1)≥g (x 2),则实数a 的取值范围是( )A .a ≤1B .a ≥1C .a ≤2D .a ≥2答案 A解析 由题意知f (x )min ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,1≥g (x )min (x ∈[2,3]),因为f (x )min =5,g (x )min =4+a ,所以5≥4+a ,即a ≤1,故选A.11.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F (-c,0)关于直线bx +cy =0的对称点P 在椭圆上,则椭圆的离心率是( )A.24B.34C.33D.22答案 D解析 设焦点F (-c,0)关于直线bx +cy =0的对称点为P (m ,n ),则⎩⎪⎨⎪⎧n m +c ·⎝ ⎛⎭⎪⎫-b c =-1,b ·m -c 2+c ·n2=0,所以⎩⎪⎨⎪⎧n m +c =c b,bm -bc +nc =0,所以m =b 2c -c 3b 2+c 2= a 2-2c 2 c a 2=(1-2e 2)c , n =c 2b +bc 2b 2+c 2=2bc 2a2=2be 2.因为点P (m ,n )在椭圆上,所以 1-2e 22c 2a 2+4b 2e 4b2=1,即(1-2e 2)2e 2+4e 4=1,即4e 6+e 2-1=0,将各选项代入知e =22符合,故选D. 12.[2016·武昌调研]已知函数f (x )=sin x -x cos x .现有下列结论: ①∀x ∈[0,π],f (x )≥0;②若0<x 1<x 2<π,则x 1x 2<sin x 1sin x 2;③若a <sin x x <b ,对∀x ∈⎝ ⎛⎭⎪⎫0,π2恒成立,则a 的最大值为2π,b 的最小值为1.其中正确结论的个数为( ) A .0B .1C.2 D.3答案 D解析因为f′(x)=cos x-cos x+x sin x=x sin x,当x∈[0,π]时,f′(x)≥0,故f(x)在[0,π]上是增函数,所以f(x)≥f(0)=0,所以①正确;令g(x)=sin xx,则g′(x)=x cos x-sin xx2,由①知,当x∈(0,π)时,g′(x)≤0,所以g(x)在[0,π]上是减函数,所以sin x1x1>sin x2x2,即x1x2<sin x1sin x2,所以②正确;当x>0时,“sin xx>a”等价于“sin x-ax>0”,令g(x)=sin x-cx,则g′(x)=cos x-c,当c≤0时,g(x)>0对x∈⎝⎛⎭⎪⎫0,π2恒成立;当c≥1时,因为对∀x∈⎝⎛⎭⎪⎫0,π2.g′(x)=cos x-c<0,所以g(x)在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减,从而,g(x)<g(0)=0对∀x∈⎝⎛⎭⎪⎫0,π2恒成立;当0<c<1时,存在唯一的x0∈⎝⎛⎭⎪⎫0,π2使得g′(x0)=cos x0-c=0成立,若x∈(0,x0)时,g(x0)>0,g(x)在(0,x0)上单调递增,且g(x)>g(0)=0;若x∈⎝⎛⎭⎪⎫x0,π2时,g′(x0)<0,g(x)在⎝⎛⎭⎪⎫x0,π2上单调递减,要使g(x)=sin x-cx>0在⎝⎛⎭⎪⎫0,π2上恒成立,必须使g⎝⎛⎭⎪⎫π2=sinπ2-π2c=1-π2c≥0恒成立,即0<c≤2π.综上所述,当c≤2π时,g(x)>0对∀x∈⎝⎛⎭⎪⎫0,π2恒成立;当c≥1时,g(x)<0,对∀x∈⎝⎛⎭⎪⎫0,π2恒成立,所以若a<sin xx<b对∀x∈⎝⎛⎭⎪⎫0,π2上恒成立,则a的最大值为2π,b的最小值为1,所以③正确,故选D.二、填空题13.从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为________.答案482解析 由题意可知,系统抽样的每组元素个数为32-7=25个,共20个组,故样本中最大的编号应该为500-25+7=482.14.[2016·辽宁五校联考]抛物线x 2=12y 在第一象限内图象上一点(a i,2a 2i )处的切线与x轴交点的横坐标记为a i +1,其中i ∈N *,若a 2=32,则a 2+a 4+a 6等于________.答案 42解析 令y =f (x )=2x 2,则切线斜率k =f ′(a i )=4a i ,切线方程为y -2a 2i =4a i (x -a i ),令y =0得x =a i +1=12a i ,由a 2=32得a 4=8,a 6=2,所以a 2+a 4+a 6=42.15.已知a ,b 是正数,且满足2<a +2b <4,那么a 2+b 2的取值范围是________.答案 ⎝ ⎛⎭⎪⎫45,16 解析 作出不等式表示的平面区域,如图阴影部分所示(不包括边界),O 到直线a +2b =2的距离d =25,|OB |=4,显然d 2<a 2+b 2<|OB |2,即45<a 2+b 2<16.16.[2016·湖南长郡模拟] 如图,在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,且a 2=b 2+c 2+bc ,a =3,S 为△ABC 的面积,圆O 是△ABC 的外接圆,P 是圆O 上一动点,当S +3cos B cos C 取得最大值时,PA →·PB →的最大值为________.答案3+32解析 本题考查余弦定理、正弦定理、平面向量的运算.在△ABC 中,由a 2=b 2+c 2+bc得b 2+c 2-a 2=-bc ,则cos A =b 2+c 2-a 22bc =-12,所以sin A =32,则由正弦定理得△ABC 的外接圆的半径为r =12×a sin A =12×332=1,则b =2r sin B =2sin B ,c =2r sin C =2sin C ,所以S +3cos B cos C =12bc sin A +3cos B cos C =34×2sin B ×2sin C +3cos B cos C =3cos(B -C ),则当B =C =π6时,S +3cos B cos C 取得最大值.以O 为原点,OA 所在的直线为y 轴,过O 点垂直于OA 的直线为x 轴建立平面直角坐标系,则A (0,1),B ⎝ ⎛⎭⎪⎫-32,12,设P (cos θ,sin θ),则PA →·PB →=(-cos θ,1-sin θ)·⎝ ⎛⎭⎪⎫-32-cos θ,12-sin θ=32cos θ+cos 2θ+12-32sin θ+sin 2θ=3sin ⎝ ⎛⎭⎪⎫π6-θ+32,所以当sin ⎝⎛⎭⎪⎫π6-θ=1时,PA →·PB →取得最大值3+32. (三)一、选择题1.设全集U =R ,A ={x |x (x -2)<0},B ={x |1-x >0},则A ∩(∁U B )等于( ) A .{x |x ≥1} B .{x |1≤x <2} C .{x |0<x ≤1} D .{x |x ≤1}答案 B解析 由题意可得A =(0,2),B =(-∞,1),则A ∩(∁U B )=[1,2). 2.已知实数a ,b 满足(a +i)(1-i)=3+b i ,则复数a +b i 的模为( ) A. 2 B .2 C. 5 D .5答案 C解析 依题意,(a +i)-(a +i)i =3+b i ,因此⎩⎪⎨⎪⎧a +1=3,1-a =b ,解得a =2,b =-1,所以a +b i =2-i ,|a +b i|=|2-i|=22+ -1 2=5,选C.3.下列函数为奇函数的是( ) A .y =x 3+3x 2B .y =e x +e-x2C .y =x sin xD .y =log 23-x3+x答案 D解析 依题意,对于选项A ,注意到当x =-1时,y =2;当x =1时,y =4,因此函数y=x 3+3x 2不是奇函数.对于选项B ,注意到当x =0时,y =1≠0,因此函数y =e x +e-x2不是奇函数.对于选项C ,注意到当x =-π2时,y =π2;当x =π2时,y =π2,因此函数y =x sin x不是奇函数.对于选项D ,由3-x 3+x >0得-3<x <3,即函数y =log 23-x3+x 的定义域是(-3,3),该数集是关于原点对称的集合,且log 23- -x 3+ -x +log 23-x3+x=log 21=0,即有log 23- -x 3+ -x =-log 23-x 3+x ,因此函数y =log 23-x3+x是奇函数.综上所述,选D.4.设M 为平行四边形ABCD 对角线的交点,O 为平行四边形ABCD 所在平面内的任意一点,则OA →+OB →+OC →+OD →等于( )A.OM → B .2OM → C .3OM → D .4OM →答案 D解析 因为M 是平行四边形ABCD 对角线AC 、BD 的交点,所以OA →+OC →=2OM →,OB →+OD →=2OM →,所以OA →+OB →+OC →+OD →=4OM →,故选D.5.若双曲线C 1:x 22-y 28=1与C 2:x 2a 2-y 2b2=1(a >0,b >0)的渐近线相同,且双曲线C 2的焦距为45,则b =( )A .2B .4C .6D .8答案 B解析 由题意得,b a=2⇒b =2a ,C 2的焦距2c =45⇒c =a 2+b 2=25⇒b =4,故选B. 6.运行下面的程序,如果输出的S =20142015,那么判断框内是( )A .k ≤2013?B .k ≤2014?C .k ≥2013?D .k ≥2014?答案 B解析 当判断框内是k ≤n ?时,S =11×2+12×3+…+1n × n +1 =1-1n +1,若S =20142015,则n =2014. 7.[2016·郑州质检]将函数f (x )=sin ⎝⎛⎭⎪⎫2x -π2的图象向右平移π4个单位后得到函数g (x )的图象,则g (x )具有性质( )A .最大值为1,图象关于直线x =π2对称B .在⎝ ⎛⎭⎪⎫0,π4上单调递减,为奇函数C .在⎝ ⎛⎭⎪⎫-3π8,π8上单调递增,为偶函数D .周期为π,图象关于点⎝ ⎛⎭⎪⎫3π8,0对称答案 B解析 由题意得,g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π4-π2=sin(2x -π)=-sin2x ,对于A ,最大值为1正确,而g ⎝ ⎛⎭⎪⎫π2=0,图象不关于直线x =π2对称,故A 错误;对于B ,当x ∈⎝⎛⎭⎪⎫0,π4时,2x ∈⎝⎛⎭⎪⎫0,π2,满足单调递减,显然g (x )也是奇函数,故B 正确;C 显然错误;对于D ,周期T =2π2=π,g ⎝ ⎛⎭⎪⎫3π8=-22,故图象不关于点⎝ ⎛⎭⎪⎫3π8,0对称,故选B. 8.[2016·重庆测试]某几何体的三视图如图所示,则该几何体的体积为( )A.332 B .23 C.532D .3 3答案 C解析 依题意,如图所示,题中的几何体是从正三棱柱ABC -A 1B 1C 1中截去一个三棱锥B -A 1B 1E (其中点E 是B 1C 1的中点)后剩余的部分,其中正三棱柱ABC -A 1B 1C 1的底面是一个边长为2的正三角形、高为3,因此该几何体的体积为⎝ ⎛⎭⎪⎫34×22×3-13×⎝ ⎛⎭⎪⎫12×34×22×3=532,选C.9.[2016·福建质检]若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为( )A.5-12 B.33 C.22D.63答案 D解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),根据椭圆与正方形的对称性,可画出满足题意的图象,如图所示,因为|OB |=a ,所以|OA |=22a ,所以点A 的坐标为⎝ ⎛⎭⎪⎫a 2,a 2,又点A 在椭圆上,所以a 24a 2+a 24b2=1,所以a 2=3b 2,所以a 2=3(a 2-c 2),所以3c 2=2a 2,所以椭圆的离心率e =c a =63,故选D.10.[2016·河南八市质检]已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a x -3 ,若z =3x +2y 的最小值为1,则a =( )A.14 B.12 C.34 D .1答案 B解析 根据约束条件画出可行域,将z =3x +2y 的最小值转化为在y 轴上的截距,当直线z =3x +2y 经过点B 时,z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.11.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b =3a ,C =π6,S △ABC=3sin 2A ,则S △ABC =( )A.34B.32C. 3 D .2答案 A解析 解法一:由b =3a ,C =π6,得S △ABC =12ab sin C =12a ·3a ·12=34a 2,又S △ABC =3sin 2A ,则a 24=sin 2A ,故a 2=sin A ,即a sin A =2,由a sin A =c sin C ,得csin C =2,所以c =2sin C=1,由余弦定理a 2+b 2-c 2=2ab cos C ,得a 2+3a 2-1=2·a ·3a ·32,整理得4a 2-1=3a 2,a 2=1,所以a =1,故S △ABC =34. 解法二:由余弦定理a 2+b 2-c 2=2ab cos C ,得a 2+(3a )2-c 2=2a ·3a ·cos π6,即a2=c 2,故a =c ,从而有A =C =π6,所以S △ABC =3sin 2A =3×sin 2π6=34,故选A.12.若P 为曲线y =ln x 上一动点,Q 为直线y =x +1上一动点,则|PQ |min 等于( ) A .0 B.22C. 2 D .2答案 C解析 如图所示,直线l 与y =ln x 相切且与y =x +1平行时,切点P 到直线y =x +1的距离|PQ |即为所求最小值.(ln x )′=1x ,令1x=1,得x =1.故P (1,0).故|PQ |min =22= 2.二、填空题13.[2015·广东高考]已知样本数据x 1,x 2,…,x n 的均值x =5,则样本数据2x 1+1,2x 2+1,…,2x n +1的均值为________.答案 11解析 由条件知x =x 1+x 2+…+x nn=5,则所求均值x 0=2x 1+1+2x 2+1+…+2x n +1n=2 x 1+x 2+…+x n +nn=2x +1=2×5+1=11.14.已知{a n }为等差数列,公差为1,且a 5是a 3与a 11的等比中项,S n 是{a n }的前n 项和,则S 12的值为________.答案 54解析 由题意得,a 25=a 3a 11,即(a 1+4)2=(a 1+2)(a 1+10),a 1=-1,∴S 12=12×(-1)+12×112×1=54. 15.设函数f (x )在[1,+∞)上为增函数,f (3)=0,且g (x )=f (x +1)为偶函数,则不等式g (2-2x )<0的解集为________.答案 (0,2)解析 依题意得f (-x +1)=f (x +1),因此f (x )的图象关于直线x =1对称.又f (x )在[1,+∞)上为增函数,因此f (x )在(-∞,1]上为减函数.又g (x )=f (x +1)为偶函数,因此g (x )在[0,+∞)上为增函数,在(-∞,0]上为减函数,且g (2)=f (2+1)=f (3)=0,g (-2)=0,不等式g (2-2x )<0,即g (|2-2x |)<g (2),所以|2-2x |<2,-2<2-2x <2,0<x <2,所以不等式g (2-2x )<0的解集是(0,2).16.[2016·陕西质检]已知曲线y =x +ln x 在点(1,1)处的切线为l ,若l 与曲线y =ax 2+(a +2)x +1相切,则a =________.答案 8解析 本题考查导数的几何意义、数形结合思想的应用.函数f (x )=x +ln x 的导函数为f ′(x )=1+1x ,则f ′(1)=1+11=2,所以切线l 的方程为y -1=2(x -1),即y =2x -1,因为直线l 与曲线y =ax 2+(a +2)x +1相切,所以方程ax 2+(a +2)x +1=2x -1,即ax 2+ax +2=0有两个相等的实数根,显然a ≠0,则Δ=a 2-4×2a =0,解得a =8.(四)一、选择题1.已知(z -1+3i)(2-i)=4+3i(其中i 是虚数单位,z 是z 的共轭复数),则z 的虚部为( )A .1B .-1C .iD .-i答案 A解析 因为z =4+3i 2-i +1-3i = 4+3i 2+i2-i 2+i +1-3i =1+2i +1-3i =2-i ,所以z =2+i ,z 的虚部为1,故选A.2.若集合A ={x |(x +1)(3-x )>0},集合B ={x |1-x >0},则A ∩B 等于( ) A .(1,3)B .(-∞,-1)C .(-1,3)D .(-1,1)答案 D解析 ∵A =(-1,3),B =(-∞,1),∴A ∩B =(-1,1).3. 一次数学考试后,某老师从自己所带的两个班级中各抽取5人,记录他们的考试成绩,得到如图所示的茎叶图.已知甲班5名同学成绩的平均数为81,乙班5名同学成绩的中位数为73,则x -y 的值为( )A .2B .-2C .3D .-3答案 D解析 由题意得,72+77+80+x +86+905=81⇒x =0,易知y =3,∴x -y =-3,故选D.4.已知l ,m ,n 为不同的直线,α,β,γ为不同的平面,则下列判断正确的是( ) A .若m ∥α,n ∥α,则m ∥n B .若m ⊥α,n ∥β,α⊥β,则m ⊥n C .若α∩β=l ,m ∥α,m ∥β,则m ∥lD .若α∩β=m ,α∩γ=n ,l ⊥m ,l ⊥n ,则l ⊥α 答案 C解析 A 项,m ,n 可能的位置关系为平行,相交,异面,故A 错误;B 项,根据面面垂直与线面平行的性质可知B 错误;C 项,根据线面平行的性质可知C 正确;D 项,若m ∥n ,根据线面垂直的判定可知D 错误,故选C.5.△ABC 的角A ,B ,C 所对的边分别是a ,b ,c ,若cos A =78,c -a =2,b =3,,则a=( )A .2 B.52 C .3 D.72答案 A解析 由余弦定理可知,a 2=b 2+c 2-2bc cos A ⇒a 2=9+(a +2)2-2×3×(a +2)×78⇒a=2,故选A.6.[2016·东北三省联考]如图,在正方体ABCD-A1B1C1D1中,P是线段CD的中点,则三棱锥P-A1B1A的侧视图为( )答案 D解析如图,画出原正方体的侧视图,显然对于三棱锥P-A1B1A,B(C)点均消失了,其余各点均在,从而其侧视图为D.7.[2016·合肥质检]执行下面的程序框图,则输出的n的值为( )A .10B .11C .1024D .2048答案 C解析 该程序框图共运行10次,S =1+2+22+…+210=2047,输出的n =210=1024,选项C 正确.8.[2016·河南六市一联]实数x ,y 满足⎩⎪⎨⎪⎧xy ≥0,|x +y |≤1,使z =ax +y 取得最大值的最优解有2个,则z 1=ax +y +1的最小值为( )A .0B .-2C .1D .-1答案 A解析 画出不等式组所表示的可行域如图中阴影部分所示,∵z =ax +y 取得最大值的最优解有2个,∴-a =1,a =-1,∴当x =1,y =0或x =0,y =-1时,z =ax +y =-x +y 有最小值-1,∴ax +y +1的最小值是0,故选A.9.已知a ,b 都是实数,命题p :a +b =2;命题q :直线x +y =0与圆(x -a )2+(y -b )2=2相切,则p 是q 的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由直线x +y =0与圆(x -a )2+(y -b )2=2相切,得|a +b |2=2,即a +b =±2,∴p 是q 的充分但不必要条件.10.[2016·山西质检]若函数f (x )=sin(2x +φ)⎝⎛⎭⎪⎫|φ|<π2的图象关于直线x =π12对称,且当x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,x 1≠x 2时,f (x 1)=f (x 2),则f (x 1+x 2)=( )A.12B.22C.32D .1答案 C解析 由题意得,2×π12+φ=π2+k π,k ∈Z ,∴φ=π3+k π,k ∈Z ,∵|φ|<π2,∴k =0,φ=π3,又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,∴2x 1+π3,2x 2+π3∈(0,π),∴2x 1+π3+2x 2+π32=π2,解得x 1+x 2=π6,∴f (x 1+x 2)=sin ⎝⎛⎭⎪⎫2×π6+π3=32,故选C.11.[2016·云南统检]已知双曲线M 的焦点F 1、F 2在x 轴上,直线7x +3y =0是双曲线M 的一条渐近线,点P 在双曲线M 上,且PF 1→·PF 2→=0,如果抛物线y 2=16x 的准线经过双曲线M 的一个焦点,那么|PF 1→|·|PF 2→|=( )A .21B .14C .7D .0答案 B解析 设双曲线方程为x 2a 2+y 2b2=1(a >0,b >0),∵直线7x +3y =0是双曲线M 的一条渐近线, ∴b a =73①,又抛物线的准线为x =-4,∴c =4②, 又a 2+b 2=c 2③, ∴由①②③得a =3.设点P 为双曲线右支上一点,∴由双曲线定义得||PF 1→|-|PF 2→||=6④,又PF 1→·PF 2→=0,∴PF 1→⊥PF 2→,∴在Rt △PF 1F 2中|PF 1→|2+|PF 2→|2=82⑤,联立④⑤,解得|PF 1→|·|PF 2→|=14.12.已知函数f (x )=2x+x ,g (x )=log 2x +x ,h (x )=log 2x -2的零点依次为a ,b ,c ,则( )A .a <b <cB .c <b <aC .c <a <bD .b <a <c答案 A解析 在同一平面直角坐标系中分别画出函数y =2x,y =-x ,y =log 2x 的图象,结合函数y =2x与y =-x 的图象可知其交点横坐标小于0,即a <0;结合函数y =log 2x 与y =-x 的图象可知其交点横坐标大于0且小于1,即0<b <1;令log 2x -2=0,得x =4,即c =4.因此有a <b <c ,选A.二、填空题13.已知向量a ,b 的夹角为3π4,|a |=2,|b |=2,则a ·(a -2b )=________.答案 6解析 a ·(a -2b )=a 2-2a ·b =2-2×2×2×⎝ ⎛⎭⎪⎫-22=6. 14.[2016·山西四校二联]抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 2-y 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 2 3解析 由题意可知,抛物线的焦点为F ⎝ ⎛⎭⎪⎫0,p 2,准线方程为y =-p 2,联立⎩⎪⎨⎪⎧y =-p 2,x 2-y 2=1,解得x =±1+p 24.∵△ABF 为等边三角形,∴p 2+x 2=2|x |,即p 2+⎝ ⎛⎭⎪⎫1+p 24=4⎝ ⎛⎭⎪⎫1+p 24,解得p =23或-23(舍去).15.[2016·海口调研]半径为2的球O 中有一内接正四棱柱(底面是正方形,侧棱垂直底面).当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是________.答案 16(π-2)解析 依题意,设球的内接正四棱柱的底面边长为a 、高为h ,则有16=2a 2+h 2≥22ah ,即4ah ≤162,该正四棱柱的侧面积S =4ah ≤162,当且仅当h =2a =22时取等号.因此,当该正四棱柱的侧面积最大时,球的表面积与该正四棱柱的侧面积之差是4π×22-162=16(π-2).16.已知数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),数列{b n }是等差数列,且b 1=a 1,b 4=a 1+a 2+a 3.设c n =1b n b n +1,数列{c n }的前n 项和为T n ,则T 10=________.答案1021解析 解法一:数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),∴当n =2时,a 1+a 2=2a 1+1,∴a 2=2,当n ≥3时,a n =S n -S n -1=2S n -1-2S n -2=2a n -1,又a 2=2a 1,∴a n =2a n -1(n ≥2,且n ∈N *),数列{a n }为首项为1,公比为2的等比数列,∴a n =2n -1,a 3=22=4.设数列{b n }的公差为d ,又b 1=a 1=1,b 4=1+3d =7,∴d =2,b n =1+(n -1)×2=2n -1,c n =1b n b n +1=1 2n -1 2n +1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T 10=12⎝ ⎛ 1-13+13-15+…+12×10-1-⎭⎪⎫12×10+1=12⎝ ⎛⎭⎪⎫1-121=1021.解法二:∵数列{a n }的首项a 1=1,前n 项和为S n ,且S n =2S n -1+1(n ≥2,且n ∈N *),∴当n =2时,a 1+a 2=2a 1+1,∴a 2=2,当n =3时,a 1+a 2+a 3=2a 1+2a 2+1,∴a 3=4.设数列{b n }的公差为d ,又b 1=a 1=1,b 4=1+3d =7,∴d =2,b n =1+(n -1)×2=2n -1,c n =1b n b n +1=1 2n -1 2n +1 =12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T 10=12⎝ ⎛⎭⎪⎫1-13+13-15+…+12×10-1-12×10+1=12⎝ ⎛⎭⎪⎫1-121=1021.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从而当 A+6π=2π,即 A=π3时, 2sinA+6π取最大值 2. 综上可知, 3sinA-cosB+π4的最大值为 2, 此时 A=π3,B=51π2. (3)由 a2+c2-b2=ac 及余弦定理,得 cosB=a2+2ca2c-b2=2aacc=12.
又 0<B<34π,因此 B=π3.
⑤不要轻易放弃试题,难题不会做,可分解成小问题, 分步解决,如将文字语言翻译成符号语言、设应用题未知数、 设轨迹的动点坐标等,也许随着这些小步骤的罗列,还能产 生解题的灵感.
(2)怎样才能分段给分: 对于同一道题目,有的人理解得深,有的人理解得浅; 有的人解决得多,有的人解决得少,为了区分这种情况,高 考的阅卷评分办法是懂多少知识就给多少分.这种方法我们 叫“分段评分”,或者“踩点给分”——踩上知识点就得 分,踩得多就多得分,与之对应的“分段得分”的基本精神 是会做的题目力求不失分,部分理解的题目力争多得分,分 段得分的方法有以下几种:
③解题步骤不规范,一定要按课本要求的步骤去解答, 否则会因不规范答题失分,应避免“对而不全”,如解概率 题,要给出适当的文字说明,不能只列几个式子或只给出单 纯的结论,表达不规范、字迹不工整等非智力因素会影响阅 卷老师的“感情分”;
④计算能力差、失分多,会做的一定不能放过,不能一 味求快,例如平面解析几何中的圆锥曲线问题就要求有较强 的运算能力;
①缺步解答; ②跳步解答; ③辅助解答; ④退步解答. 总之,解解答题的基本原则是“步步为营”.
模板一 三角函数的图象与性质 例1 [2016·山东淄博实验中学模拟]已知函数 f(x)= 2sinωxcosωx+2 3sin2ωx- 3(ω>0)的最小正周期为 π. (1)求函数 f(x)的单调递增区间;
批阅笔记 1.①本题第1问的关键为三角恒等变换及 整体的应用意识.
②第2问注意平移的相关应用,结合周期性求出结论. 2.本题易错点:①公式变换与平移变换不准确而得不出 正确的解析式造成错解. ②不能由一个周期内的零点个数转化到所给区间[0,b] 上.
模板二 三角变换与解三角形
例2
在△ABC 中,角 A,B,C 所对的边分别为 a,
又 0<A<π,∴sinA>0,从而 sinC=cosC.
又 cosC≠0,∴tanC=1.又 C∈(0,π),则 C=π4.
(2)
由 (1) 知

B = 34
π
-A

B

π 4
=π

A,

3 sinA -
cosB+π4= 3sinA-cos(π-A)= 3sinA+cosA=2sinA+π6. 因为 0<A<34π,则π6<A+π6<1112π.
b,c,且满足 csinA=acosC.
(1)求角 C 的大小;
(2)求 3sinA-cosB+π4的最大值,并求取得最大值时角 A,B 的大小;
(3)若 a2+c2-b2=ac,且 c=2.求△ABC 的面积.
解 (1)∵csinA=acosC,由正弦定理,得 sinCsinA=
sinAcosC.
编考前冲刺攻略
步题型大突破 讲 10大模板规范解答题
题型地位
解答题作为高考数学试卷的最后一道大题,通常有六道 题,分值为 70 分,约占总分的一半,其得分直接决定了高 考中数学的成败.如果说客观题是得分的基础,那么解答题 就是提高得分的保障,而且在每年的数学试卷中解答题的题 型具有延续性,因此在备考复习中要加强高考题型的针对性 训练.
令 g(x)=0, 得 x=kπ+172π或 x=kπ+1112π(k∈Z), 所以 y=g(x)在[0,π]上恰好有两个零点,若 y=g(x)在[0, b](b>0)上有 10 个零点,则 b 不小于第 10 个零点的横坐标, 即 b 的最小值为 4π+1112π=5192π.
审题视角 (1)利用恒等变换将 f(x)化为 y=Asin(ωx+φ) 的形式,再结合正弦函数的性质求解.(2)由平移得到 g(x) 的解析式,再通过解方程求出[0,π]上零点个数,结合周期 确定 b 的取值.
所以 f(x)=2sin2x-π3, 令 2kπ-π2≤2x-π3≤2kπ+π2,k∈Z, 得 kπ-1π2≤x≤kπ+51π2,k∈Z, 所以函数 f(x)的单调递增区间是kπ-1π2,kπ+51π2,k∈Z.
(2)将函数 f(x)的图象向左平移π6个单位,再向上平移 1 个单位,得到 y=2sin2x+1 的图象,所以 g(x)=2sin2x+1.
构建解题程序 第一步:运用三角恒等变换,将 fx化 成 y=Asinωx+φ的形式.
第二步:将 ωx+φ 视为一个整体,代入 y=sint 的单调 区间内求解 x 的范围.
第三步:结合函数图象的平移得出 gx的表达式. 第四步:通过解方程得出其一个周期内的零点个数,再 结合其周期性求出 b 的最小值.
(2)将函数 f(x)的图象向左平移π6个单位,再向上平移 1 个单位,得到函数 y=g(x)的图象.若 y=g(x)在[0,b](b>0) 上至少有 10 个零点,求 b 的最小值.
解 (1)f(x)=2sinωxcosωx+2 3sin2ωx- 3
=sin2ωx- 3cos2ωx
=2sin2ωx-π3, 由函数的最小正周期为 π,得 ω=1,
题型特点
首先,解答题应答时不仅要得出最后的结论,还要写出 解答过程的主要步骤,给出合情合理的说明;其次,解答题 的内涵丰富,考点相对较多,综合性强,区分度高,难度较 大.
解题策略 (1)常见失分原因及应对办法: ①对题意缺乏正确的理解,应做到慢审题、快做题; ②公式记忆不牢,一定要熟记公式、定理、性质等;
A=π-(B+C)=152π.
又 c=2,csinA=asinC.从而 2sin152π=asinπ4,
即 2×
6+ 4Biblioteka 2= 22a,∴a=3+1.
∴△ABC 的面积 S△ABC=12acsinB=3+2
3 .
审题视角 (1)由边化角,完成边角转化.(2)正、逆用两 角和的正、余弦公式,将 3sinA-cosB+4π化为正弦型函数, 根据三角函数性质,求角 A、B.(3)由余弦定理,求 B 进而求 A, 得到 S△ABC 的值.
相关文档
最新文档