《截一个几何体》同步练习1

合集下载

2021最新精选《截一个几何体》同步提升训练

2021最新精选《截一个几何体》同步提升训练

《截一个几何体》提升训练
1(教材P15习题T3变式)一个几何体的截面是三角形,则原几何体一定不是下列图形中的()
A圆柱和圆锥 B球体和圆锥 C球体和圆柱 D正方体和圆锥
2下列几何体:①圆柱;②正方体:③棱锥;④球;⑤圆锥;⑥长方体中,截面可能是圆的有()
个个个个
3下列几何体的截面分别是()
A圆、平行四边形、三角形、圆 B圆、长方形、三角形、圆
C圆、长方形、长方形、三角形 D圆、长方形、三角形、三角形
4(太原调研)用一个平面去截下列几何体,其截面可能是六边形的几何体是()A圆柱 B圆锥 C三棱柱 D四棱柱
5一个圆柱形蛋糕,三刀最多切成()
块块块块
6用一个平面分别截六棱柱、长方体、圆柱、圆锥,得到的截面不可能为四边形的几何体是_______
7用一个平面去截一个正方体,所得截面的边数最少是______,最多是______ 8用一个平面去截一个圆柱:
(1)所得截面可能是三角形吗
(2)如果能得到正方形的截面,那么圆柱的底面半径和高有什么关系
9过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其展
开图正确的为
10如图,有一个外观为圆柱形的物体,它的内部构造看不到,当分别用一组平面沿水平方向(自上而下)和竖直方向(自左而右)截这个物体时,得到了如图所示的(1)(2)两组形状不同的截面,请你试着说出这个物体的内部构造
参考答案
6圆锥
6
8解:(1)用一个平面去截一个圆柱,所得截面不可能是三角形(2)圆柱的底面半径r与圆柱的高h之间的关系为h≤2r
10解:这个圆柱的内部构造为:圆柱中间有一球状空洞,即空心球。

1.3截一个几何体、1.4从三个方向看物体的形状2021-2022学年数学北师大版七年级上册课时作业

1.3截一个几何体、1.4从三个方向看物体的形状2021-2022学年数学北师大版七年级上册课时作业

1.3截一个几何体、1.4从三个方向看物体的形状—2021-2022学年数学北师大版七年级上册同步课时作业1.用4个完全相同的小正方体搭成如图所示的几何体,该几何体( )A.从正面看得到的形状图和从左面看得到的形状图相同B.从正面看得到的形状图和从上面看得到的形状图相同C.从左面看得到的形状图和从上面看得到的形状图相同D.三种形状图都相同2.下面几何体的截面图可能是圆的是()A.正方体B.圆锥C.长方体D.棱柱3.如图,将小正方体切去一个角后再展开,其平面展开图正确的是( )A. B.C. D.4.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时,两圆柱公共部分形成的几何体.图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是( )A. B. C. D.5.用平面去截正方体,在所得的截面中,不可能出现的是()A.四边形B.五边形C.六边形D.七边形6.下列说法错误的是( )A.三棱锥的截面一定是三角形B.三棱柱的各个侧面是四边形C.圆柱的截面中必然有曲线D.若三棱柱的底面边长相等,则各个侧面面积相等7.如图所示,用一个平面去截一个圆柱,则截得的形状应为( )A. B. C. D.8.将如图所示的直角三角形ABC绕直角边AC所在直线旋转一周,所得几何体从左面看得到的平面图形是( )A. B. C. D.9.由一些大小相同的小正方体搭成的几何体从左面看和从上面看所得到的图形如图所示,则搭成该几何体的小正方体的个数最多为( )A.7B.8C.9D.1010.图所示的几何体中,主视图的轮廓是三角形的是_____________.11.如图,正三棱柱的底面周长为9,截去一个底面周长为3的正三棱柱,所得几何体的俯视图的周长是__________.12.如图是由若干个相同的小正方体组合而成的几何体,从正面,左面和上面三个方向观察该几何体所得的三个形状图中面积最小的是____________.13.如图所示,长方形ABCD的长AB为10cm,宽AD为6cm,把长方形ABCD绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.14.由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如图所示,数字表示该位置上的小正方体个数.(1)请在图中画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为__________;(3)在不改变主视图和俯视图的情况下,最多可添加________个小正方体.答案以及解析1.答案:A解析:如图所示:故该几何体从正面看得到的形状图和从左面看得到的形状图相同.故选A.2.答案:B解析:长方体和棱柱的截面都不可能有弧度,所以截面不可能是圆,而圆锥只要截面与底面平行,截得的就是圆.故选B.3.答案:D解析:观察图形可知,将小正方体切去一个角后再展开,其平面展开图是.故选D.4.答案:A解析:横向圆柱的俯视图是正方形,纵向圆柱的俯视图是圆,正方体的俯视图是正方形,结合题图可知几何体俯视图中两正方形横向并排,且圆在右侧正方形内.故选A.5.答案:D解析:因为正方体一共6个面,故截面不可能是七边形,故选D.6.答案:C解析:A选项中三棱锥的截面一定是三角形是正确的,不符合题意;B选项中三棱柱的各个侧面是四边形是正确的,不符合题意;C选项中圆柱的截面中必然有曲线是错误的,符合题意;D选项中若三棱柱的底面边长相等,则各个侧面面积相等是正确的,不符合题意.故选C.7.答案:B解析:平面平行圆柱底面截圆柱可以得到一个圆.而倾斜截面得到的是椭圆,故选B.8.答案:D解析:直角三角形ABC 绕直角边AC 所在直线旋转一周,所得几何体是圆锥,从左面看得到的平面图形是等腰三角形,故选D.9.答案:C解析:由从上面看所得到的图形易得最底层有6个小正方体,第二层最多有3个小正方体,所以搭成这个几何体的小正方体最多为369+=(个).故选C.10.答案:②③解析:①的主视图的轮廓是矩形;②的主视图的轮廓是三角形,③的主视图的轮廓是等腰三角形,故答案是②③.11.答案:8解析:俯视图是一个梯形.上底是1,下底是3,两腰是2,周长是12238+++=.12.答案:从左面看得到的形状图解析:如图,从正面看得到的形状图由5个小正方形组成,从左面看得到的形状图由3个小正方形组成,从上面看得到的形状图由5个小正方形组成,故面积最小的是从左面看得到的形状图.13.答案:【解】由题可得,把长方形ABCD 绕AB 边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为6cm ,高为10cm ,所以截面的最大面积为()26210120cm ⨯⨯=. 14.答案:(1)该几何体的主视图和左视图如图所示.(2)32.给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32.(3)1.在俯视图中标数字“2”的正方形的位置上再添加1个小正方体,不会改变主视图和俯视图.。

初一数学截一个几何体试题

初一数学截一个几何体试题

初一数学截一个几何体试题1.(2013•沙市区三模)如图是一个底面为正方形的长方形,现将左图中的长方体切掉一个“角”后变成了右图的几何体,则右图的俯视图是()A.B.C.D.【答案】C【解析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解:从上面看易得到正方形右下角有一条斜线,图形为.故选C.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2.(2010•资阳)用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是()A.球体B.圆柱C.圆锥D.三棱锥【答案】B【解析】根据圆锥、圆柱、球体的几何特征,分别分析出用一个平面去截该几何体时,可能得到的截面的形状,逐一比照后,即可得到答案.解:A、用一个平面去截一个球体,得到的图形只能是圆,故A选项错误;B、用一个平面去截一个圆柱,得到的图形可能是圆、椭圆、四边形,故B选项正确;C、用一个平面去截一个圆锥,得到的图形可能是圆、椭圆、抛物线、三角形,不可能是四边形,故C选项错误;D、用一个平面去截一个三棱锥,得到的图形可能是三角形,不可能是四边形,故D选项错误;故选:B.点评:本题考查了圆锥、圆柱、球体、三棱锥的几何特征,其中熟练掌握相关旋转体的几何特征,培养良好的空间想象能力.3.(2008•茂名)用平面去截下列几何体,截面的形状不可能是圆的几何体是()A.球B.圆锥C.圆柱D.正方体【答案】D【解析】根据圆锥、圆柱、球、正方体的形状特点判断即可.解:正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形,截面的形状不可能是圆.故选D.点评:本题考查几何体的截面,关键要理解面与面相交得到线.4.(2005•嘉兴)圆锥的轴截面是()A.梯形B.等腰三角形C.矩形D.圆【答案】B【解析】根据圆锥的形状特点判断即可.解:圆锥的轴垂直于底面且经过圆锥的底面的圆心,因此圆锥的轴与将轴截面分成了两个全等的三角形,因此,轴截面应该是等腰三角形.故选B.点评:截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.5.(2004•泸州)如图,从边长为10的正方体的一顶点处挖去一个边长为1的小正方体,则剩下图形的表面积为()A.600B.599C.598D.597【答案】A【解析】由图象可知,挖去小正方体后,其实剩下的图形的表面积与原正方体的面表积是相等的.解:由图象可知,挖去小正方体后,其实剩下的图形的表面积与原正方体的面表积是相等的,因此,剩下图形的表面积=600.故选A.点评:本题主要考查正方体的截面.挖去的正方体中相对的面的面积都相等.6.(2003•金华)在下列几何体中,轴截面是等腰梯形的是()A.圆锥B.圆台C.圆柱D.球【答案】B【解析】首先可排除C、D,再根据圆锥、圆台的形状特点判断即可.解:圆锥的轴截面是等腰三角形,圆柱的轴截面是长方形,球的轴截面是圆.因为根据圆台的定义:以直角梯形垂直于底边的腰所在直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫做圆台.旋转轴叫做圆台的轴.那么它的轴截面就应该是等腰梯形.故选B.点评:本题考查几何体的截面,关键要理解面与面相交得到线.注意圆台的定义.7.用平面截下列几何体,相应的截面形状是()A. B. C.【答案】C【解析】利用已知物体的形状以及平面与结合体的位置关系进而得出答案.解:如图所示:用平面截此几何体,可得相应的截面形状是梯形.故选:C.点评:本题考查几何体的截面,关键要理解面与面相交得到线.8.用一个平面去截圆锥,截面图形不可能是()A.B.C.D.【答案】C【解析】根据圆锥的形状特点判断即可,也可用排除法.解:如果用平面取截圆锥,平面过圆锥顶点时得到的截面图形是一个等腰三角形,如果不过顶点,且平面与底面平行,那么得到的截面就是一个圆,如果不与底面平行得到的就是一个椭圆或抛物线与线段组合体,所以不可能是直角形.故选;C.点评:此题主要考查了截一个几何体,截面的形状既与被截的几何体有关,还与截面的角度和方向有关.对于这类题,最好是动手动脑相结合,亲自动手做一做,从中学会分析和归纳的思想方法.9.把正方体的八个角切去一个角后,余下的图形有()条棱.A.12或15B.12或13C.13或14D.12或13或14或15【答案】D【解析】分四种不同的切法来讨论,分别切去相邻三条棱的全部或者部分.解:分为四种不同的切法:第一种:切去相邻的三条棱.那么余下的图形仍然是12条棱;第二种:切去相邻的三条棱中的两条棱,第三条棱切去一部分,那么余下的图形是13条棱;第三种:切相邻三条棱中的一条棱和另两条棱的一部分,那么余下的图形是14条棱;第四种:切去相邻三条棱中每条棱的一部分,那么余下的图形是15条棱.故选D.点评:本题主要考查截一个几何体的问题,截面的形状随截法的不同而改变,所以要分不同的情况讨论.10.用一个平面去截一个长方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形【答案】D【解析】长方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此不可能是七边形.故选D.点评:本题考查正方体的截面.长方体有六个面,截面与其六个面相交最多得六边形,不可能是七边形或多于七边的图形.。

度北师大版版数学七年级上册同步练习: 1.3 截一个几何体(word解析版)

度北师大版版数学七年级上册同步练习: 1.3 截一个几何体(word解析版)

2019-2019学年度北师大版版数学七年级上册同步练习1.3 截一个几何体(word解析版)学校:___________姓名:___________班级:___________一.选择题(共12小题)1.用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱C.圆柱D.圆锥2.如图所示,用一个平面分别去截下列水平放置的几何体,所截得的截面不可能是三角形的是()A.B.C.D.3.下列几何体的截面形状不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱4.用一个平面去截一个如图的圆柱体,截面不可能是()A.B.C.D.5.如图,一个正方体截去一个角后,剩下的几何体面的个数和棱的条数分别为()A.6,11 B.7,11 C.7,12 D.6,126.经过圆锥顶点的截面的形状可能是()A.B. C.D.7.用一个平面分别去截下列几何体,截面不能得到圆的是()A.B.C.D.8.一个物体的外形是长方体,其内部构造不详.用5个水平的平面纵向平均截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是()A.球体B.圆柱C.圆锥D.球体或圆锥9.用一平面去截下列几何体,其截面可能是长方形的有()A.4个 B.3个 C.2个 D.1个10.用一个平面去截如图的长方体,截面不可能为()A.B.C.D.11.用一个平面按照如图所示的位置与正方体相截,则截面图形是()A.B.C.D.12.用平面去截如图所示的三棱柱,截面形状不可能是()A.三角形B.四边形C.五边形D.六边形二.填空题(共10小题)13.如图是一个三棱柱,用一个平面去截这个三棱柱,形状可能的截面的序号是.14.用平面截一个几何体,若截面是圆,则几何体是(写出两种)15.如图所示,截去正方体一角变成一个新的多面体,这个多面体有个面.16.在正方体的截面中,最多可以截出边形.17.用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是.18.要锻造一件长100mm,宽60mm,高25mm的长方体毛坯刚需要横截面积为50×50mm2的方钢长度为mm.19.用一根长28分米的木条截开后刚好能搭一个长方体的架子,这个长方体的长、宽、高的长度都是整数分米,且都不相等,那么这个长方体的体积等于立方分米.20.如图,一个表面涂满颜色的正方体,现将每条棱三等分,再把它切开变成若干个小正方体,两面都涂色的有个;只有一面涂色的小正方体有个.21.将一个长方体截去一角边长一个如图的新几何体,这个新几何体有个面,条棱,个顶点.22.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为cm2.三.解答题(共3小题)23.如图所示,长方形ABCD的长AB为10cm,宽AD为6cm,把长方形ABCD 绕AB边所在的直线旋转一周,然后用平面沿AB方向去截所得的几何体,求截面的最大面积.24.如图①,从大正方体上截去一个小正方体之后,可以得到图②的几何体.(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是A.S1>S B.S1=S C.S1<S D.无法确定(2)小明说:“设图①中大正方体各棱的长度之和为l,图②中几何体各棱的长度之和为l1,那么l1比l正好多出大正方体3条棱的长度.”你认为这句话对吗?为什么?(3)如果截去的小正方体的棱长为大正方体棱长的一半,那么图③是图②中几何体的表面展开图吗?如有错误,请予修正.25.如图所示,木工师傅把一个长为1.6米的长方体木料锯成3段后,表面积比原来增加了80cm2,那么这根木料本来的体积是多少?2019-2019学年度北师大版版数学七年级上册同步练习:1.3 截一个几何体(word解析版)参考答案与试题解析一.选择题(共12小题)1.【分析】根据正方体、棱柱、圆锥、圆柱的特点判断即可.【解答】解;A、正方体的截面可以是长方形,不符合题意;B、棱柱的截面可以是长方形,不符合题意;C、用垂直于地面的一个平面截圆柱截面为矩形,不符合题意;D、圆锥由一个平面和一个曲面,截面最多有三条边,截面不可能是长方形,符合题意.故选:D.2.【分析】根据球的主视图只有圆,即可得出答案.【解答】解:∵球的主视图只有圆,∴如果截面是三角形,那么这个几何体不可能是球.故选:B.3.【分析】根据圆柱、圆锥、球、棱柱的形状特点判断即可.【解答】解:棱柱无论怎么截,截面都不可能有弧度,自然不可能是圆,故选D.4.【分析】根据圆柱的特点,考虑截面从不同角度和方向截取的情况.【解答】解:本题中用平面截圆柱,横切就是圆,竖切就是长方形,斜切是椭圆,唯独不可能是梯形.故选:B.5.【分析】如图正方体切一个顶点多一个面,少三条棱,又多三条棱,依此即可求解.得到面增加一个,棱增加3.【解答】解:如图,一个正方体截去一个角后,剩下的几何体面的个数是6+1=7,棱的条数是12﹣3+3=12.故选:C.6.【分析】根据已知的特点解答.【解答】解:经过圆锥顶点的截面的形状可能B中图形,故选:B.7.【分析】根据一个几何体有几个面,则截面最多为几边形,由于棱柱没有曲边,所以用一个平面去截棱柱,截面不可能是圆.【解答】解:用一个平面去截圆锥或圆柱,截面可能是圆,用一个平面去截球,截面是圆,但用一个平面去截棱柱,截面不可能是圆.故选:C.8.【分析】通过观察可以发现:在正方体内部的圆自下而上由大圆逐渐变成小圆、点.【解答】解:这个长方体的内部构造为:长方体中间有一圆锥状空洞或一个球体,故选:D.9.【分析】根据圆柱、长方体、圆锥、四棱柱、圆台的形状判断即可,可用排除法.【解答】解:圆锥、圆台不可能得到长方形截面,故能得到长方形截面的几何体有:圆柱、长方体、四棱柱,一共有3个.故选:B.10.【分析】长方体的每个面都是平面,交线不可能垂直,故此截面不可能是直角.【解答】解:长方体有六个面,用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得斜三角形,故此截面可以是斜三角形、梯形,矩形,平行四边形,故A、B、C正确;故D错误.故选:D.11.【分析】用平面去截正方体时与三个面相交得三角形.【解答】解:用一个平面按如图所示方法去截一个正方体,则截面是三角形,故选:A.12.【分析】根据截面经过几个面,得到的多边形就是几边形判断即可.【解答】解:用平面去截如图所示的三棱柱,截面形状可能是三角形、四边形、五边形,不可能是六边形.故选:D.二.填空题(共10小题)13.【分析】用平面取截三棱柱,当横截时,截面为①三角形,竖着截时截面为②长方形或③梯形.【解答】解:用平面取截三棱柱,当横截时,截面为①三角形;竖着截时截面为②长方形或③梯形;因此选择①②③.故答案为:①②③14.【分析】用一个平面截一个几何体得到的面叫做几何体的截面.【解答】解:用平面去截一个几何体,若截面是圆,则几何体是球或圆柱.故答案为:球或圆柱(答案不唯一).15.【分析】截去正方体一角变成一个多面体,这个多面体多了一个面、棱不变,少了一个顶点.【解答】解:仔细观察图形,正确地数出多面体的面数是7.故答案为:7.16.【分析】正方体有六个面,用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.【解答】解:用平面去截正方体时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.故答案为:六.【分析】分别根据正方体、长方体、圆柱、圆锥的特殊性得出即可.【解答】解:用一个平面分别截正方体、长方体、圆柱、圆锥,不可能截出长方形的是圆锥.故答案为:圆锥.18.【分析】等量关系为:长方体毛坯的体积=截面积为50×50mm2的方钢的体积,把相关数值代入即可求解.【解答】解:设需要截面50×50mm2的方钢xmm,由题意得:100×60×25=50×50x,解之得:x=60,答:需要截面50×50mm2的方钢60mm.故答案是:60.19.【分析】根据长方体的棱长总和=(长+宽+高)×4,求出长、宽、高的和是6米,因为长、宽、高的长度均为整数米,且互不相等,所以推断长、宽、高分别为3米、2米、1米,再根据长方体的体积v=abh,列式解答.【解答】解:28÷4=7(分米),7=4+2+1,所以长、宽、高分别为4分米、2分米、1分米,体积:4×2×1=8(立方分米);即:这个长方体体积是8立方米.故答案为:8.20.【分析】根据图示可发现除顶点外位于棱上的小方块两面,涂色位于表面中心的一面涂色.【解答】解:根据以上分析:有一条边在棱上的正方体有12个两面涂色;每个面的正中间的一个只有一面涂色的有6个.故答案为:12,6.【分析】新几何体与原长方体比较,增加一个面,棱的条数没有变化,顶点减少一个.【解答】解:长方体截去一角边长一个如图的新几何体,这个新几何体有7个面,有12条棱,7个顶点.故答案为7,12,7.22.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.【解答】解:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.三.解答题(共3小题)23.【分析】长方形ABCD绕直线AB旋转一周得到一个圆柱体,沿线段AB的方向截所得的几何体其中轴截面最大.【解答】解:由题可得,把长方形ABCD绕AB边所在的直线旋转一周,得到的几何体为圆柱,圆柱的底面半径为6cm,高为10cm,∴截面的最大面积为6×2×10=120(cm2).24.【分析】(1)根据平移的性质可得出S1与S的大小关系;(2)利用立方体的性质得出得出棱长之间的关系;(3)利用立方体的侧面展开图的性质得出即可.【解答】解:(1)设原大正方体的表面积为S,图②中几何体的表面积为S1,那么S1与S的大小关系是相等;故选:B;(2)设大正方体棱长为1,小正方体棱长为x,那么l1﹣l=6x.只有当x=时,才有6x=3,所以小明的话是不对的;(3)如图所示:25.【分析】根据长方体的切割特点可知,切割成三段后,表面积是增加了4个长方体的侧面的面积,由此利用增加的表面积即可求出这根木料的侧面积,再利用长方体的体积公式即可解答问题.【解答】解:∵把长方体木料锯成3段后,其表面积增加了四个截面,因此每个截面的面积为80÷4=20cm2,∴这根木料本来的体积是:1.6×100×20=3200(cm3).。

北师大版七年级上册《1.3截一个几何体》同步练习含答案

北师大版七年级上册《1.3截一个几何体》同步练习含答案

北师大新版七年级上学期《1.3截一个几何体》2018年同步练习一.选择题(共7小题)1.下列说法上正确的是()A.长方体的截面一定是长方形B.正方体的截面一定是正方形C.圆锥的截面一定是三角形D.球体的截面一定是圆2.如图,正方体的棱长为cm,用经过A、B、C三点的平面截这个正方体,所得截面的周长是()A.2cm B.3cm C.6cm D.8cm 3.一个圆柱形蛋糕,三刀最多切成()A.3块B.4块C.6块D.8块4.图中长方体的截面是()A.B.C.D.5.长方体的截面中,边数最多的多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示的一块长方体木头,想象沿虚线所示位置截下去所得到的截面图形是()A.B.C.D.7.如图是一个长方形截去两个角后的立体图形,如果照这样截去长方形的八个角,那么新的几何体的棱有()A.26条B.30条C.36条D.42条二.填空题(共6小题)8.如图所示,用四个不同的平面去截一个正方体,请根据截面的形状填空:(1)截面是;(2)截面是;(3)截面是;(4)截面是.9.一个正方体的8个顶点被截去后,得到一个新的几何体,这个新的几何体有个面,个顶点,条棱.10.用一个平面截下列几何体:①长方体,②六棱柱,③球,④圆柱,⑤圆锥,截面能得到三角形的是(填写序号即可)11.用一个平面去截一个三棱柱,截面可能是.(填一个即可)12.把一个长方体切去一个角后,剩下的几何体的顶点个数为.13.用一个平面截一个圆柱,如果能得到一个截面是正方形,那么圆柱的底面直径d与圆柱的高h之间的关系.三.解答题(共2小题)14.一个物体的外形是圆柱,但不清楚它的内部结构,现在用一组水平的平面去截这个物体,从上至下的五个截面依次如图所示,则这个物体可能是下列选项中的哪一个?15.如果用平面截掉一个长方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?参考答案一.选择题1.D.2.C.3.D.4.B.5.C.6.B.7.C.二.填空题8.正方形;正方形;长方形;长方形.9.14、24、36.10.①②⑤.11.三角形(答案不唯一).12.7,8,9,1013.h=d.三.解答题14.解:这个圆柱的内部构造为:圆柱中间有一双侧圆台状空洞.故选B.15.解:剩下的几何体可能有:7个顶点、12条棱、7个面;或8个顶点、13条棱、7个面;或9个顶点、14条棱、7个面;或10个顶点、15条棱、7个面.如图所示:。

北师大版2020年七年级数学上册1.3《截一个几何体》练习卷

北师大版2020年七年级数学上册1.3《截一个几何体》练习卷

2020年七年级数学上册1.3《截一个几何体》练习卷一、选择题1.截去四边形的一个角,剩余图形不可能是()A.三角形; B.四边形; C.五边形; D.圆2.用一个平面去截一个正方体,截面图形不可能是()A.长方形; B.梯形; C.三角形; D.圆3.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是()A.圆柱; B.圆锥; C.正方体; D.球二、填空题4.现有一张长52cm,宽28cm的矩形纸片,要从中剪出长15cm,宽12cm的矩形小纸片(不能粘贴),则最多能剪出__________张.5.如图1,长方体中截面BB1D1D是长方体的对角面,它是__________.6.在正方体中经过从一个顶点出发的三条棱的中点的截面是_________.7.用一个平面去截一个球体所得的截面图形是__________.三、解答题8.如果用一个平面截一个正方体的一个角,剩下的几何体有几个顶点、几条棱、几个面?9.几何体中的圆台、棱锥都是课外介绍的,所以我们就在这个题目里继续为大家介绍这两种几何体的截面.(1)圆台用平面截圆台,截面形状会有_____和_______这两种较特殊图形,截法如下:(2)棱锥由于棱锥同时具有棱柱的侧面是平面的特点,又具备了圆锥的特点的特征.所以截面形状必须兼顾这两方面.截面可能出现的形状是10.如图2,将等腰三角形对折沿着中间的折痕剪开,得到两个形状和大小都相同的直角三角形,将这两个直角三角形拼在一起,使得它有一条相等的边是公有的,你能拼出多少种不同的几何图形?并请你分别说出所拼的图形的名称.11.用火柴棒拼搭等边三角形(1)用火柴棒拼搭出两个边长等于棒长的等边三角形,你有几种拼法,最少需要几根火柴棒?(2)拼6个边长等于棒长的等边三角形,看谁用的棒最少?12.用一个平面去截圆锥,可以得到几种不同的图形?动手试一试.参考答案一、5.D 6.C 7.D二、1.7 2.矩形3.三角形4。

初中数学七年级上册《1.3截一个几何体》习题

初中数学七年级上册《1.3截一个几何体》习题

初中数学七年级上册《1.3截一个几何体》习题一、基础过关1.如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A.祝B.您C.事D.成2.如图给定的是纸盒的外表面,下面能由它折叠而成的是()3.用平面去截一个正方体,截面的形状不可能是()A.四边形B.五边形C.六边形D.七边形4.如图所示的图形可以被折成一个长方体,则该长方体的表面积为cm2.5.如图,将正方体沿面AB′C剪下,则截下的几何体为.6.已知小立方块面A,B,C的对面上分别写有数字4,5,6,如图所示,小立方块沿平面上写有数字1→2→3→4→5→6→7→8的方向滚动,那么当小立方块滚动到8时,小立方块最上面的面写的是.二、综合训练7.如图是一个棱柱形状的食品包装盒的侧面展开图.(1)请写出这个包装盒的多面体形状的名称.(2)根据图中所标的尺寸,计算这个多面体的侧面积.8.如图是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果A面在长方体的底部,那么哪一个面会在上面?(2)如果F面在前面,B面在左面,那么哪一个面会在上面?(字母朝外)(3)如果C面在右面,D面在后面,那么哪一个面会在上面?(字母朝外)三、拓展应用9.如图1,大正方体上截去一个小立方块后,可得到图2的几何体.(1)设原大正方体的表面积为S,图2中几何体的表面积为S′,那么S′与S的大小关系是()A.S′>SB.S′=SC.S′<SD.不确定(2)小明说:“设图1中大正方体各棱的长度之和为c,图2中几何体各棱的长度之和为c′,那么c′比c正好多出大正方体3条棱的长度.”若设大正方体的棱长为1,小立方块的棱长为x,请问x 为何值时,小明的说法才正确?(3)如果截去的小立方块的棱长为大正方体棱长的一半,那么图3是图2中几何体的展开图吗?如有错误,请在图3中修正.参考答案一、基础过关1.D.2.B.3. D.4. 885.三棱锥6. 6二、综合训练7. (1)共有3个长方形组成侧面,2个三角形组成底面,故是三棱柱.(2)因为AB=5,AD=3,BE=4,DF=6,所以侧面积为3×6+5×6+4×6=18+30+24=72.8.由图可知,“A”与“F”相对,“B”与“D”相对,则“C”与“E”相对.(1)因为面“A”与面“F”相对,所以A面是长方体的底部时,F面在上面.(2)由图可知,如果F面在前面,B面在左面,那么“E”面在下面,因为“C”与“E”相对,所以C面会在上面.(3)由图可知,如果C面在右面,D面在后面,那么“F”面在下面,因为“A”与“F”相对,所以A面会在上面.三、拓展应用(1)选B.因截去的是小立方块,且截掉的是小立方块的3个面,在大正方体中又“截出”的面是小立方块的另外3个面,而正方体的6个面相等,故表面积不变.(2)由题意得:6x=3,所以x=12,所以x为12时,小明的说法才正确.(3)不正确,如图:。

北师大版七年级数学(上册)截一个几何体 同步练习(附习题答案)

北师大版七年级数学(上册)截一个几何体 同步练习(附习题答案)

1.3 截一个几何体1.我们学过的几何体有哪些?它们分别是由几个面围成的?这些面是平面还是曲面?2.线与线相交成______,面与面相交成_________.阅读教材完成下列问题:1. 用一个平面从不同方向去截同一个几何体,所得到的截面形状会相同吗?①用一个平面去截正方体,截面可能出现那几种情况?先想一想,再做一做,你能按照下面的方法做吗?________ _______ _______________ _______ _______②用平面截圆柱体,可能出现哪几种情况?试试看.③用平面去截一个圆锥,能截出_____和_____等多种截面(还有其他截面,初中不予研究)④用平面去截球体,只能出现一种形状的截面——___________.2.请将上面的情况进行归纳.1. 判断题①用一个平面去截一个正方体,截出的面一定是正方形或长方形.()②用一个平面去截一个圆柱,截出的面一定是圆. ()③用一个平面去截圆锥,截出的面一定是三角形. ()④用一个平面去截一个球,无论如何截,截面都是一个圆.()2.选择题①用一个平面去截圆锥,得到的平面不可能是()②用一个平面去截一个圆柱,得到的图形不可能是()③如图,用平面去截圆锥,所得截面的形状是()④用一个平面截正方体,若所得的截面是一个三角形,则留下的较大的一块几何体一定有()A.7个面B.15条棱C.7个顶点D.10个顶点⑤如图,用平面去截圆柱,截面形状是()⑥用一个平面截圆柱,则截面形状不可能是()A.圆B.正方体C.长方体D.梯形3.用一个平面去截五棱柱,边数最多的截面是_______形.为什么?4.用一个平面去截一个几何体,如果截面的形状是正方形,你能想象出这个几何体原来的形状吗?如果截面形状有圆、三角形,那么这个几何体可能是什么?参考答案1.错错错对2.C D D A C D3.七,共有七个面.4.略.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 截一个几何体
一、选择题
1.竖直放置的正四棱柱(即底面是水平放置的),用水平放置的平面去截所得的截口的形状是()
A.长方形B.正方形C.梯形D.截口形状不定
2.用平面截正方体,所得截口的形状有()
A.一种B.两种C.三种D.三种以上
3.竖直放置的圆柱体,用竖直放置的平面去截,所得的截口的形状是()
A.圆形B.椭圆形C.长方形或正方形D.形状不定
二、判断题
1.用平面截正方体得到的截口是正方形.()
2.用平面截长方体能够得到三角形截口.()
3.用平面无论怎样截五棱柱体,得到的截口都是五边形.()
实用文档 3。

相关文档
最新文档