立体几何大题训练及答案

合集下载

高三精选立体几何大题30题(含详细解答)

高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。

(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。

(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。

高中数学立体几何大题训练题含答案

高中数学立体几何大题训练题含答案

立几大题训练题一、解答题(共50题;共505分)1. ( 10分) 已知四棱锥S−ABCD中,四边形ABCD为梯形,∠BCD=∠ADC=∠SAD=90°,平面SAD⊥平面ABCD,E为线段AD的中点,AD=2BC=2CD.(1)证明:BD⊥平面SAB;(2)若SA=AD=2,求点E到平面SBD的距离.2. ( 10分) 如图,平面ABCD∩平面ABEF=AB,四边形ABCD和ABEF都是边长为2的正方形,点M,N分别是AF,AB的中点,二面角D−AB−F的大小为60°.(1)求证:MN//平面BCF;(2)求直线DE与平面BCF所成角的正弦值.3. ( 10分) 如图,四棱锥P-ABCD的底面是正方形,E为AB的中点,PD⊥CE,AE=1,PD=3,PC=√13(1)证明:AD⊥平面PCD.(2)求DA与平面PCE所成角的正弦值.4. ( 10分) 如图所示,直三棱柱ABC−A1B1C1的各棱长均相等,点E为AA1的中点.(1)证明:EB1⊥BC1;(2)求二面角C1−EB1−C的余弦值.AD,G是PB的中点,5. ( 10分) 已知在四棱锥P−ABCD中,AD//BC,AB=BC=CD=12ΔPAD是等边三角形,平面PAD⊥平面ABCD.(1)求证:CD⊥平面GAC;(2)求二面角P−AG−C的余弦值.6. ( 10分) 如图,多面体ABCE中,平面AEC⊥平面ABC,AC⊥BC,AE⊥CD四边形BCDE 为平行四边形.(1)证明:AE⊥EC;(2)若AE=EC=CB=√2,求二面角D−AC−E的余弦值.7. ( 10分) 如图,在三棱锥A−BCD中, △ABC是等边三角形, ∠BAD=∠BCD=90°,点P是AC 的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=√6,且二面角A−BD−C为120°,求直线AD与平面BCD所成角的正弦值.8. ( 10分) 如图,在四棱锥P−ABCD中,AP⊥平面PCD,AD//BC,AB⊥BC,AP=AB=AD,E为AD的中点,AC与BE相交于点O.BC=12(1)证明:PO⊥平面ABCD.(2)若OB=1,求点C到平面PAB的距离.9. ( 10分) 如图,在斜三棱柱ABC−A1B1C1中,平面ABC⊥平面A1ACC1,CC1=2,△ABC,△ACC1,均为正三角形,E为AB的中点.(1)证明: AC1//平面B1CE,(2)求直线AC1与平面B1BAA1所成角的正弦值.10. ( 10分) 如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,AP=PB,AP⊥PB,E为CP的中点.(1)求证:AP//平面BDE;(2)求点D到平面ACP的距离.11. ( 10分) 在三棱柱ABC−A1B1C1中,已知AB=AC=AA1=√5,BC=4,O为BC的中点,A1O⊥平面ABC(1)证明四边形BB1C1C为矩形;(2)求直线AA1与平面A1B1C所成角的余弦值.12. ( 10分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥平面ABCD,AE⊥PD.(1)证明:AE⊥平面PCD;(2)若AP=AB,求二面角B−PC−D的余弦值.13. ( 10分) 在直角梯形ABCD(如图1),∠ABC=90°,BC//AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B−ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.14. ( 15分) 如图,四棱锥S−ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.15. ( 10分) 已知菱形ABCD的边长为4, AC∩BD=O, ∠ABC=60°,将菱形ABCD沿对角线BD折起,使AC=a,得到三棱锥A−BCD,如图所示.⇒(1)当a=2√2时,求证: AO⊥平面BCD;(2)当二面角A−BD−C的大小为120°时,求直线AD与平面ABC所成的正切值.16. ( 10分) 在四棱锥P–ABCD中,AB//CD,CD=2AB.⇀=mAP⇀(m>0),且MN//平面PCD,求实数m的值;(1)设AC与BD相交于点M,AN(2)若AB=AD=DP,∠BAD=60°,PB=√2AD,且PD⊥AD,求二面角A−PC−B的余弦值.17. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明:EF⊥平面PAE;(2)若PA=AB=4,求点C到平面PEF的距离.18. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明EF⊥平面PAE;AB,求平面PAB与平面PEF所成二面角的正弦值.(2)若PA=5419. ( 10分) 如图(1),在平面五边形EADCB中,已知四边形ABCD为正方形,ΔEAB为正三角形.沿着AB将四边形ABCD折起得到四棱锥E−ABCD,使得平面ABCD⊥平面EAB,设F在线段AD上且满足DF=2AF,G在线段CF上且满足FG=CG,O为ΔECD的重心,如图(2).(1)求证:GO//平面ABE;(2)求直线CF与平面BCE所成角的正弦值.20. ( 10分) 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将ΔADE向上折起,使D点折到P点,且PC=PB.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.21. ( 10分) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=600,AB//DE,BC//EF,AB=BC=3,AF=2√3,BF=√15(1)求证:平面ABC⊥平面ACDF(2)求平面AEF与平面ACE所成的锐二面角的余弦值22. ( 10分) 已知四棱锥E−ABCD,AB=3,BC=4,CD=12,AD=13,cos∠ADC= 12,EC⊥平面ABCD.13(1)求证:平面ABE⊥平面EBC;(2)当CE=60时,求直线AC和平面ADE所成角的正弦值.23. ( 10分) 如图,在四棱锥P−ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:AC⊥平面PBC;,求直线PA与平面EAC所成角的正弦值.(2)若二面角P−AC−E的余弦值为√6324. ( 10分) 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D,C是AB的三等分点,E是F1F2的中点.分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1,F2重合于点F,得到如图2所示的几何体.在图2中,M,N分别为CD,EF的中点.(1)证明:MN⊥平面ABCD.(2)求直线CN与平面ABF所成角的正弦值.25. ( 15分) 如图,在四棱锥P一ABCD中,已知AB=BC=√5,AC=4,AD=DC=2√2,点Q为AC中点,PO⊥底面ABCD, PO=2,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且NQ//平面ADM,求线段OQ的长.26. ( 10分) 如图,已知ΔABC为等边三角形,ΔABD为等腰直角三角形,AB⊥BD,平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE//BD,BD=2CE.点F为AD中点,连接EF.(1)求证:EF//平面ABC;(2)求二面角C−AE−D的余弦值.27. ( 10分) 如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,AD//BC,AB⊥BC,ΔSAB 是等边三角形,侧面SAB⊥底面ABCD,AB=2√3,BC=3,AD=1,点M、点N分别在棱SB、棱CB上,BM=2MS,BN=2NC,点P是线段MN上的任意一点.(1)求证:AP//平面SCD;(2)求二面角S−CD−B的大小.28. ( 15分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别在棱PD,PC上,且PC⊥平面AMN.(1)求证:AM⊥PD;(2)求直线CD与平面AMN所成角的正弦值.(3)求二面角C−AM−N的余弦值29. ( 10分) 如图,四棱锥P−ABCD中, PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB= 60°, AB=2, AD=1.(1)求证: PA⊥BD;(2)若∠PCD=45°,求点D到平面PBC的距离ℎ.30. ( 10分) 在长方体ABCD−A1B1C1D1中,底面ABCD是边长为2的正方形,E是AB的中点,F是BC的中点.(1)求证:EF//平面A1DC1;(2)若AA1=2√3,求平面A1DC1与平面B1EF所成二面角的正弦值.31. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,且PD= CD=1,过棱PC的中点E,作EF⊥PB交PB于点F.(1)证明:PA//平面EDB;,求PA与面ABCD所成角的正弦值.(2)若面DEF与面ABCD所成二面角的大小为π332. ( 5分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D是AB的中点,BC=AC,AB=2DC=2√2,AA1=4.(Ⅰ)求证:BC1//平面A1CD;(Ⅱ)求平面BCC1B1与平面A1CD所成锐二面角的平面角的余弦值.33. ( 10分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,点D是AB的中点,BC= AC,AB=2DC=2,AA1=√3.(1)求证:平面A1DC⊥平面ABB1A1;(2)求点A到平面A1DC的距离.34. ( 10分) 如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.35. ( 10分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP= 4,AB=BC=2, M,N为线段PC,AD上一点不在端点.AD,求证:MN∥面PBA(1)当M为中点时,AN=14,若存在(2)当N为AD中点时,是否存在M,使得直线MN与平面PBC所成角的正弦值为2√55求出M的坐标,若不存在,说明理由.36. ( 10分) 如图,正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1的中点.(1)求 AD 1 与 DB 所成角的大小;(2)求 AE 与平面 ABCD 所成角的正弦值.37. ( 20分 ) 如图, E 是以 AB 为直径的半圆 O 上异于 A,B 的点,矩形 ABCD 所在的平面垂直于半圆 O 所在的平面,且 AB =2 , AD =3(1)求证:平面 EAD ⊥ 平面 EBC ;(2)若 EB ⌢ 的长度为 π3,求二面角 A −DE −C 的正弦值. 38. ( 5分 ) 如图1,在直角梯形 ABCD 中,AB ∥CD , AB ⊥AD ,且 AB =AD =12CD =1 .现以 为一边向梯形外作正方形 ADEF ,然后沿边 AD 将正方形 ADEF 翻折,使平面 ADEF 与平面 ABCD 垂直,如图2.(Ⅰ)求证:BC ⊥平面DBE ;(Ⅱ)求点D 到平面BEC 的距离.39. ( 10分 ) 如图,扇形 AOB 的半径为 2 ,圆心角 ∠AOB =120∘ ,点 C 为弧 AB 上一点, PO ⊥ 平面 AOB 且 PO =√5 ,点 M ∈PB 且 BM =2MP , PA ∥平面 MOC .(1)求证:平面MOC⊥平面POB;(2)求平面POA和平面MOC所成二面角的正弦值的大小.40. ( 10分) 如图,已知四边形ABCD为等腰梯形,BDEF为正方形,平面BDEF⊥平面ABCD,AD//BC,AD=AB=1,∠ABC=60°.(1)求证:平面CDE⊥平面BDEF;(2)点M为线段EF上一动点,求BD与平面BCM所成角正弦值的取值范围.41. ( 10分) 如图,在四棱锥P-ABCD中,AD=2√3,AB=3,AP=√3,AD//BC,AD⊥平面PAB,∠APB=90°,点E满足PE⇀=23PA⇀+13PB⇀.(1)证明:PE⊥DC;(2)求二面角A-PD-E的余弦值.42. ( 10分) 在斜三棱柱ABC−A1B1C1中,侧面AC1⊥平面ABC,AA1=√2a,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E−A1C1−A的大小为π.343. ( 10分) 如图,在四棱锥P−ABCD中,侧面PAD⊥底面ABCD,底面ABCD为梯形,AB//CD,=2.∠ABC=∠BCD=90°,BC=CD=AB2(1)证明: BD⊥PD;(2)若△PAD为正三角形,求二面角A−PB−C的余弦值.44. ( 10分) 如图,已知四棱锥P−ABCD的底面为直角梯形,∠ADC为直角,AP⊥平面ABCD,BC:AD:CD=5:4:2,且CD=1.(1)求证:BP⊥AC;(2)若AP=CD,求二面角D−PC−B的余弦值.45. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1, AM⊥PD于点M,连接BM.(1)求证:PD⊥BM;(2)求直线CD与平面ACM所成角的正弦值.BC=1,E是BC的中46. ( 10分) 如图所示1,已知四边形ABCD满足AD//BC,BA=AD=DC=12点.将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为CD的中点,如图所示2.(1)求证:EF⊥平面AB1E;(2)求AE到平面CB1D的距离.47. ( 10分) 如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.(1)求证:直线EF⊥平面PAC;(2)求平面MEF与平面PBC所成二面角的正弦值.48. ( 5分) 如图,三棱柱A1B1C1−ABC中,BB1⊥平面ABC,AB⊥BC,AB=2,BC= 1,BB1=3,D是CC1的中点,E是AB的中点.(Ⅰ)证明:DE//平面C1BA1;(Ⅱ)F是线段CC1上一点,且直线AF与平面ABB1A1所成角的正弦值为1,求二面角F−3BA1−A的余弦值.49. ( 5分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD, AD⊥CD,AD//BC,BC=4,PA= AD=CD=2,点E为PC的中点.(I) 证明:DE//平面PAB;(II)求直线PB与平面PCD所成角的正弦值.50. ( 10分) 如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2 , AC=PA=1,求直线PA与平面PBC所成角的正弦值.答案解析部分一、解答题1.【答案】(1)解:由题意知∠BCD=∠ADC=90°,BC//ED,且BC=CD=12AD=DE,所以四边形BCDE是正方形,连接CE,所以BD⊥CE,又因为BC//AE,BC=AE,所以四边形ABCE是平行四边形,所以CE//AB,则BD⊥AB.因为平面SAD⊥平面ABCD,∠SAD=90°,平面SAD∩平面ABCD=AD,故SA⊥平面ABCD.所以SA∩AB=A,所以SA⊥BD,又因为SA∩AB=A,则BD⊥平面SAB.(2)解:∵SA=AD=2,BE=DE=1,∴△BDE的面积为12,又由(1)知SA⊥平面ABCD,∴V S−BDE=13×12×2=13,又在RtΔSAB中,SA=2,AB=DB=√2,∴SB=√6,由(1)知BD⊥SB,∴ΔSBD的面积为12×√2×√6=√3,设点E到平面SBD的距离为ℎ,则13S△BDS⋅ℎ=13,即ℎ=√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)利用线面垂直的判定定理,即可证得BD⊥平面SAB.(2)由(1)知SA⊥平面ABCD,求得V S−BDE=13,再根据等体积法,即可求解点点E到平面SBD的距离.2.【答案】(1)证明:∵M,N分别是AF,AB的中点,∴MN∥BF.∵MN⊄平面BCF,BF⊂平面BCF,∴MN//平面BCF.(2)解:∵四边形ABCD和ABEF都是边长为2的正方形,∴DA⊥AB,FA⊥AB,∴∠DAF就是二面角D−AB−F的平面角,∴∠DAF=60°.连接DM,在△DAM中,DA=2,AM=1,∠DAM=60°,∴DM2=AM2+AD2−2AM⋅AD⋅cos60°=3,∴DM=√3.∴DM2+AM2=AD2,∴DM⊥AM.∵DA⊥AB,FA⊥AB,FA∩DA=A,∴AB ⊥ 平面 ADM , ∴AB ⊥DM .∴DM ⊥ 平面 ABEF .以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,如图所示:则 D(0,0,√3) , E(1,2,0) , B(−1,2,0) , F(1,0,0) , A(−1,0,0) ,DE ⃗⃗⃗⃗⃗ =(1,2,−√3) , BF ⃗⃗⃗⃗⃗ =(2,−2,0) , BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =(1,0,√3) .设平面 BCF 的法向量为 m⃗⃗ =(x,y,z) , 则 {m ⇀⋅BF ⇀=2x −2y =0m ⇀⋅BC⇀=x +√3z =0 ,取 m ⃗⃗ =(√3,√3,−1) . 设直线 DE 与平面 BCF 所成角为 θ ,则 sinθ=|m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||DE ⃗⃗⃗⃗⃗⃗ |=√427 ,∴ 直线 DE 与平面 BCF 所成角的正弦值为 √427. 【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)根据三角形的中位线,有 MN ∥BF ,再利用线面平行的判定定理证明.(2)根据点 M , N 分别是 AF , AB 的中点,二面角 D −AB −F 的大小为60°,证明 DM ⊥ 平面 ABEF ,然后以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,再求得平面 BCF 的一个法向量,利用线面角的向量求法求解.3.【答案】 (1)证明:因为E 为AB 的中点, AE =1 ,所以 CD =AB =2 ,所以 CD 2+PD 2=PC 2 ,从而 PD ⊥CD .又 PD ⊥CE , CD ∩CE =C ,所以 PD ⊥ 底面ABCD , 所以 PD ⊥AD .因为四边形ABCD 是正方形,所以 AD ⊥CD .又 CD ∩PD =D ,所以 AD ⊥ 平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系 D −xyz ,如图所示,则 A(2,0,0) , P(0,0,3) , E(2,1,0) , C(0,2,0) ,所以 PE ⃗⃗⃗⃗⃗ =(2,1,−3) , EC ⃗⃗⃗⃗⃗ =(−2,1,0) , DA ⃗⃗⃗⃗⃗ =(2,0,0) .设平面PCE 的法向量为 n⃗ =(x,y,z) , 则 PE ⃗⃗⃗⃗⃗ ⋅n ⃗ =EC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0 ,即 {2x +y −3z =0−2x +y =0 ,令 x =3 ,得 n ⃗ =(3,6,4) . cos〈n ⃗ ,DA ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DA ⃗⃗⃗⃗⃗⃗ |=3√6161 , 故DA 与平面PCE 所成角的正弦值为 3√6161 .【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)通过证明 PD ⊥AD , AD ⊥CD 即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.4.【答案】 (1)证明:设 BC 1 与 CB 1 交点为 O ,连接 OE , BE .由题可知四边形 BCC 1B 1 为正方形,所以 BC 1⊥CB 1 ,且 O 为 BC 1 中点.又因 BE 2=AB 2+AE 2 , C 1E 2=A 1E 2+A 1C 12 ,所以 BE =C 1E ,所以 BC 1⊥OE .又因为 OE ∩CB 1=O ,所以 BC 1⊥ 平面 EB 1C .因为 EB 1⊂ 平面 EB 1C ,所以 BC 1⊥EB 1 .(2)解:取 AB 的中点 O ′ ,连接 O ′C , O ′C ⊥AB ,在平面 ABB 1A 1 过点 O ′ 内作 AB 的垂线,如图所示,建立空间直角坐标系 O ′−xyz .设 AB =2 ,则 E(0,−1,1) , B 1(0,1,2) , B(0,1,0) , C 1(−√3,0,2) .所以 EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1) , EC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,1,1) .设平面 C 1EB 1 的一个法向量为 n ⃗ =(x,y,z) ,则 {n ⇀⋅EB1⇀=2y +z =0n ⇀⋅EC 1⇀=−√3x +y +z =0 ,令 y =√3 ,则 n ⃗ =(−1,√3,−2√3) . 由(1)可知平面 CEB 1 的一个法向量为 BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,−1,2) , 则 |cos〈BC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ 〉|=|n ⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗ |⋅|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√3√3+1+4⋅√1+3+12=√64.由图可知二面角 C 1−EB 1−C 为锐角,所以其余弦值为 √64.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)通过证明 BC 1⊥ 平面 EB 1C 即可证得;(2)建立空间直角坐标系,利用向量求解.5.【答案】 (1)证明:取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH . 因为 AD//BC , AB =BC =CD =12AD , 四边形 ABCO 与四边形 OBCD 均为菱形, ∴OB ⊥AC , OB//CD , CD ⊥AC , 因为 △PAD 为等边三角形, O 为 AD 中点, ∴PO ⊥AD ,因为平面 PAD ⊥ 平面 ABCD ,且平面 PAD ∩ 平面 ABCD =AD .PO ⊂ 平面 PAD 且 PO ⊥AD , ∴PO ⊥ 平面 ABCD 因为 CD ⊂ 平面 ABCD , ∴PO ⊥CD ,因为H , G 分别为 OB , PB 的中点, ∴GH//PO , ∴GH ⊥CD .又因为 GH ∩AC =H , AC,GH ⊂ 平面 GAC , ∴CD ⊥ 平面 GAC .(2)解:取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE ⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,则 P(0,0,2√3) , A(0,−2,0) , C(√3,1,0) , D(0,2,0) , G(√32,−12,√3)AP ⃗⃗⃗⃗⃗ =(0,2,2√3) , AG ⇀=(√32,32,√3) , 设平面 PAG 的一法向量 n →=(x,y,z) .由 {n ⇀⋅AP⇀=0n ⇀⋅AG ⇀=0 ⇒{2y +2√3z =0√32x +32y +√3z =0⇒{y =−√3z x =z .令 z =1 ,则 n ⃗ =(1,−√3,1) . 由(1)可知,平面 AGC 的一个法向量 CD ⃗⃗⃗⃗⃗ =(−√3,1,0) , cos〈n ⇀,CD⇀〉=n ⇀⋅CD ⇀|n⇀||CD ⇀|=−√155∴ 二面角 P −AG −C 的平面角的余弦值为 −√155.【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH .证明 AC ⊥CD , GH ⊥CD ,即可证 CD ⊥ 平面 GAC ;(2)取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,利用向量法求二面角 P −AG −C 的余弦值.6.【答案】 (1)解:因为平面 AEC ⊥ 平面 ABC ,交线为 AC ,又 AC ⊥BC , 所以 BC ⊥ 平面 AEC , ∴BC ⊥AE ,又 AE ⊥CD , CD ∩BC =C , 则 AE ⊥ 平面 BCDE , EC ⊂ 平面 BCDE , 所以, AE ⊥EC ;(2)解:取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,则 OE ⊥ 平面 ABC , OF ⊥ 平面 AEC ;以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系如图所示,已知 AE =EC =CB =√2 ,则 AC =2 , OE =1 , O(0,0,0) , A(1,0,0) , C(−1,0,0) , D(0,−√2,1) , 则 AC⃗⃗⃗⃗⃗ =(−2,0,0) , AD ⃗⃗⃗⃗⃗ =(−1,−√2,1) , 设平面 DAC 的一个法向量 m⃗⃗ =(x,y,z) , 由 {m ⇀⋅AC⇀=0,m ⇀⋅AD ⇀=0 得 {−2x =0,−x −√2y +z =0令 y =√2 ,则 x =0 , z =2 ,即 m ⃗⃗ =(0,√2,2) ;平面 ECA 的一个法向量为 n ⃗ =(0,1,0) ; cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=√2√2+4=√33.所以二面角 D −AC −E 的余弦值为 √33.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)先通过平面 AEC ⊥ 平面 ABC 得到 BC ⊥AE ,再结合 AE ⊥CD ,可得 AE ⊥ 平面 BCDE ,进而可得结论;(2)取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系,求出平面 DAC 的一个法向量以及平面 ECA 的一个法向量,求这两个法向量的夹角即可得结果. 7.【答案】 (1)证明:因为 △ABC 是等边三角形, ∠BAD =∠BCD =90° , 所以 Rt △ABD ≅Rt △CBD ,可得 AD =CD . 因为点 P 是 AC 的中点,则 PD ⊥AC , PB ⊥AC , 因为 PD ∩PB =P , PD ⊂ 平面PBD, PB ⊂ 平面 PBD , 所以 AC ⊥ 平面 PBD ,因为 AC ⊂ 平面 ACD , 所以平面 ACD ⊥ 平面 BDP .(2)解:如图,作 CE ⊥BD ,垂足为 E 连接 AE .因为 Rt △ABD ⊆Rt △CBD ,所以 AE ⊥BD, AE =CE, ∠AEC 为二面角A-BD-C 的平面角. 由已知二面角 A −BD −C 为 120° ,知 ∠AEC =120° . 在等腰三角形 AEC 中,由余弦定理可得 AC =√3AE . 因为 △ABC 是等边三角形,则 AC =AB ,所以 AB =√3AE . 在 Rt △ABD 中,有 12AE ⋅BD =12AB ⋅AD ,得 BD =√3AD , 因为 BD =√6 ,所以 AD =√2 . 又 BD 2=AB 2+AD 2 ,所以 AB =2 . 则 AE =2√33, ED =√63.以 E 为坐标原点,以向量 EC ⃗⃗⃗⃗⃗ , ED ⃗⃗⃗⃗⃗ 的方向分别为 x 轴, y 轴的正方向, 以过点 E 垂直于平面 BCD 的直线为 z 轴,建立空间直角坐标系 E −xyz ,则 D(0,√63,0) , A(−√33,0,1) ,向量 AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,平面 BCD 的一个法向量为 m⃗⃗ =(0,0,1) , 设直线 AD 与平面 BCD 所成的角为 θ , 则 cos〈m ⃗⃗ ,AD ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |m⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=√2×1=−√22, sinθ=|cos〈m ⃗⃗ ,AD⃗⃗⃗⃗⃗ 〉|=√22所以直线 AD 与平面 BCD 所成角的正弦值为 √22.【考点】平面与平面垂直的判定,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1)由 △ABC 是等边三角形, ∠BAD =∠BCD =90° ,得 AD =CD .再证明 PD ⊥AC , PB ⊥AC ,从而和证明 AC ⊥ 平面 PBD ,故平面 ACD ⊥ 平面 BDP 得证.(2)作 CE ⊥BD ,垂足为 E 连接 AE .由 Rt △ABD ⊆Rt △CBD ,证得 AE ⊥BD, AE =CE, 结合二面角 A −BD −C 为 120° ,可得 AB =2 , AE =2√33, ED =√63 .建立空间直角坐标系,求出点的坐标则 D(0,√63,0) , A(−√33,0,1) ,向量AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,即平面 BCD 的一个法向量 m ⃗⃗ =(0,0,1) ,运用公式 cos〈m ⃗⃗ ,AD ⇀〉=m ⃗⃗⃗ ⋅AD ⇀|m⃗⃗⃗ ||AD ⇀| 和 sinθ=|cos〈m ⃗⃗ ,AD ⇀〉| ,即可得出直线 AD 与平面 BCD 所成角的正弦值. 8.【答案】 (1)证明:∵ AP ⊥ 平面 PCD ,∴ AP ⊥CD . ∵ AD//BC , BC =12AD ,∴四边形 BCDE 为平行四边形, ∴ BE//CD , ∴ AP ⊥BE .又∵ AB ⊥BC , AB =BC =12AD ,且 E 为 AD 的中点, ∴四边形 ABCE 为正方形,∴ BE ⊥AC .又 AP ∩AC =A ,∴ BE ⊥ 平面 APC ,则 BE ⊥PO . ∵ AP ⊥ 平面 PCD ,∴ AP ⊥PC ,又 AC =√2AB =√2AP , ∴ ΔPAC 为等腰直角三角形, O 为斜边 AC 上的中点, ∴ PO ⊥AC 且 AC ∩BE =O ,∴ PO ⊥ 平面 ABCD .(2)解:∵ OB =1 ,∴ PA =PB =AB =√2 . 设 C 到平面 PAB 的距离为 d , 由 V C−PAB =V P−ABC ,得 13×√34×(√2)2×d =13×12×(√2)2×1 ,解得 d =2√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)首项通过证明 AP ⊥CD,CD//BE ,证得 AP ⊥BE ,然后通过证明四边形 ABCE 是正方形证得 BE ⊥AC ,由此证得 BE ⊥ 平面 APC ,所以 BE ⊥PO .通过证明 ΔPAC 为等腰直角三角形证得 PO ⊥AC ,由此证得 PO ⊥ 平面 ABCD .(2)利用等体积法,由 V C−PAB =V P−ABC 列方程,解方程求得点 C 到平面 PAB 的距离.9.【答案】 (1)解:如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 . 因为 AC 1⊄ 平面 B 1CE , ME ⊂ 平面 B 1CE ,所以 AC 1// 平面 B 1CE .(2)解:设O 是AC 的中点,连接 OC 1 ,OB.因为 △ACC 1 为正三角形, 所以 OC 1⊥AC ,又平面 ABC ⊥ 平面 A 1ACC 1 ,平面 ABC ∩ 平面 A 1ACC 1=AC , 所以 OC 1⊥ 平面ABC.由已知得 AC =2 .如图,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则有 A(0,1,0) , B(√3,0,0) , C 1(0,0,√3) , A 1(0,2,√3) , 故 AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,−1,√3) , AB ⃗⃗⃗⃗⃗ =(√3,−1,0) , AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3) , 设平面 B 1BAA 1 的一个法向量为 m⃗⃗ =(x,y,z) ,则 {AB ⇀⋅m ⇀=0AA 1⇀⋅m ⇀=0 , 所以 {√3x −y =0y +√3z =0 令 x =1 ,则 m ⃗⃗ =(1,√3,−1) .设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ , 则 sinθ=|AC⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC⃗⃗⃗⃗⃗1|⋅|m⃗⃗⃗ |=√32×5=√155,故直线 AC 1 与平面 B 1BAA 1 所成角的正弦值为 √155.【考点】直线与平面平行的判定,直线与平面所成的角【解析】【分析】(1)如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 ,再利用线面平行的判定定理,即可证明线面平行;(2)设O 是AC 的中点,连接 OC 1 ,OB ,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,求出平面 B 1BAA 1 的一个法向量为 m ⃗⃗ =(1,√3,−1) ,设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ ,代入公式 sinθ=|AC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ 1|⋅|m⃗⃗⃗ | 运算,即可得答案.10.【答案】 (1)解:如图,连接 AC 交 BD 于 O ,连接 OE ,则 O 为 AC 的中点.又E为CP上的中点,所以OE//PA.又AP⊄平面BDE,OE⊂平面BDE,所以AP//平面BDE(2)解:如图,取AB的中点M,连接PM,因为AP⊥PB,AP=PB,所以PM⊥AB,PM=12AB=1,AP=PB=√2,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊂平面PAB,所以PM⊥平面ABCD.同理可得BC⊥平面PAB,∵AP、BP⊂平面PAB,∴BC⊥AP,BC⊥BP. 又因为AP⊥BP,BC∩BP=B,所以AP⊥平面BCP,∵PC⊂平面BCP,则AP⊥PC,所以PC=√PB2+BC2=√6,所以SΔAPC=12AP⋅PC=12×√2×√6=√3,又SΔACD=12×2×2=2,设点D到平面ACP的距离为ℎ,由V D−APC=V P−ACD,得13⋅SΔAPC⋅ℎ=13⋅PM⋅SΔACD,所以ℎ=3=2√33,即点D到平面ACP的距离为2√33.【考点】直线与平面平行的判定,点、线、面间的距离计算【解析】【分析】(1)连接AC交BD于O,则O为AC的中点,利用中位线的性质可得出OE//PA,然后利用直线与平面平行的判定定理可证明出AP//平面BDE;(2)取AB的中点M,连接PM,利用面面垂直的性质定理可得出PM⊥平面ABCD,由此可计算出三棱锥P−ACD的体积,并计算出ΔAPC的面积,并设点D到平面ACP的距离为ℎ,由V P−ACD=13SΔACP⋅ℎ可计算出点D到平面ACP的距离的值.11.【答案】(1)解:连接AO,因为O为BC的中点,可得BC⊥AO,∵ A 1O ⊥ 平面 ABC , BC ⊂ 平面 ABC ,∴ A 1O ⊥BC , 又∵ AO ∩A 1O =O ,∴ BC ⊥ 平面 AA 1O ,∴ BC ⊥AA 1 , ∵ BB 1//AA 1 , ∴ BC ⊥BB 1 , 又∵四边形 BB 1C 1C 为平行四边形, ∴四边形 BB 1C 1C 为矩形;(2)解:如图,分别以 OA,OB,OA 1 所在直线为 x,y,z 轴,建立空间直角坐标系,则 A(1,0,0),B(0,2,0),C(0,−2,0),Rt △AOB 中, AO =√AB 2−BO 2=1 , Rt △AA 1O 中, A 1O =√AA 12−AO 2=2 ,A 1(0,0,2) ,∴ AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2) , A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,−2,−2) , A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =(−1,2,0) ,设平面 A 1B 1C 的法向量是 n⃗ =(x,y,z) , 由 {n ⇀⋅AB⇀=0,n ⇀⋅A 1C ⇀=0, 得 {−x +2y =0,−2y −2z =0, 即 {x =2y,z =−y, ,可取 n ⃗ =(2,1,−1) , 设直线 AA 1 与平面 A 1B 1C 所成角为 θ ,则 θ∈[0,π2] ,sinθ=|cos <AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⃗ >| =|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗ |=√5⋅√6=215√30 , ∵ θ∈[0,π2] ,∴ cosθ=√1−sin 2θ=√10515,即直线 AA 1 与平面 A 1B 1C 所成角的余弦值为 √10515.【考点】直线与平面所成的角【解析】【分析】(1)连接 AO ,可得 BC ⊥AO ,易证 A 1O ⊥BC ,则 BC ⊥ 平面 AA 1O ,从而可证 BC ⊥BB 1 ,由此即可得出结论;(2)以 OA,OB,OA 1 所在直线分别为 x,y,z 轴建立空间直角坐标系,利用法向量解决问题.12.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , CD ⊂ 平面 ABCD , 所以 PA ⊥CD ,因为底面 ABCD 是正方形,所以 AD ⊥CD , 又 PA ∩AD =A ,所以 CD ⊥ 平面 PAD , 因为 AE ⊂ 平面 PAD ,所以 CD ⊥AE ,又因为 AE ⊥PD,CD ∩PD =D , CD,PD ⊂ 平面 PCD , 所以 AE ⊥ 平面 PCD(2)解:因为 PA ⊥ 平面 ABCD ,底面 ABCD 为正方形,所以 PA ⊥AB,PA ⊥AD,AB ⊥AD ,以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz (如图所示),设 PA =AB =1 ,则 A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1) , 因为 AE ⊥PD ,所以 E 为 PD 中点,所以 E(0,12,12) , 所以 PB ⃗⃗⃗⃗⃗ =(1,0,−1),PC ⃗⃗⃗⃗⃗ =(1,1,−1),AE ⃗⃗⃗⃗⃗ =(0,12,12) , 由(1)得 AE ⃗⃗⃗⃗⃗ =(0,12,12) 为平面 PCD 的一个法向量, 设平面 PBC 的一个法向量为 m⃗⃗ =(x,y,z) , 由 {PB ⇀⋅m ⃗⃗ =0PC ⇀⋅m ⃗⃗ =0 ,即 {x −z =0x +y −z =0 ,令 x =1 ,则 z =1,y =0 ,所以 m ⃗⃗ =(1,0,1) , 因此 cos〈m⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ |m⃗⃗⃗ |⋅|AE ⃗⃗⃗⃗⃗ |=12√2×√12=12, 由图可知二面角 B −PC −D 的大小为钝角, 故二面角 B −PC −D 的余弦值为 −12【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)由 PA ⊥ 平面 ABCD 及底面 ABCD 是正方形可证得 CD ⊥ 平面 PAD ,则 CD ⊥AE ,又由 AE ⊥PD ,即可求证;(2)以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz ,由(1)可知 AE ⃗⃗⃗⃗⃗ 为平面 PCD 的一个法向量,求得平面 PBC 的一个法向量 m ⃗⃗ ,进而利用数量积求解即可13.【答案】 (1)解:由题设可知 AC =4√2 , CD =4√2 , AD =8 ∴ AD 2=CD 2+AC 2 ∴ CD ⊥AC又∵平面 ABC ⊥ 平面 ACD ,平面 ABC ∩ 平面 ACD =AC ∴ CD ⊥ 面 ABC .(2)解:法一、等体积法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ∵ V B−ACM =V A−BCM 且 V B−ACM =13S ACM ⋅BO =16√23而 S ΔBCM =4√3∴ A 到面 BCM 的距离 ℎ=4√63,所以 sinθ=ℎAB =√63.法二、向量法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示. 则 A(0,−2√2,0) , B(0,0,2√2) , C(0,2√2,0) , M(2√2,0,0) ∴ CB⃗⃗⃗⃗⃗ =(0,−2√2,2√2) CM ⃗⃗⃗⃗⃗⃗ =(2√2,−2√2,0) BA ⃗⃗⃗⃗⃗ =(0,−2√2,−2√2) ∴面 BCM 的一个法向量 n ⃗ =(1,1,1) ∴ sinθ=|BA⃗⃗⃗⃗⃗ ⋅n ⃗ ||BA ⃗⃗⃗⃗⃗ ||n⃗ |=√63【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)通过计算结合勾股定理的逆定理可以证明 CD ⊥AC ,再根据面面垂直的性质定理进行证明即可;(2)法一、取 AC 的中点 O 连接 OB ,根据 V B−ACM =V A−BCM ,结合三棱锥的体积公式进行求解即可;法二、取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.14.【答案】 (1)证明:∵底面 ABCD 是正方形, ∴ BC ⊥CD ,∵ SD ⊥ 底面 ABCD , BC ⊂ 底面 ABCD ,∴ SD ⊥BC ,又 DC ∩SD =D , ∴ BC ⊥ 平面 SDC ,∵ SC ⊂ 平面 SDC ,∴ BC ⊥SC .(2)解:由(1)知 BC ⊥SC ,又 CD ⊥BC ,∴ ∠SCD 为所求二面角的平面角, 在 RtΔDSC 中,∵ SD =DC =1 ,∴ ∠SCD =45° .(3)解:取AB中点P,连结MP,DP,在ΔABS,由中位线定理得MP//SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵MP=12SB=√32,DM=√22,DP=√1+14=√52,所以ΔDMP中,有DP2=MP2+DM2,∴∠DMP=90°.【考点】直线与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1)根据题意,由线面垂直证线线垂直,再根据线面垂直的判定定理,证明线面垂直,再证线线垂直.(2)由(1)中线面垂直,可知所求二面角的平面角为∠SCD,根据题意可求角度.(3)利用中位线将异面直线平移,则∠DMP或其补角是异面直线DM与SB所成角,根据勾股定理,即可求解.15.【答案】(1)解:在△AOC中, OA=OC=2,AC=a=2√2,∴OA2+OC2=AC2∴∠AOC=90°,即AO⊥OC,∵AO⊥BD,且AO∩BD=O,∴AO⊥平面BCD(2)解:由(1)知, OC⊥OD,以O为原点, OC,OD所在的直线分别为x轴, y轴建立如图的空间直角坐标系O−xyz:则 Q(0,0,0), B(0,−2√3,0), C(2,0,0), D(0,2√3,0) . ∵AO ⊥BD,CO ⊥BD∴∠AOC 为二面角 A −BD −C 的平面角, ∴∠AOC =120° ∴ 点 A(−1,0,√3)AD⃗⃗⃗⃗⃗ =(1,2√3,−√3) , BA ⃗⃗⃗⃗⃗ =(−1,2√3,√3) , BC ⃗⃗⃗⃗⃗ =(2,2√3,0) 设平面 ABC 的法向量为 n⃗ =(x,y,z) ,则 ∴ {n ⃗ ⋅BC ⇀=0n ⃗ ⋅BA ⇀=0 故 {2x +2√3y =0x +2√3y +√3z =0 取 x =1 ,则 y =−√33,z =√3∴ n ⃗ =(1,−√33,√3)设直线 AD 与平面 ABC 所成的角为 θ , sinθ=|AD⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AD ⃗⃗⃗⃗⃗⃗ ||n ⃗ |=4√133=√313 ∴cosθ=√1−sin 2θ=√1013 ∴tanθ=sinθcosθ=√310=√3010∴ 直线 AD 与平面 ABC 所成的正切值: √3010【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角 【解析】【分析】(1)根据线面垂直定义,即可求得答案.(2)由于平面 ABC 不是特殊的平面,故建系用法向量求解,以 O 为原点建系, OC,OD 所在的直线分别为 x 轴, y 轴,求出平面 ABC 的法向量 n ⃗ ,求解 AD ⃗⃗⃗⃗⃗ 和 n⃗ 的夹角,即可求得答案. 16.【答案】 (1)解:因为 AB//CD ,所以 AMMC =ABCD =12 ,即AM AC=13.因为 MN// 平面PCD , MN ⊂ 平面PAC ,平面 PAC ∩ 平面 PCD =PC , 所以 MN//PC . 所以 ANAP =AM AC=13 ,即 m =13(2)解:因为 AB =AD , ∠BAD =60° ,可知 △ABD 为等边三角形, 所以 BD =AD =PD ,又 BP =√2AD , 故 BP 2=PD 2+DB 2 ,所以 PD ⊥DB .由已知 PD ⊥AD , AD ∩BD =D ,所以 PD ⊥ 平面ABCD ,如图,以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,设 AB =1 ,则 AB =AD =DP =1 , CD =2 , 所以 A(1,0,0) , B(12,0,√32) , P(0,1,0) , C(−1,0,√3) ,则 PB ⃗⃗⃗⃗⃗ =(12,−1,√32) , PC ⃗⃗⃗⃗⃗ =(−1,−1,√3) , PA ⃗⃗⃗⃗⃗ =(1,−1,0) 设平面PBC 的一个法向量为 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) ,则有 {n 1⇀⋅PB⇀=0n 1⇀⋅PC ⇀=0 即 {x 1−2y 1+√3z 1=0x 1+y 1−√3z 1=0. 令 x 1=1 ,则 y 1=2,z 1=√3 ,即 n 1⃗⃗⃗⃗ =(1,2,√3) , 设平面APC 的一个法向量为 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) ,则有{n 2⇀⋅PA ⇀=0n 2⇀⋅PC ⇀=0,即 {x 2−y 2=0−x 2−y 2+√3z 2=0 令 x 2=y 2=√3 ,则 z 2=2 ,即 n 2⃗⃗⃗⃗ =(√3,√3,2) . 所以 cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√32√2×√10=√154设二面角 A −PC −B 的平面角为 θ ,则 cosθ=√154【考点】向量的共线定理,直线与平面平行的性质,用空间向量求平面间的夹角 【解析】【分析】(1)由AB ∥CD , 得到AM AC=13 ,由MN ∥平面PCD , 得MN ∥PC , 从而 ANAP =AM AC=13,由此能实数m 的值;(2)由AB =AD , ∠BAD =60°,知△ABD 为等边三角形,推导出PD ⊥DB , PD ⊥AD , 从而PD ⊥平面ABCD , 以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,由此能求出二面角B ﹣PC ﹣B 的余弦值.17.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , EF ⊂ 平面 ABCD ,故可得 EF ⊥PA ; 设底面正方形的边长为4,故可得 AE =√AD 2+DE 2=√16+4=2√5 , EF =√FC 2+CE 2=√1+4=√5 , AF =√AB 2+BF 2=√16+9=5 , 故在 △AFE 中,满足 AE 2+EF 2=AF 2 ,故可得 AE ⊥EF ; 又 PA,AE ⊂ 平面 PAE ,且 PA ∩AE =A , 则 EF ⊥ 平面 PAE ,即证.(2)解:因为 PA ⊥ 平面 ABCD ,故 PA 为三棱锥 P −EFC 底面上的高线.故可得V P−EFC=13S∆EFC×PA=13×12×1×2×4=43.在△PEF中,因为PE=√PA2+AE2=6,EF=√5,由(1)可知EF⊥平面PAE,又PE⊂平面PAE,故可得EF⊥PE,则S△PEF=12×EF×PE=3√5,设点C到平面PEF的距离为ℎ,故可得V P−EFC=V C−PEF=13×S∆PEF×ℎ=43,解得ℎ=4√515.即点C到平面PEF的距离为:4√515.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)根据PA⊥平面ABCD,可得EF⊥PN,再证EF⊥AE,即可由线线垂直推证线面垂直;(2)转换三棱锥顶点,用等体积法求点面距离即可.18.【答案】(1)证明:因为PA⊥平面ABCD,EF⊂平面ABCD,故可得EF⊥PA;设底面正方形的边长为4,故可得AE=√AD2+DE2=√16+4=2√5,EF=√FC2+CE2=√1+4=√5,AF=√AB2+BF2=√16+9=5,故在△AFE中,满足AE2+EF2=AF2,故可得AE⊥EF;又PA,AE⊂平面PAE,且PA∩AE=A,则EF⊥平面PAE,即证.(2)解:因为PA⊥平面ABCD, AB,AD⊂平面ABCD,故可得PA⊥AB,PA⊥AD,又底面ABCD为正方形,故可得AB⊥AD,故以A为坐标原点,以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系如下图所示:设AB=4,故可得A(0,0,0),P(0,0,5),B(4,0,0),E(2,4,0),F(4,3,0)设平面PEF的法向量为m⃗⃗ =(x,y,z),则{m⃗⃗ ⋅EF⇀=0m⃗⃗ ⋅PE⇀=0,则{2x−y=02x+4y−5z=0取y=2,则m⃗⃗ =(1,2,2).不妨取平面PAB的法向量n⃗=(0,1,0).则cos〈m⃗⃗ ,n⃗ 〉=m⃗⃗⃗ ⋅n⃗|m⃗⃗⃗ ||n⃗ |=√9×1=23.。

立体几何大题综合(含答案)

立体几何大题综合(含答案)

立体几何大题综合1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.3.(2022秋·广东肇庆·高二校考期中)如图在棱长为1的正方体1111ABCD A B C D -中,E 为11A B 的中点,F 为AB 的中点,H 为1DD 的中点,K 为1BB 的中点.(1)求直线1A H 到直线KC 的距离;(2)求直线FC 到平面1AEC 的距离.4.(2022秋·广东江门·高二校考期中)如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是边长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.6.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形ABCD 中,,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.7.(2022秋·广东江门·高二台山市第一中学校考期中)如图,边长为1的正方形ABCD 所在平面与正方形ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ==ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.9.(2022秋·广东江门·高二江门市第二中学校考期中)如图,已知PA ⊥平面ABCD ,底面ABCD 为矩形,2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.10.(2022秋·广东阳江·高二校联考期中)图1是直角梯形ABCD ,//AB DC ,90,2,3,2D AB DC AD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.11.(2022秋·广东深圳·高二深圳外国语学校校考期中)如图所示,在四棱锥P ABCD -中,底面ABCD 为正方形,E 为侧棱PC的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C的值;若不存在,请说明理由.13.(2022秋·广东茂名·高二统考期中)在直四棱柱1111ABCD A B C D -中,四边形ABCD 为平行四边形,M为1AA 的中点,1BC BD ==,1AB AA ==(1)求证:DM ⊥平面1BDC ;(2)求平面1MBC 与平面1D B C 夹角的余弦值.14.(2022秋·广东揭阳·高二惠来县第一中学校考期中)已知四棱锥P ABCD -中,底面ABCD 是矩形,且2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PM PA的值;若不存在,说明理由.15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.16.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直角梯形ABED 中,//BE AD ,DE AD ⊥,BC AD ⊥,4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.17.(2022秋·广东珠海·高二珠海市第二中学校考期中)如图1,在MBC 中,24BM BC BM BC ==⊥,,,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --求出PG PC 的值;若不存在,请说明理由.18.(2022秋·广东广州·高二广州市第八十九中学校考期中)如图,已知梯形ABCD ,AB //CD ,,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.19.(2022秋·广东东莞·高二校考期中)如图,在长方体ABCD-A 1B 1C 1D 1中,E ,M 分别是BC ,AE 的中点,AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动.(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.21.(2022秋·广东广州·高二统考期中)如图,在四棱锥P —ABCD 中,PA ⊥平面ABCD ,底面ABCD 是边长为2的正方形,PA =,G 为CD 的中点,E ,F 是棱PD 上两点(F 在E 的上方),且2EF =.(1)若BF //平面AEG ,求DE ;(2)当点F 到平面AEC 的距离取得最大值时,求直线AG 与平面AEC 所成角的正弦值.22.(2022秋·广东广州·高二校联考期中)在多面体ABCDEF 中,平面ABCD 为正方形,2AB =,3AE =,DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=> ,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.23.(2022秋·广东佛山·高二佛山市顺德区容山中学校考期中)如图,圆柱的轴截面ABCD 为正方形,点E 在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.24.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)如图,四棱锥P ABCD -的底面为菱形,,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PG CG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.25.(2022秋·广东江门·高二校考期中)如图甲,在矩形ABCD 中,2AB AD E ==为线段DC 的中点,ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.26.(2022秋·广东惠州·高二统考期中)如图,在四棱锥P ABMN -中,PNM △是边长为2的正三角形,AN NP ⊥,AN BM ∥,3AN =,1BM =,AB =C ,D 分别是线段AB ,NP 的中点.(1)求证:平面ANMB ⊥平面NMP ;(2)求直线CD 与平面ABP 所成角的正弦值.27.(2022秋·广东广州·高二校联考期中)如图,在四棱锥P ABCD -中,平面PAD ⊥平面,2,4,ABCD PA AD BD AB ====,BD 是ADC ∠的平分线,且BD BC ⊥.(1)若点E 为棱PC 的中点,证明:BE 平面PAD ;(2)已知二面角P AB D --的大小为60 ,求平面PBD 和平面PCD 的夹角的余弦值.28.(2022秋·广东珠海·高二珠海市斗门区第一中学校考期中)如图,等腰直角△ACD 的斜边AC 为直角△ABC 的直角边,E 是AC 的中点,F 在BC 上.将三角形ACD 沿AC 翻折,分别连接DE ,DF ,EF ,使得平面DEF ⊥平面ABC .已知2AC =,30B ∠=︒,(1)证明:EF ∥平面ABD ;(2)若DF =A BC D --的余弦值.29.(2022秋·广东阳江·高二统考期中)如图,在四面体ABCD 中,ABC 是正三角形,ACD 是直角三角形,ABD CBD ∠=∠,AB =BD .(1)求证:平面ACD ⊥平面ABC ;(2)若DE mDB = ,二面角D AE C --的余弦值为17,求m .30.(2022春·广东广州·高二执信中学校考期中)已知△ABC 是边长为6的等边三角形,点M ,N 分别是边AB ,AC 的三等分点,且13AM AB =,13CN CA =,沿MN 将△AMN 折起到A MN '△的位置,使90A MB '∠=︒.(1)求证:A M '⊥平面MBCN ;(2)在线段BC 上是否存在点D ,使平面A ND '与平面A MB '所成锐二面角的余弦值为13若存在,设()0BD BC λλ=> ,求λ的值;若不存在,说明理由.立体几何大题综合答案1.(2022秋·广东江门·高二台山市第一中学校考期中)如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(1)求证:1BC ⊥平面1ACD ;(2)求直线1D C 与平面1AD E 所成角的余弦值.(2)以AD 方向为x 轴正方向,妨设正方体边长为1,则()0,0,0A 面1AD E 的法向量为(),,n x y z = ,则设直线1D C 与平面1AD E 所成角为2.(2022秋·广东清远·高二校联考期中)如图,在棱长为a 的正方体OABC O A B C ''''-中,,E F 分别是棱,AB BC 上的动点,且BE CF =.(1)求证:A F C E ''⊥;(2)当三棱锥B BEF '-的体积取得最大值时,求平面EFB '与平面BFB '的夹角的正切值.则()()()0,0,0,1,0,0,0,1,0,C O B B (,1,0),(0,,0)E m F m ,(1,A F '=- 则(1)(1)11A F C E m m ''⋅=-+-⨯+ ∴A F C E ''⊥ ,故A F C E ''⊥.(2)由(1)知1BB '=,而B BEF V '-故当S 取到最大值时,三棱锥111111的中点,F 为AB的中点,H为1DD的中点,K为1BB的中点.(1)求直线1A H到直线KC的距离;(2)求直线FC到平面1AEC的距离.【详解】(1)长为2的正方形,PD CD =,F ,G 分别是PB ,AD 的中点.(1)求证:FG //平面PCD ;(2)求点C 到平面PGB 的距离.【详解】(1)以D 为原点,DA ,DC ,DP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2),(2,0,0),(2,2,0),(0,2,0),(1,1,1),G P A B C F 明显面PCD 的一个法向量为()1,0,0n =r ,又()0,1,1GF = ,()()1,0,00,1,10n GF ∴⋅=⋅= ,GF n ∴⊥ ,又GF ⊄面PCD ,//GF ∴面PCD ;(2)(1,0,2),(2,2,2)PG PB =-=- ,设平面PGB 的一个法向量为(,,)m a b c = ,00m PB m PG ⎧⋅=⎪∴⎨⋅=⎪⎩ ,即222020a b c a c +-=⎧⎨-=⎩,令1c =,则2,1a b ==-所以平面PGB 的一个法向量为(2,1,1)m =- ,又()2,0,0CB = ,所以点C 到平面PGB 的距离4263||411CB m d m ⋅===++ 5.(2022秋·广东清远·高二校联考期中)如图,在四棱锥P ABCD -中,底面ABCD 为矩形,AB ⊥平面PAD ,E 是AD 的中点,PAD 为等腰直角三角形,DP AP ⊥,2PA AB ==2(1)求证:PE BD ⊥;(2)求点A 到平面PBE 的距离.【详解】(1)∵AB ⊥平面PAD ,PE ⊂平面PAD ,∴PE AB ⊥,又∵PAD 是等腰直角三角形,E 是斜边AD 的中点,∴PE AD ⊥,又∵AD ⊂平面ABCD ,AB ⊂平面ABCD ,AB AD A ⋂=,∴PE ⊥平面ABCD又∵BD ⊂平面ABCD ,∴PE BD ⊥;因为22PA AB ==,则()000E ,,,(0,1,1)B ,()010A ,,则(0,1,1)EB = ,(1,0,0)EP = ,PA 设平面PBE 的一个法向量为(n = 00EB n y z EP n x ⎧⋅=+=⎪⎨⋅==⎪⎩ ,取1y =,则z 设点A 到平面PBE 的距离为h ,则∴点A 到平面PBE 的距离为226.(2022秋·广东江门·高二新会陈经纶中学校考期中)如图,在直角梯形,=90,AD BC ADC AE ∠︒⊥∥平面ABCD ,EF CD ∥,112BC CD AE EF AD =====.(1)求证:BE AF ⊥;(2)在线段BC 上是否存在点M ,使平面EMD 与平面AMD 的夹角的大小为π3若存在,求出CM 的长;若不存在,请说明理由.【详解】(1)如图,作,FG EA AG EF ,连接EG ,AF ,BG ,∵EF CD ∥且EF AG ∥,AG CD ∴ ,即点G 在平面ABCD 内,所以四边形CDAG 为平行四边形,四边形AEFG 为平行四边形.又90ADC ∠=︒,BG AG ∴⊥,因为⊥AE 平面ABCD ,BG ⊂平面ABCD ,所以AE BG ⊥,又因为AG AE A = ,,AG AE ⊂平面AEFG ,∴BG ⊥平面AEFG ,因为AF ⊂平面AEFG ,BG AF ∴⊥.AE AG ⊥ ,所以平行四边形AEFG 为矩形,又因为AE EF =,所以矩形AEFG 为正方形,所以AF EG ⊥,又因为BG EG G = ,,BG EG ⊂平面BGE ,所以AF ⊥平面BGE ,因为BE ⊂平面BGE ,所以AF BE ⊥.(2)由(1)知AG ,AD ,AE 为三条两两互相垂直的直线,所以以A 为原点,AG 为x 轴,AD 为y 轴,AE 为z 轴建立空间直角坐标系A xyz -,如图,则(0,0,0),(1,0,0),(0,0,1),(0,2,0)A G E D ,设()001,,0,[1,2]M y y ∈,∴(0,2,1)ED =- ,()01,2,0DM y =- ,设平面EMD 的法向量为(,,)n x y z = ,则00n ED n DM ⎧⋅=⎪⎨⋅=⎪⎩,即()02020y z x y y -=⎧⎨+-=⎩,令1y =,得02,2z x y ==-,所以平面EMD 的法向量为()02,1,2n y =- ,又⊥AE 平面ABCD ,即⊥AE 平面AMD ,ABEF 所在平面互相垂直,动点M 、N 分别在正方形对角线AC 和BF 上移动,且(0CM BN a a ==<<.(1)求证MN 与平面BCE 平行;(2)当a =A MN B --的余弦值.8.(2022秋·广东肇庆·高二肇庆市端州中学校考期中)侧棱2PA PD ==,底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,O 为AD 的中点.(1)求证:PO ⊥平面ABCD ;(2)求二面角C PD A --的正弦值.【详解】(1)PA PD = ,O 为AD 的中点,PO AD ∴⊥,侧面PAD ⊥底面ABCD ,侧面PAD ⋂底面ABCD AD =,PO ⊂平面PAD ,PO ∴⊥平面ABCD ;(2) 底面ABCD 为直角梯形,其中BC AD ∥,AB AD ⊥,222AD AB BC ===,OC AD ∴⊥,又PO ⊥平面ABCD ,∴以O 为原点,OC 所在直线为x 轴,OD 所在直线为y 轴,OP 所在直线为z 轴,建立空间直角坐标系,易得平面PAD 的法向量(1,0,0m =设平面PCD 的法向量(,,n x y z = 设二面角C PD A --夹角为θ,则1cos 3m n m n θ⋅==⋅ ,则sin θ2,,PA AD AB M N ===分别为,AB PC 的中点.(1)求证:MN 平面PAD ;(2)求平面PMC 与平面PAD 的夹角的余弦值.(2)由题意,可构建如下图示的空间直角坐标系,令2x =,故(2,1,1)m =- ,又(1,0,0)n = 是面PAD 的一个法向量,所以26cos ,3||||6m n m n m n ⋅<>=== 故平面PMC 与平面PAD 的夹角的余弦值10.(2022秋·广东阳江·高二校联考期中)图90,2,3,2D AB DCAD CE ED ︒∠====.以BE 为折痕将BCE 折起,使点C 到达C 1的位置,且1AC = 2.(1)证明:平面1BC E ⊥平面ABED ;(2)求直线1BC 与平面1AC D 所成角的正弦值.(2)如图②,以D 为坐标原点,DA ,DE 的方向分别为空间直角坐标系.D xyz -则(0,0,0),(3,0,0),(3,2,0),(0,1,0)D A BE ,F 33(,,0)22,133(,,3)22C ,31(,,3)BC =-- ()3,0,0DA = ,DC = 正方形,E 为侧棱PC 的中点.(1)设经过A 、B 、E 三点的平面交PD 于F ,证明:F 为PD 的中点;(2)若PA ⊥底面ABCD ,且2PA AD ==,求点P 到平面ABE 的距离.【详解】(1)因为底面ABCD 为矩形,所以//AB CD .又AB ⊄平面PCD ,且CD ⊂平面PCD ,所以//AB 平面PCD .又AB ⊂平面ABE ,且平面ABE ⋂平面PCD EF =,所以//AB EF .又因为//AB CD ,所以//CD EF因为E 为PC 的中点,所以F 为PD 的中点.(2)如图所示,以A 为原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.则(2,0,0),(2,2,0),(0,0,2),(1,1,1)B C P E ,设(,,)n x y z = 是平面ABE 的法向量,则0,0n AE n AB ⋅=⋅= ,即200x x y z =⎧⎨++=⎩令1y =,则平面ABE 的一个法向量为(0,1,1)n =- 又因为(0,0,2)AP = ,所以点P 到平面ABE 的距离为222|||00+01+21|2||011AP n n ⋅⨯⨯⨯==++ (-),即点P 到平面ABE 的距离为2.12.(2022秋·广东阳江·高二校联考期中)如图,在四棱柱ABCD -A 1B 1C 1D 1中,四边形ABCD 是一个边长为2的菱形,∠DAB =60°.侧棱DD 1⊥平面ABCD ,DD 1=3.(1)求二面角B -D 1C -D 的平面角的余弦值;(2)设E 是D 1B 的中点,在线段D 1C 上是否存在一点P ,使得AE ∥平面PDB ?若存在,请求出11D P D C 的值;若不存在,请说明理由.【详解】(1)如图1,连接BD ,由题意,△ADB 是正三角形,设M 是AB 的中点,则DM ⊥AB ,所以DM ⊥DC ,又DD 1⊥平面ABCD ,所以DM ⊥平面DD 1C 1C.以D 为原点,建立如图所示的空间直角坐标系,则D (0,0,0),D 1(0,0,3),C (0,2,0),B (3,1,0),则BC =(-3,1,0),1BD =(-3,-1,3).显然,平面D 1CD 的一个法向量是()1,0,0m = ,设平面BD 1C 的法向量为n = (x ,y ,z ),则1=30,330,n BC x y n BD x y z ⎧⋅-+=⎪⎨⋅=--+=⎪⎩ 令x =3,得n = (3,3,2),设二面角B -D 1C -D 的平面角为θ,由几何体的特征可知θ为锐角,则cos ||||m n m n θ⋅=⋅=33941++⨯=34.故二面角B -D 1C -D 的平面角的余弦值为34.(2)设11D P D C=λ,即有11λD P D C =,其中01λ≤≤由(1)知D 1(0,0,3),C (0,2,0),则()10,2,3D C =- ,所以P (0,2,33)λλ-+,又D (0,0,0),B (3,1,0),1111为1AA的中点,1BC BD==,1AB AA==(1)求证:DM⊥平面1BDC;(2)求平面1MBC与平面1D B C夹角的余弦值.则()0,0,0D,21,0,2M⎛⎫⎪⎪⎝⎭,2=AD AB ,PAD 是正三角形,CD ⊥平面PAD ,E 、F 、G 、O 分别是PC 、PD 、BC 、AD 的中点.(1)求平面EFG 与平面ABCD 所成角的大小;(2)线段PA 上是否存在点M ,使得直线GM 与平面EFG 所成角的大小为π6,若存在,求出PMPA的值;若不存在,说明理由.【详解】(1)解:因为PAD 是正三角形,O 为AD 的中点,所以PO AD ⊥,因为CD ⊥平面PAD ,PO ⊂平面PAD ,PO CD ∴⊥,,,AD CD D AD CD Q Ç=Ì平面ABCD ,PO ∴⊥平面ABCD ,因为AD BC ∥且AD BC =,O 、G 分别为AD 、BC 的中点,所以AO BG ∥且AO BG =,所以四边形ABGO 为平行四边形,15.(2022秋·广东佛山·高二顺德一中校考期中)如图,在直棱柱1111为4的菱形,60BAD ∠= ,14AA =,P 是1AD 上的动点(不含端点).(1)当P 为1AD 的中点时,求直线AD 到平面PBC 的距离;(2)求直线1AD 和平面BCP 所成角的正弦值的取值范围.则()0,0,0O ,()23,0,0A ,()10,2,4D -,()1123,2,0B C =-∴- ,AB P 为1AD 的中点,则(P()3,3,2BP =∴- ,(BC =- 则33202320n BP x y z n BC x y ⎧⋅=-+=⎪⎨⋅=--=⎪⎩4AB =,BC =BE =.将矩形BEDC 沿BC 翻折,使得平面ABC ⊥平面BCDE .(1)求DB 与平面ADE 所成角的正弦值.(2)求平面ADE 与平面ABC 所成的锐二面角的余弦值.【详解】(1) 平面ABC ⊥平面BCDE ,平面ABC ⋂平面BCDE BC =,CD BC ⊥,BE ⊂平面BCDE ,CD \^平面ABC ,则以C 为原点,,,CA CB CD正方向为,,x y z 轴,可建立如图所示的空间直角坐标系,则()0,0,0C ,()22,0,0A()22,0,23AD ∴=- ,DE设平面ADE 的法向量为n =则2223220AD n x z DE n y ⎧⋅=-+=⎪⎨⋅==⎪⎩DB n ⋅ ,A D 分别为棱,BM MC 的中点,将△MAD 沿AD 折起到PAD 的位置,使90PAB ∠=︒,如图2,连接,PB PC .(1)求证:平面PAD ⊥平面ABCD ;(2)若E 为PC 中点,求直线DE 与平面PBD 所成角的正弦值;(3)线段PC 上是否存在一点G ,使二面角G AD P --的余弦值为10若存在,求出PG PC 的值;若不存在,请说明理由.由题意得(0,1,0),(0,0,2),(2,0,0),(2,2,0),D P B C 所以(1,0,1)DE = ,(2,0,2),PB PD =-=设平面PBD 的法向量(,,)n x y z =,则22020PB n x z PD n y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,解得(1,2,1)n = 设直线DE 与平面PBD 所成角为θ,n DE ⋅,120AD DC BC ADC ︒==∠=,四边形ACFE 为正方形,且平面ACFE ⊥平面ABCD .(1)求证:BC ⊥平面ACFE ;(2)点M 在线段EF 上运动,求平面MAB 与平面ADE 夹角余弦值的取值范围.令(03)FM λλ=≤≤,则(3,0,0),(0,1,0),(,0,3),(3,0,A B M E λ1111AD=AA 1=1,AB=2.(1)试问在线段CD 1上是否存在一点N ,使MN ∥平面ADD 1A 1?若存在,确定N 的位置;若不存在,请说明理由;(2)在(1)中,当MN ∥平面ADD 1A 1时,试确定直线BB 1与平面DMN 的交点F 的位置,并求BF 的长.延长DM交AB于点G,可证点G是线段再过点G作GF//AB1与线段BB1交于点20.(2022秋·广东湛江·高二湛江二十一中校考期中)如图,在长方体11111 AB=,点E在棱AB上移动.2(1)证明:11D E A D ⊥;(2)求平面1ACD 的法向量.(3)当E 为AB 的中点时,求点E 到面1ACD 的距离.【详解】(1)以D 为坐标原点,分别以1DA DC DD 、、所在直线为x y z 、、轴,建立如图的坐标系,则()()()()()110,0,0,1,0,1,0,0,1,1,0,00,2,0D A D A C ,,所以()11,0,1DA = ,设()1,,0E t ,所以()11,,1D E t =- ,所以11110DA D E ⋅=-= ,故11DA D E ⊥ 所以11D E A D ⊥;(2)设平面1ACD 的法向量为(),,n x y z =r,则()()11,0,1,1,2,0AD AC =-=-,由10,0n AD n AC ⋅=⋅=,得020x z x y -+=⎧⎨-+=⎩,令1x =得11,,12n ⎛⎫= ⎪⎝⎭;(3)当E 为AB 的中点时,()1,1,0E ,则()11,1,1D E =-,由点到平面的距离公式,得()12221111111231112n D E d n ⨯+⨯+⨯-⋅===⎛⎫++ ⎪⎝⎭,边长为2的正方形,PA=,G为CD的中点,E,F是棱PD上两点(F在E的上方),且2EF=.(1)若BF//平面AEG,求DE;(2)当点F到平面AEC的距离取得最大值时,求直线AG与平面AEC所成角的正弦值.则()0,0,0A ,()2,2,0C ,()1,2,0G ,因为2EF =,所以EFC 的面积为定值,又点A 到平面EFC 的距离为定值,所以三棱锥A -EFC 的体积为定值,即三棱锥所以要使点F 到平面AEC的距离最大,则AEC △即E 到AC 的距离最小时,点F 到平面AEC 的距离最大,设()0,2,3E t t -,则()0,2,3AE t t =- ,AC22AE AC⎛⎫⋅ DE =E AD C --//EF BD .(1)证明:平面ABCD ⊥平面DCE ;(2)若()0EF DB λλ=>,求平面ABF 与平面CEF 所成锐二面角的余弦值的取值范围.【详解】(1)∵2AB AD ==,3AE =,5DE =,∴222AD DE AE +=,即AD DE ⊥,又∵在正方形ABCD 中,AD DC ⊥,且DE DC D ⋂=,DE ⊂平面EDC ,DC ⊂平面EDC ,∴AD ⊥平面EDC ,又AD ⊂平面ABCD ,∴平面ABCD ⊥平面EDC ;(2)由(1)知,EDC ∠是二面角E AD C --的平面角,作OE CD ⊥于点O ,则cos 1OD DE EDC =⋅∠=,2OE =,且平面ABCD ⊥平面EDC ,平面ABCD ⋂平面EDC CD =,OE ⊂平面EDC ,∴OE ⊥平面ABCD ,取AB 中点M ,连接OM ,则OM CD ⊥,如图,建立空间直角坐标系,则()2,1,0A -,()2,1,0B ,()0,1,0D -,()0,1,0C ,()0,0,2E ,()2,2,0DB = ,()2,2,0EF λλ=,()0,1,2EC =- ,设平面CEF 的一个法向量为(),,m x y z=,则20220m EC y z m EF x y λλ⎧⋅=-=⎪⎨⋅=+=⎪⎩ ,取11,1,2m ⎛⎫=-- ⎪⎝⎭ ,()22,21,2BF λλ=--,()0,2,0AB = ,设平面ABF 的一个法向量为(),,n a b c =,在底面圆周上,且,BE CE M =为AE 上的一点,且,BM AC N ⊥为线段AC 上一动点(不与,A C 重合)(1)若2AN NC =,设平面BMN ⋂面BEC l =,求证://MN l ;(2)当平面BMN 与平面DEC 夹角为π3,试确定N 点的位置.【详解】(1)由题知AB ⊥面,BEC EC ⊂面BEC ,则AB EC ⊥,由BC 为底面圆的直径,则EC BE ⊥,由BE AB B =I ,,BE AB ⊂面ABE ,则(220,,,1,33BM CA ⎛⎫=-=-+ ⎪ ⎪⎝⎭设()(,,2,CN CA λλλλλ==-∈设面BMN 的法向量为(,,n x y z =r 13λ-⎛⎫,23ABC AB AP π∠===,PA ⊥底面ABCD ,,E F 分别是线段,PB PD 的中点,G 是线段PC 上的一点.(1)若G 是直线PC 与平面AEF 的交点,试确定PGCG的值;(2)若直线AG 与平面AEF 所成角的正弦值为35,求三棱锥P EFG -体积.则()()(0,0,0,3,1,0,3,1,0A BC-()31,,1,0,1,122AE AF ⎛⎫=-= ⎪ ⎪⎝⎭ (0,0,AG AP PG AP PC λ=+=+=设平面AEF 的法向量(,,m a b =ADE V 沿直线AE 折起,使得DC .(1)求证:BE ⊥平面ADE ;(2)线段AB 上是否存在一点H ,使得平面ADE 与平面DHC 所成的角为π4若不存在,说明理由;若存在,求出H 点的位置.【详解】(1)证明:连接BE ,取线段AE 的中点O ,连接,DO OC ,在Rt ADE V 中,DA DE ==,1DO AE DO ∴⊥=,在OEC △中,11,2OE AE ==()()()1,0,1,1,1,0,2,0,0,D C A B -平面ADE 的法向量()10,1,0n =,在平面直角坐标系xOy 中,直线设H 的坐标为(),2,0t t -,()(。

立体几何大题训练及答案

立体几何大题训练及答案

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取的中点为,连,,则,面/面, .............. 分5(2)先证出面,.............. 分8为直线与平面所成角,................ 分11................ 分142、己知多面体ABCDE中,DE平面ACD,, AC=AD=CD=DE=2 AB =1, O 为CD 的中点.(1)求证:AO平面CDE(2)求直线BD与平面CBE所成角的正弦值3、如图,在△中,,,点在上,交于,交于•沿将△翻折成△,使平面平面;沿将△翻折成△ ,使平面平面.( 1 )求证:平面;(2 )若,求二面角的平面角的正切值.解:(1)因为,平面,所以平面.因为平面平面,且,所以平面. …2分同理,平面,所以,从而平面. …4分所以平面平面,从而平面.2)因为,,所以,,,.过E作,垂足为M,连结.由( 1)知,可得,所以,所以.所以即为所求二面角的平面角,可记为.在Rt△中,求得,所以. …4、如图,平面ABC,平面BCD, DE=DA=AB=AC,. M(1) 求直线EM与平面BCD所成角的正弦值;(2) P为线段DM上一点,且DM,求证:AP//DE. (12)分15 分为BC中点.解:(1) 平面,为在平面上的射影,为与平面所成角. …分2平面,, 设,又,. 在△中,,,又为中点,, ,.…5分在△中,,.……………………分 (7)2),为中点, .又平面, ,平面.又平面,,分11 …分9又,平面. .............. 分13又平面,. .............. 分145、如图,已知ABCD是边长为1的正方形,AF丄平面ABCD, CE// AF,(1)证明:BD丄EF;(2)若AF= 1,且直线BE与平面ACE所成角的正弦值为,求的值.解:(1)连结BD、AC,交点为O. •/ ABCD是正方形/• BD丄AC ……2分•/ AF丄平面ABCD A AF丄BD ……4分••• BD丄平面ACEF (6)A BD丄EF ……7分(2)连结0E,由(1)知,BD丄平面ACEF所以/ BEO即为直线BE与平面ACE所成的角. ……10分•/ AF丄平面ABCD, CE// AF , • CE丄平面ABCD, CE1 BC,•/ BC =1 , AF= 1 ,贝U CE= , BE= , B0=,• RtA BEO 中,,…1盼因为解得. …… 15分6、如图在几何体中平面ABC分别是的中点.(1) 求证:平面CDE;(2) 求二面角的平面角的正切值.解:(1)连接ACR1R交EC于点F ,由题意知四边形ACCR1RE是矩形,贝U F是ACR1R的中连接DF, •/ D是AB的中点,•ABCR1R勺中位线,a BCR1R//DF, 4 分•/ BCR1RF面EDC DF平面EDC,• BCR1R//平面CDE. 7 分(2)作AH丄直线CD,垂足为H ,连接HE,•/ AAR1R丄平面ABC, • AAR1RL DC,CD丄平面AHE,CD丄EH ,••• AHE是二面角E -CD -A的平面角. 11分•/ D是AB的中点,• AH等于点B到CD的距离,在厶BCD中,求得:AH=, 在厶AEH中,即所求二面角的正切值为.7、如图,已知平面与直线均垂直于所在平面,且,( 1 )求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,•••平面丄平面,•平面……2分又•••丄平面•- 〃 , ......... 分又•••平面• 〃平面 ......... 分(2) •••平面•,又•/••………………分8•点是的中点,连结,则•平面•//,•四边形是矩形………………分10设得:,又•••,•,从而,过作于点,则:•是与平面所成角…………………………………………分…… •,• 与平面所成角的正弦值为…………………………分14&如图,在直三棱柱中,是等腰直角三角形,,侧棱AA仁2, D, E分别为点,点E在平面ABD上的射影是的重心.(1) 求证:DE// 平面ACB;(2) 求A1B与平面ABD所成角的正弦值.12CC1 与A1B 的中9、如图,在侧棱垂直于底面的三棱柱ABC-A1B1中,底面△ ABC为等腰直角三角形,/ B=90°D为棱BB1的中点。

高考数学理数立体几何大题训练(含答案)

高考数学理数立体几何大题训练(含答案)

高考数学理数立体几何大题训练(含答案)1.(2020·新课标Ⅲ·理)在长方体中,点P、Q分别在棱AB、CD上,且AP=CQ.(1)证明:点PQ平分长方体的体对角线;(2)若PQ在平面BCFE内,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M、N分别为BC、B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,底面是内接正三角形ABC,P为上一点,AP为底面直径,DP⊥底面.(1)证明:DP平分∠ADC;(2)求二面角平面APD与平面ABC的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱ABC-A1B1C1中,点P、Q分别在棱AB、A1B1上,且AP=A1Q,平面PQC1为棱BC1的中垂面,M为棱AC的中点.(Ⅰ)求证:PM∥B1Q,且PM=B1Q;(Ⅱ)求二面角平面PQC1与直线PM所成角的正弦值;(Ⅲ)求直线B1Q与平面PQC1所成角的正弦值.6.(2020·江苏)在三棱锥ABCD中,已知CB=CD=1,AC=2,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC上一点,DE⊥平面BCD,DE=1.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F-DE-C的大小为θ,求sinθ的值.7.(2020·北京)如图,正方体ABCD-EFGH中,E为AD的中点,P为BF上一点.(Ⅰ)求证:PE∥CG;(Ⅱ)求直线PE与平面CGH所成角的正弦值.8.(2020·浙江)如图,三棱台DEF-ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,XXX.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在等边三角形ABC的三棱锥ABCD中,D为底面的中点,E为线段AD上一动点,记DE=λAD.(1)当λ=1时,求证:DE与平面ABC垂直;(2)当λ=2时,求直线BE与平面ACD所成角的正弦值.求证:直线AD与平面BCD垂直;2)若平面ABD与平面ACD所成二面角为,求二面角ABC与平面BCD所成二面角的正弦值。

立体几何大题练习(附答案)

立体几何大题练习(附答案)

1.(本小题总分值14分)如图,在四棱锥 P ABCD 中,底面ABCD 是正方形,侧棱PD 底面ABCD, PD DC 1, E 是PC 的中点,作EF PB 交PB 于点F.(I)证实: PA //平面EDB; (II)证实:PB ,平面EFD; (III)求三棱锥P DEF 的体积.2 .(本小题总分值(m)求三棱锥(I )求证:B 118.(本小题总分值14分)如右图,在直角梯形ABCD中, B=90 °,1DC//AB,BC=CD= -AB=2 , G 为线段AB 的中点,将VADG 沿GD 2折起,使平面ADG 平面BCDG,得到几何体A-BCDG.(1)假设E,F分别为线段AC,AD的中点,求证:EF//平面ABG;(2)求证:AG 平面BCDG;(3)求V C-ABD 的值.4、(本小题总分值14分)如图4, AA是圆柱的母线, AB是圆柱底面圆的直径,C是底面圆周上异于A,B的任意一点, AA AB 2.(1)求证:BC 平面A〔AC ;(2)求三棱锥A ABC的体积的最大值.图4C (n ) 求证:EF 面PAC;〔出〕求三棱锥B-PAC的体积.6 .〔本小题总分值14分〕如图,平行四边形ABCD中,CD 1, BCD 60,且BD CD ,正方形ADEF 和平面ABCD成直二面角,G, H是DF , BE的中点.〔I〕求证:BD 平面CDE ;〔n〕求证:GH 〃平面CDE;〔出〕求三棱锥D CEF的体积.7.〔本小题总分值14分〕右图是一个直三棱柱〔以A i B i C i为底面〕被一平面所截得到的几何体,截面为ABC.A i B i = B i C i = l, ZAi B i C i = 90 ,AA i = 4,BB i=2, CC i=3.(I)设点O是AB的中点,证实:OC//平面A i B i C i;(II)求此几何体的体积.8 .(本小题总分值i4分)如图,在正方体ABCD—A i B i C i D i中,E、F为棱AD、AB的中点.(i )求证:EF//平面CB i D i;(2)求证:平面CAA i C■平面CB i D i.9 .(本小题总分值i4分)如图i ,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF 平面ABCD,连结局部线段后围成一个空间几何体,如图2.(I)求证:BE〃平面ADF ;(n)求三棱锥F BCE的体积.图图-10 .(本小题总分值14分)在直三棱柱ABC ABG中,AD 平面ABC,其垂足D落在直线A〔B上.(I )求证:BC A1B ;(n)假设AD J3, AB BC 2, P为AC的中点,求三棱锥P ABC的体积.B1…1 .解:(1)证实:连结AC, AC交BD于O,连结EO••・底面ABCD是正方形,,点O是AC的中点在PAC中,EO是中位线,,PA // EO而EO 平面EDB且PA 平面EDB,所以,PA //平面EDB.(2)证实:PD,底面ABCD 且DC 底面ABCD,,PD DCPD=DC,可知PDC是等腰直角三角形,而DE是斜边PC的中线,.DE PC ①同样由PD,底面ABCD,得PDXBC•••底面ABCD是正方形,有DCXBC,,BC,平面PDC 而DE 平面PDC, BC DE ②由①和②推得DE 平面PBC而PB 平面PBC, . DE PB又EF PB 且DE EF E,所以PB ,平面EFD................................ 8分(3) . PD DC 1,由 PD ,平面 ABCD,PDXBC,又.BCXCD, PDACD = D,BC± PC.-CL 2f在Z^BDE 中,DE -------- , BD22221 DE2 BE 2 BD 2 — 2 而由(2), PB,平面EFD,••.BC,平面 PCD,3 c-一 2 0,即 DEL BE.2PBXDE,因而 DEL 平面 BEF,2在 RtABPD 中,BF BP BD , BF1 1 . V DE EF PF 32 2.解:(I)证实:连结 BD ,那么 BD // B 1D 1,ABCD 是正方形,,AC BD. CE 面 ABCD,,CE BD .又 A .CE C, BD 面 ACE. . AE 面 ACE, . . BD AE ,• .B 1D 1 AE .(n)证实:作BB 1的中点F,连结AF 、CF 、EF.• •・E 、F 是 CC 、BB 1 的中点,,CE?B 1F , • •・四边形B 〔FCE 是平行四边形,, CF// B 1E .E,F 是 CC 、BB 1 的中点,,EF//BC ,又 BC//AD , EF //AD ...............14分136;Rt 革EFEF. AF I CF C , B 1EI ED E ,,平面 ACF 〃面 B 1DE .又 AC 平面 ACF , . . AC 〃面 B 1DE .4证实:二.是底面圆周上异于 A, B 的任意 柱底面圆的直径, •••BCXAC,……2 分,.AA1,平面 ABC , BC i 平面 ABC, . AAiXBC,…… 4 分•.AA i AAC=A , AA 1 i 平面 AA i C, AC i 平面 AA1 C, . EC ,平面AA1C.……6分 (2)解法 1 :设 AC=x ,在 RtMBC 中,BC = J AB 2 AC 2 h x 2(o<x<2),……7 分....1 一 … 1 11 -~~2故 V ARABC = —S VABC AA 1— — AC BC AA 1 _x \ 4x (0<x<2),13 3 23即 V A 「ABC =4“ x 2 1 \/x 2 (4 x 2):J (x 2~2)2~4 . ……11 分 23 33,-0<x<2 , 0<x 2<4 ,「.当 x 2=2,即 x = 五时, 三棱锥A 1-ABC 的体积的最大值为 -.……14分35(1)证实:在三角形 PBC 中,E 是PC 中点.F 为PB 中点所以 EF//BC , BC 面ABC, EF 面ABC, 所以 EF 〃面ABC ……4分,四边形ADEF 是平行四边形,AF // ED ,(3)S ABD - AB AD 2 •2VA BDE VE ABD1S ~ SABDCE1S3 SABDCE2 3又AB 是.O 的直径,所以BC AC …… ⑵ ……7分 由(1) (2)得 BC 面PAC 因EF//BC BC 面PAC ,所以EF 面PAC ……9分(出)因PA OO 所在的平面,AC 是PC 在面ABC 内的射影,1V B PACV P ABC S ABC PA37 . (1)证实:作OD //.交片81于口,连C 1D .那么 OD // BB 1 // CC 1 .作BH(n) PA BC面ABC 面ABCBC PA所成角 PCA 450,PA=AC11分在Rt ABC 中,E 是PC 中点,BAC -, AC BC 2412分Q O 是AB 的中点,OD1-(AA 1 BB 1) 3 CC 1 .2那么ODCQ 是平行四边形,OC // C 1D .……4分Q C 1D 平面 C 1B 1A 且 OC 平面C1B1A ,OC // 面 A 1B 1C 1.(2)如图,过B 作截面BA 2c 2CC 1 于 A 2,//面ABG,分别交AA1,Q CC 1 面 BA 2c 2, CC 1BH ,那么BH 平面AC .又Q A 2B AB 1 1 , BC 2B 1c l 1 , BH --, 2V B AA 2C 2C1 S A A 2c 2c3BH 1 1 厂J.21 (1 2) '2 -3 2 22PCA 即为PC 与面ABC'.2----- …14分3所求几何体体积为:V V B AACC . 八八 2 J 2 J8 .〔本小题总分值14分〕折叠之后平行关系不变. BC 平面ADF , AD 平面 • .BC//平面 ADF ,V AB|C 1 A2BC 21八, SA A 1B 1C 1BB 1 - 2 1〔1〕证实:连结 BD .在长方体AC i 中, 对角线BD//B 1D 1. 又Q E 、F 为棱AD 、AB 的中点, ・.EF //BD . . .EF //BD 1. 又 B 1D 1 平面 CBD 1, EF 平面 CB 1D 1,,EF//平面 CB 1D 1. (2) Q 在长方体 AC [中,AA 1,平面 A 1B 1C 1D 1,而 B 1D 1 平面 A 1B 1C 1D 1, . AA iX B i D i . 又Q 在正方形 A 1B 1C 1D 1 中,A 1C 1 XB 1D 1, .. B 1D 1,平面 CAA 1C 1. 又Q B 1D 1 平面 CB 1D 1,,平面 CAA 1C 1,平面 CB 〔D 1. 14分9 .〔本小题总分值14分〕 证实:〔I 〕证法一:取 DF 中点为G,连结AG, EG 中, 八 1一 八 一八.CE — DF ,,EG 〃CD 且 EG CD 2 又•••AB 〃CD 且AB CD,,EG 〃AB 且 EG AB四边形ABEG 为平行四边形,,BE//AG. BE 平面ADF , AG 平面 ADF,. ・BE 〃平面 ADF ,证法二:由图1可知BC // AD , CE//DFV A 1B 1C 1 A 2BC 2同理CE〃平面ADF ................... 4分. BCI CE C , BC , CE 平面BCE ,,平面BCE 〃平面ADF ......... 6分. BE 平面BCE ,,BE 〃平面ADF ......... 7 分(II)解法1:V F BCE V B CEF .................... 8分由图1可知BC CD.平面DCEF 平面ABCD ,平面DCEF I平面ABCD CDBC 平面ABCD,..BC 平面DCEF ,1 1由图 1 可知DC CE 1 S CEF -CE DC .................. ........... 12 分2 2V F BCE V B CEF 3 BC S CEF解法2:由图1可知CD BC , CD CEBCI CE C. .CD 平面BCE ,. DF //DC点F到平面BCE的距离等于点D到平面BCE的距离为1 ,由图1可知BC CE 1 S BCE 1-BC CE 2BCE 1 … c 13 CD S BCE 6解法3:过E作EH FC ,垂足为H , ....................... 8分由图1可知BC CD•••平面DCEF 平面ABCD,平面DCEFI 平面ABCD CD11分A B11分BC 平面 ABCD,. BC 平面 DCEF ,EH 平面 DCEF.BC EH,EH 平面BCF 1 、5S BCF -BC DF —, .......... 12 分 2 2又 BD CD. .BD ¥® CDE(n )证实:连结 EA ,那么G 是AE 的中点••• EAB 中,GH // AB又 AB//CD . GH //CD . .GH 〃平面CDE 11分 由 BC FC , FC .DC 2 DF 2 5, 在 CEF 中,由等面积法可得 EHV F BCE V E BCF EH S BCF13分 14分 6.(本小题总分值14分)(I )证实:平面 ADEF 平面ABCD ,交线为ADED AD• .ED 平面ABCDED BD2〔出〕解:设Rt BCD中BC边上的高为h1 1 -依题意:一2 h 1 32 23• • h —2_ ___ _____ .. 一、. .3即:点C到平面DEF的距离为- ---------------- 10•V D CEF V C DEF .32,33分------- 14 分。

高中《立体几何》大题(附答案解析)

高中《立体几何》大题(附答案解析)

《立体几何》大题及答案解析1.(2009全国卷Ⅰ)如图,四棱锥S ABCD −中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =,2DC SD ==,点M 在侧棱SC 上,∠ABM=60。

(I )证明:M 是侧棱SC 的中点;()ΙΙ求二面角S AM B −−的大小。

2.(2009全国卷Ⅱ)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC(Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小ACBA 1B 1C 1DE3.(2009浙江卷)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平面ABE 所成角的正弦值.4.(2009北京卷)如图,四棱锥P ABCD −的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.5.(2009江西卷)如图,在四棱锥P ABCD −中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离.6.(2009四川卷)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF °==∠= (I )求证:EF BCE ⊥平面;(II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A −−的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(1)线段的中点为,线段的中点为,求证:;(2)求直线与平面所成角的正切值.解:(1)取AB 的中点为N ,连MN ,PN ,则//MN EB ,//PN BC∴PMN EBC ∴//PM BCE 平面FE ⊥EBC FCE ∴∠⊥//AB DE (1)求证:AO ⊥平面CDE ;(2)求直线BD 与平面CBE 所成角的正弦值3、如图,在△ABC 中,︒=∠90C ,a BC AC 3==,点P 在AB 上,BC PE //交AC 于E ,AC PF //交BC 于F .沿PE 将△APE 翻折成△PE A ',使平面⊥PE A '平面ABC ;沿PF 将△BPF 翻折成△PF B ',使平面⊥PF B '平面ABC . (1)求证://'C B 平面PE A ';(2)若PB AP 2=,求二面角E PC A --'的平面角的正切值.解:(1)因为PE FC //,⊄FC 平面PE A ',所以//FC 平面PE A '.因为平面⊥PE A '平面PEC ,且PE E A ⊥',所以⊥E A '平面ABC . …2分 同理,⊥F B '平面ABC ,所以E A F B '//',从而//'F B 平面PE A '. …4分 所以平面//'CF B 平面PE A ',从而//'C B 平面PE A '.…6分(2)因为a BC AC 3==,BP AP 2=,所以a CE =,a A E 2=',a PE 2=,a PC 5=.…8分ABCDE FM .. C BF PAF C'B 'A EABCDEP M过E 作PC EM ⊥,垂足为M ,连结M A '.由(1)知ABC E A 平面⊥',可得PC E A ⊥', 所以EM A PC '⊥面,所以PC M A ⊥'.所以ME A '∠即为所求二面角E PC A --'的平面角,可记为θ. …12分在Rt △PCE 中,求得a EM 552=, 所以55522tan =='=a aEM E A θ. …15分4、如图,⊥DA 平面ABC ,⊥ED 平面BCD ,DE=DA=AB=AC.0120=∠BAC ,M 为BC 中点. (1)求直线EM 与平面BCD 所成角的正弦值; (2)P 为线段DM 上一点,且⊥AP DM ,求证:AP解:(1) ED ⊥平面BCD ,为在平面上的射影, 为与平面所成角.……………………2分 DA ⊥Q 平面ABC ,, 设,又=Q DA AB =AC ,. 在△ABC 中,Q ,, 又Q 为中点,∴⊥DM BC ,12==BM BC ,∴.…5分 在Rt △EDM中,EM =32a =, PABF C'B 'A E(第20题)MA BCDE A 1C 1sin EMD ∠=32DE a EM a =23=. ………………………7分 (2)=AB AC ,M 为BC 中点,∴⊥BC AM .又⊥DA 平面ABC , ∴⊥BC DA ,平面. ……………………9分又平面,, ……………………11分 又,平面. ……………………13分 又ED ⊥平面BCD ,. ……………………14分5、如图,已知ABCD 是边长为1的正方形,AF⊥平面ABCD ,CE∥AF,)1(>=λλAF CE .(1)证明:BD⊥EF;(2)若AF =1,且直线BE 与平面ACE 所成角的正弦值为1023,求λ的值.解:(1)连结BD 、AC ,交点为O.∵ABCD 是正方形∵AF⊥平面ABCD ∴AF⊥BD ……4分 ∴BD⊥平面ACEF ……6分 ∴BD⊥EF ……7分(2)连结OE ,由(1)知,BD⊥平面ACEF ,所以∠BEO 即为直线BE 与平面ACE 所成的角. ……10分 ∵AF⊥平面ABCD ,CE∥AF ,∴CE⊥平面ABCD ,CE⊥BC, ∵BC =1,AF =1,则CE =λ,BE =21λ+,BO =22, ∴Rt△BEO 中, 1023122sin 2=λ+==∠BE BO BEO , …13分 因为1>λ,解得34=λ. ……15分6、如图,在几何体中,⊥1AA 平面ABC ,,2,//,111===⊥AA BC AB AA CC BC AB E D CC ,,11=分别是1,AA AB 的中点. (1)求证://1BC 平面CDE ;(2)求二面角A DC E --的平面角的正切值.解:(1)连接ACR 1R 交EC 于点F ,由题意知四边形ACCR 1RE 是矩形,则F 是ACR 1R 的中点,连接DF ,∵D 是AB 的中点,∴DF 是△ABCR 1R 的中位线,∴ BCR 1R ⊄⊂ 7分 (2) 作AH ⊥直线CD ,垂足为H ,连接HE , ∵ AAR 1R ⊥平面ABC ,∴ AAR 1R ⊥DC ,∴ CD ⊥平面AHE , ∴ CD ⊥EH ,∴ ∠AHE 是二面角E – CD – A 的平面角. 11分 ∵ D 是AB 的中点,∴ AH 等于点B 到CD 的距离,在△BCD 中,求得:AH =552, 在△AEH 中, 25tan ==∠AH AE AHE 即所求二面角的正切值为25.7、如图,已知平面与直线均垂直于所在平面,且, (1)求证:平面;(2)若,求与平面所成角的正弦值.解:(1)证明:过点作于点,∵平面⊥平面,∴平面……2分 又∵⊥平面∴∥, ………………2分 又∵平面∴∥平面 ………………6分(2)∵平面 ∴,又∵∴ ∴ ………………8分 ∴点是的中点,连结,则 ∴平面 ∴∥,∴四边形是矩形 ………………10分 设QPABCABCA 1B 1C 1DE 得:, 又∵,∴,从而,过作于点,则:∴是与平面所成角 ………………………………………………12分 ∴,∴与平面所成角的正弦值为…………………………14分8、如图,在直三棱柱111C B A ABC -中,ABC ∆是等腰直角三角形,090=∠ACB ,侧棱AA 1=2,D ,E 分别为CC 1与A 1B 的中点,点E 在平面ABD 上的射影是ABD ∆的重心. (1)求证:DE9、如图,在侧棱垂直于底面的三棱柱ABC —A 1B 1C 1中,底面△ABC 为等腰直角三角形,∠B=90°,D 为棱BB 1的中点。

(1)求证:面DA 1C⊥面AA 1C 1C ; (2)若1AA AB=A —A 1D —C 的大小。

10、如图,在四棱锥P-ABCD中,PA ⊥平面ABCD ,AB ABCD DC AB //E F AB AB DE ⊥AB CF ⊥2,3===FB EF CF G FBt AE =BCF ADE ∆∆,CF DE ,A B P PEFCD (1)求证://PD 平面EGC ;(2)当⊥EG 面PFC 时,求DG 与平面A BCA 1B 1C 1D PAC DMCD EFC DPED 所成角的正切值.(1)证明:连接DF 交EC 于点M ,连接MGG M ,Θ为中点 MG PD //∴ 又EGC PD 面⊄ΘEGC MG 面⊂ ∴//PD 平面EGC ———5分(2)当⊥EG 面PFC 时, PF EG ⊥ 又ΘG 为FB 的中点,2==∴EP EF ,2=∴t —————7分过点G 在平面PEF 中作EP 的垂线,垂足为N ,连接DN . ⊥DE Θ面PEF ∴面⊥PED 面PEF ⊥∴GN 面PED GDN ∠∴即为DG 与平面PED 所成角.——————11分易求得221,23==DN GN ,所以DG 与平面PED 所成角的正切值为77.——14分12、如图,在四边形ABCD 中,4==AD AB ,7==CD BC ,点为线段上的一点.现将DCE ∆沿线段EC 翻折到PAC ,使得平面PAC ⊥平面ABCE ,连接PA ,PB .(1)证明:⊥BD 平面PAC ;(2)若︒=∠60BAD ,且点E 为线段的中点,求直线PE 与平面ABCE 所成角的正弦值.解:(1)连接AC ,BD 交于点O ,在四边形ABCD 中, ∵4==AD AB ,7==CD BC∴ADC ABC ∆≅∆,∴BAC DAC ∠=∠,∴BD AC ⊥ 又∵平面PAC ⊥平面ABCE ,且平面PAC I 平面ABCE =AC ∴⊥BD 平面PAC ………… 6分(2)如图,过点P 作AC 的垂线,垂足为H ,连接EH ,EC并取AO 中点F ,连接EF ,∵平面PAC ⊥平面ABCE ,且平面PAC I 平面ABCE =AC ,AC PH ⊥ ∴⊥PH 平面ABCE ,∴PEH ∠即为直线PE 与平面ABCE 的所成角, 由(Ⅰ)可知,BD AC ⊥,且32=AO ,3=CO ,又2=PE ,7=PC ,设x CH =,则有27x PH -=,3222-=-=x PH PE EHBA CDEPABCA 11C 1OPPP 1AA BBCCM又∵F 为AO 的中点,在EFH Rt ∆中,x FH -=32,1=EF由勾股定理得,31)32(22-=+-x x ,解得334=x , ∴332=EH ,335=PH ∴直线PE 与平面ABCE 的所成角的正弦值即33sin ==∠PE EH PEH .13、在三棱柱ABC —A 1B 1C 1中,AB=AC=AA 1 =2,平面ABC 1⊥平面AA 1C 1C ,∠AA 1C 1=∠BAC 1=60°,设AC 1与AC 相交于点O ,如图. (1)求证:BO⊥平面AA 1C 1C ; (2)求二面角B 1—AC 1—A 1的大小。

14、如图1,四面体PABC 中,BC=BP=1,AC=AP=3,AB=2,将PAB ∆沿直线AB 翻折至AB P 1∆,使点C B P A ,,,1在同一平面内(如图2),点M 为PC 中点. (1)求证:直线//1PP 平面MAB ; (2) 求证:AB PC ⊥;(3)求直线PA 与平面P 1PC 所成角的大小.答案:(3)、3π。

相关文档
最新文档