排列组合题目

合集下载

排列组合题目收集

排列组合题目收集

排列组合题目整理1、要排一张有6个歌唱节目和4个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,有多少不同的排法?(只要求写出式子,不必计算)解析:先将6个歌唱节目排好,其不同的排法为种;这6个歌唱节目的空隙及两端共7个位置中再排4个舞蹈节目,有种排法。

由分步计数原理可知,任何两个舞蹈节目不得相邻的排法为种。

2、信号兵把红旗与白旗从上到下挂在旗杆上表示信号。

现有3面红旗、2面白旗,把这5面旗都挂上去,可表示不同信号的种数是__________(用数字作答)。

解析:5面旗全排列有种挂法,由于3面红旗与2面白旗的分别全排列均只能算作一次的挂法,故共有不同的信号种数是=10(种)。

在排列问题中限制某几个元素必须保持一定顺序称为定序问题。

这类问题用缩小倍数的方法求解比较方便快捷。

3、同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送来的贺年卡,则四张贺年卡的分配方式有()A. 6种B. 9种C. 11种D. 23种解析:此题可以看成是将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,且每个方格的标号与所填数不同的填法问题。

所以先将1填入2至4号的3个方格里有种填法;第二步把被填入方格的对应数字,填入其它3个方格,又有种填法;第三步将余下的两个数字填入余下的两格中,只有1种填法。

故共有3×3×1=9种填法,而选B。

4、有甲、乙、丙三项任务,甲需由2人承担,乙、丙各需由1人承担,从10人中选派4人承担这三项任务,不同的选法共有()种A. 1260B. 2025C. 2520D. 5040解析:先从10人中选出2人承担甲项任务,再从剩下8人中选1人承担乙项任务,最后从剩下7人中选1人承担丙项任务。

根据分步计数原理可知,不同的选法共有=2520种,故选C。

5、由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A. 210个B. 300个C. 464个D. 600个解析:按题意个位数只可能是0,1,2,3,4共5种情况,符合题意的分别有,个。

小学数学《排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)

小学数学《排列组合》练习题(含答案)1、计算①4356C A -;②2265C A ÷。

解答:①4356C A -=5432⨯⨯⨯-654321⨯⨯⨯⨯=120-20=100。

②2265C A ÷5465321⨯=⨯÷=⨯ 2、某班要从30名同学中选出3名同学参加数学竞赛,有多少种选法?如果从30名同学中选出3名同学站成一排,又有多少种站法?解答: 参加竞赛的选法:330302928321C ⨯⨯⨯⨯==4060种 站成一排的站法:330A =30×29×28=24360种参加竞赛的选法有4060种,站成一排的站法有24360种3、7个不同的小球放入4个不同的盒子中,每个盒子只能放一个,一共有多少种情况? 解答:47A =7654⨯⨯⨯=840(种)一共有840种不同的情况。

4、7个相同的小球放入4个不同的盒子中,每个盒子至少放一个,一共有多少种情况? 解答:1+1+1+0=3,1+2+0+0=3,3+0+0+0=3,分三种情况①选出一个盒子,不再放入球,其他三个盒子再各放入一个:14C ;②选出两个盒子,分别再放入一个球,两个球:24A③选出一个盒子,再放入三个球:14C总的放法:14C +24A +14C =20(种)5、从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?解答:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2、4、6、8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55A 种方法。

再由分步计数原理求总的个数。

325545A 7200C C ⨯⨯=(个) 一共能组成7200个没有重复数字的五位数。

6、在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法? 解答:437657A C C ⨯⨯=765000(种)有765000种排法。

排列组合题目精选(

排列组合题目精选(

排列组合题目精选(附答案)排列组合高考试题精选(二)1、,,,,A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的排法种数有()A、60种B、48种C、36种D、24种2、七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种B、3600种C、4820种D、4800种3、将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()A、6种B、9种C、11种D、23种4、将四封信投入5个信箱,共有多少种方法?5、12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有()6、6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()A、36种B、120种C、720种D、1440种7、8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?8、7人排成一排照相,若要求甲、乙、丙三人不相邻,有多少种不同的排法?9、10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?10、某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?11、由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种B、300种C、464种D、600种12、从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?13、从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?14、从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有()A、140种B、80种C、70种D、35种15、9名乒乓球运动员,其中男5名,女4名,现在要选出4人进行混合双打训练,有多少种不同的分组方法?16、以正方体的顶点为顶点的四面体共有()A、70种B、64种C、58种D、52种17、四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有()A、150种B、147种C、144种D、141种18、5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?19、设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20、三边长均为整数,最长边为8 的三角形有多少个?21、由1,2,3,4,5,6这六个数可组成多少个无重复且是6的倍数的五位数?22、7个节目,甲、乙、丙三个节目按给定顺序出现,有多少种排法?23、5名运动员争夺3个项目的冠军(没有并列),所以可能的结果有多少种?24、有3个男生,3个女生,排成一列,高矮互不相等。

三年级数学排列组合练习题

三年级数学排列组合练习题

三年级数学排列组合练习题一、填空题:1. 有几种不同的排列方式可以用1、2、3这3个数字组成一个3位的整数?答案:6种2. 用数字1、2、3、4、5组成不重复的2位数,共有几种可能?答案:20种3. 用数字1、2、3、4、5可以组成多少个互不相同的3位数?答案:60个4. 用数字1、2、3、4组成不重复的2位数,共有几种可能?答案:12种5. 用数字1、2、3、4可以组成多少个不同的3位数?答案:24个二、选择题:1. 从数字1、2、3、4中任选两个数字,将其排列组成2位数,其中有几个数与原数字相同?a) 0个b) 1个d) 3个答案:a) 0个2. 用数字1、2、3、4组成3位数,其中有几个数的十位数字为3?a) 0个b) 1个c) 2个d) 3个答案:a) 0个3. 从数字1、2、3、4中任选三个数字,将其排列组成3位数,其中有几个数与原数字相同?a) 0个b) 1个c) 2个d) 3个答案:a) 0个4. 用数字1、2、3、4组成3位数,其中有几个数的百位数字为4?a) 0个c) 2个d) 3个答案:d) 3个5. 从数字1、2、3、4中任选两个数字,将其排列组成2位数,其中有几个数的十位数字为2?a) 0个b) 1个c) 2个d) 3个答案:c) 2个三、解答题:1. 用数字1、2、3、4、5组成一个5位数,要求千位数字为3,个位数字为1,其他位可以任意排列,共有多少种可能?解答:千位数字为3,个位数字为1已经确定,剩下的3位数字可以从剩下的3个数字中选取,即从2、4、5中任选两个数字。

根据排列组合的原理,共有C(3,2) = 3 种选择。

所以共有3种可能。

2. 用数字1、2、3、4、5组成一个5位数,要求个位数字为3,其他位可以任意排列,共有多少种可能?解答:个位数字已经确定为3,剩下的4位数字可以任意排列。

根据排列组合的原理,共有4! = 24 种可能。

3. 用数字1、2、3、4组成一个4位数,要求千位数字为3,其他位可以任意排列,共有多少种可能?解答:千位数字已经确定为3,剩下的3位数字可以任意排列。

排列组合题目精选(解析版)

排列组合题目精选(解析版)

排列组合题目精选(解析版)1. A ,B ,C ,D ,E 五人并排站成一排,如果A ,B 必须相邻且B 在A 的右边,则不同的排法种数有 A . 60种 B . 48种 C . 36种 D . 24种 解析:选D 。

A 、B 相邻且顺序一定,可把A 、B 捆绑看成一个整体与其他三人全排列,一共有24A 44=种方法。

2. 七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A . 1440种B . 3600种C . 4820种D . 4800种解析:选B 。

7个人全排列,有77A 种方法,其中甲乙相邻时,甲乙交换位置,有22A 种方法,再与其他5人全排列,有6622A A 种方法。

则甲乙不相邻的排法种数为3600A A A 662277=-。

3. 将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A . 6种B . 9种C . 11种D . 23种解析:选B 。

先填数字1,有3种方法。

填数字2,有两种情况。

①填入方格1,有1种方法,剩下的3和4只有1种方法;②不填入1,有1种方法,剩下两个数字可以全排列。

有22A 种方法。

故由计数原理,一共有9)A 1(322=+种填法。

4. 将四封信投入5个信箱,共有多少种方法? 解析:分以下4种情况: (1)只投1个,有15C 种方法;(2)投2个,有25A 种投信方法。

分两种情况:①分为1+3式,有14C 种分法;②分为2+2式,有2224A C 种方法; (3)投3个,有221224A C C 种分法,35A 种投法; (4)投4个,有45A 种投法。

由计数原理,一共有625A A A C C )A C C (A C 45352212242224142515=++++种投信方法。

5. 12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有 种。

解析:填34650。

排列组合题目精选(附答案)

排列组合题目精选(附答案)

排列组合题目精选(附答案)1.A和B必须相邻且B在A的右边,剩下的C、D、E可以随意排列,因此排列方式为4.即24种。

选项D正确。

2.先计算所有可能的排列方式,即7.然后减去甲乙相邻的排列方式,即2×6.因此不同的排列方式为5×6.即3600种。

选项B正确。

3.第一个格子有4种选择,第二个格子有3种选择,第三个格子有2种选择,因此不同的填法有4×3×2=24种。

选项D 错误。

4.由于每封信可以投入5个信箱中的任意一个,因此总的投放方式为5的4次方,即625种。

5.对于每个路口,选择4名同学进行调查的方式有12选4种,因此总的分配方案为(12选4)的3次方,即154,440种。

6.第一排有6种选择,第二排有5种选择,第三排有4种选择,因此不同的排法有6×5×4=120种。

选项B正确。

7.首先从8个元素中选出2个排在前排,有8选2种选择方式。

然后从剩下的6个元素中选出1个排在后排,有6种选择方式。

最后将剩下的5个元素排在后排,有5!种排列方式。

因此不同的排法有8选2×6×5!=28×720=20,160种。

8.首先将甲、乙、丙三人排成一排,有3!种排列方式。

然后将其余4人插入到相邻的位置中,有4!种排列方式。

因此不同的排法有3!×4!=144种。

9.首先将10个名额排成一排,有10!种排列方式。

然后在9个间隔中插入6个分隔符,每个间隔至少插入一个分隔符,因此有8种插入方式。

因此不同的分配方案有10!÷(6×8)=21,000种。

10.首先将除了甲和乙的8个人排成一排,有8!种排列方式。

然后将甲和乙插入到相邻的位置中,有2种插入方式。

因此不同的派遣方案有8!×2=80,640种。

11.个位数字小于十位数字的六位数,可以从1、2、3、4、5中选出两个数字排列,有5选2种选择方式,即10种。

排列组合经典题型

排列组合经典题型

排 列 一、优先法例1(1)7位同学站成一排,共有多少种不同的排法?解:问题可以看作:7个元素的全排列77A =5040.(2)7位同学站成两排(前3后4),共有多少种不同的排法?解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法? 解:问题可以看作:余下的6个元素的全排列——66A =720.(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种? 解:根据分步计数原理:第一步 甲、乙站在两端有22A 种; 第二步 余下的5名同学进行全排列有55A 种,所以,共有22A 55A ⋅=240种排列方法(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有25A 种方法;第二步从余下的5位同学中选5位进行排列(全排列)有55A 种方法,所以一共有25A 55A =2400种排列方法解法2:(排除法)若甲站在排头有66A 种方法;若乙站在排尾有66A 种方法;若甲站在排头且乙站在排尾则有55A 种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有77A -662A +55A =2400种.说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑二、捆绑法:例2. 7位同学站成一排,(1)甲、乙两同学必须相邻的排法共有多少种?解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有66A 种方法;再将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有62621440A A ⋅=种(2)甲、乙和丙三个同学都相邻的排法共有多少种? 解:方法同上,一共有55A 33A =720种(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有25A 种方法;将剩下的4个元素进行全排列有44A 种方法;最后将甲、乙两个同学“松绑”进行排列有22A 种方法.所以这样的排法一共有25A 44A 22A =960种方法 解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有255A 种方法,所以,丙不能站在排头和排尾的排法有960)2(225566=⋅-A A A 种方法解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有14A 种方法,再将其余的5个元素进行全排列共有55A 种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有14A 55A 22A =960种方法. (4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:342342288A A A =(种)说明:对于相邻问题,常用“捆绑法”(先捆后松).三、插空法例3.7位同学站成一排,(1)甲、乙两同学不能相邻的排法共有多少种? 解法一:(排除法)3600226677=⋅-A A A ;解法二:(插空法)先将其余五个同学排好有55A 种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有26A 种方法,所以一共有36002655=A A 种方法.(2)甲、乙和丙三个同学都不能相邻的排法共有多少种? 解:先将其余四个同学排好有44A 种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有35A 种方法,所以一共有44A 35A =1440种.说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).四、倍除法5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列解:(1)先将男生排好,有55A 种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,(2)方法1:10510105530240A N A A ===;方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有510A 种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法故本题的结论为510130240NA =⨯=(种)强化练习1.(2007年天津卷)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答). 用2色涂格子有C 62×2=30种方法,用3色涂格子,第一步选色有C 63,第二步涂色,共有3×2(1×1+1×2)=18种, 所以涂色方法18×C 63=360种方法, 故总共有390种方法. 故答案为:3902.(2007年江苏卷)某校开设9门课程供学生选修,其中,,A B C 三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有 75 种不同选修方案。

排列组合131题+详解

排列组合131题+详解

1.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有()(A)90种(B)180种(C)270种(D)540种【解析】三名医生各自去一所学校,即对医生或者学校其中一个全排列即可,A33=6种护士是每所学校去2名,即2,2,2的分配,因此是C62*C42/A33,然后对医院全排列,即A33,所以护士是C62*C42(知识链接参考苹果分盘子问题)A33*C62*C42=5402.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为()(A)480 (B)240 (C)120 (D)96【解析】分配的方法是:1,1,1,2 根据从左往右法直接列式C52*A44=2403.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为() (先看29题)(A)90 (B)105 (C)109 (D)100【解析】至多有两个号码一致,要分情况考虑没有号码一致:即都不正确的方法是:44(全排错,对应元素有5个)只有一个号码一致:其他4个不正确的方法是:C51*9(全排错,对应元素有4个)只有两个号码一致:其他3个不正确的方法是:C52*2(全排错,对应元素有3个)44+C51*9+C52*2=1094.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是()。

(A)19 (B)20 (C)119 (D)60【解析】先对5个元素全排列,然后除去3个元素相同的情况,最后再减去正确的拼写方法一种即可A55/A33-1=195.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有()(A)6 种(B)5种(C)4种(D)3种【解析】33=11*3+4*033=10*3+3*1+2*033=9*3+6*1+0*03种6. 从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有()种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题经典题型与通用方法
解析版
1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有()
例1.,,,,
A、60种
B、48种
C、36种
D、24种
2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.
例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()
A、1440种
B、3600种
C、4820种
D、4800种
3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.
A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有例3.,,,,
()
A、24种
B、60种
C、90种
D、120种
4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.
例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有()
A、6种
B、9种
C、11种
D、23种
5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.
例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是()
A、1260种
B、2025种
C、2520种
D、5040种
6.全员分配问题分组法:
例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?7.名额分配问题隔板法:
例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?
8.限制条件的分配问题分类法:
例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.
例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()
A、210种
B、300种
C、464种
D、600种
10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式
()()()()
⋃=+-⋂
n A B n A n B n A B
例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?
11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?
12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。

例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是()
A、36种
B、120种
C、720种
D、1440种
.13.“至少”“至多”问题用间接排除法或分类法:
例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )
A 、140种
B 、80种
C 、70种
D 、35种
14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法. 例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?
15.部分合条件问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.
例15.(1)以正方体的顶点为顶点的四面体共有( )
A 、70种
B 、64种
C 、58种
D 、52种
.16.圆排问题单排法:把n 个不同元素放在圆周n 个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列n 个普通排列:
12323411,,,;,,,,,;,,,n n n n a a a a a a a a a a a -在圆排列中只算一种,因为旋转后可以重合,故认为相同,n 个元素的圆排列数有!n n
种.因此可将某个元素固定展成单排,其它的1n -元素全排列. 例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?
17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地n 个不同元素排在m 个不同位置的排列数有n m 种方法.
例17.把6名实习生分配到7个车间实习共有多少种不同方法?
18.复杂排列组合问题构造模型法:
例18.马路上有编号为1,2,3…,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?
19.元素个数较少的排列组合问题可以考虑枚举法:
例19.设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?
.
20.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.
例21.某城市的街区有12个全等的矩形组成,其中实线表示马路,从A 到B 的最短路径有多少种?。

相关文档
最新文档