基因工程 重点复习

合集下载

基因工程复习重点

基因工程复习重点

绪论1.理论上的三大发现:(1)1944年,美国微生物学家Avery证明基因就是DNA分子,提出 DNA是遗传信息的载体。

(2)1953年,美国科学家Watson 和英国科学家Crick提出 DNA Double Helix model。

1958年,Meselson 和Stahl证明 DNA半保留复制。

(3)1968年,Nirenberg、Holley和Khorana解读了遗传密码及其在蛋白质合成方面的技能而分享诺贝尔生理医学奖。

2.技术上的三大发现:(1)限制性核酸内切酶的发现(1962年Arber )(2)DNA连接酶的发现(1967Gellert)(3)基因工程载体的发现3.基因工程研究的内容:(1)从生物有机体复杂的基因组中,分离出带有目的基因的DNA片段。

(2)在体外,将带有目的基因的DNA片段连接到能够自我复制并具有选择标记的载体分子上,形成重组DNA分子。

(3)将重组DNA分子引入到受体细胞(亦称宿主细胞或寄主细胞)。

(4)带有重组体的细胞扩增,获得大量的细胞繁殖群体(菌落)。

(5)从大量的细胞繁殖菌落中,筛选出具有重组DNA分子的细胞克隆。

(6)将选出的细胞克隆的目的基因进行进一步研究分析;(7)将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。

第二章基因克隆所需的工具酶一、限制性内切酶1.限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸内切酶。

它们主要是从原核生物中分离纯化出来的。

限制作用:是指一定类型的细菌可以通过限制性酶的作用,破坏入侵的外源DNA(如噬菌体DNA等),使得外源DNA 对生物细胞的入侵受到限制修饰作用:生物细胞(如宿主)自身的DNA分子合成后,通过修饰酶的作用:在碱基中特定的位置上发生了甲基化而得到了修饰,可免遭自身限制性酶的破坏。

2.核酸内切限制酶的类型:I型、II型、III型3.核酸内切限制酶的命名法由H.O.Smith和D.Nathans(1973)提议的命名系统4.Ⅱ型核酸限制性内切酶的基本特性:a. 在DNA分子双链的特异性识别序列部位,切割DNA分子产生链的断裂;b. 2个单链断裂部位在DNA分子上的分布,通常不是彼此直接相对的;c.??? 因此,断裂的结果形成的DNA片段,也往往具有互补的单链延伸末端。

高考生物《基因工程知识点》总汇

高考生物《基因工程知识点》总汇

高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。

8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。

10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。

以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。

cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。

基因工程复习要点

基因工程复习要点

一名词解释:1基因:是遗传信息的基本单位,携带着某种蛋白质或的遗传信息。

从化学本质上看,基因是一段携带特定遗传信息的脱氧核糖核苷酸()序列,是构成巨大遗传单位染色体的组成部分。

2基因工程:按照人们的愿望,进行严密的设计,利用体外重组和转基因等生物技术,有目的地改造生物性状使之具有满足人们特定需求的能力。

最突出的优点:打破了常规育种难以突破的物种之间的界限,使不同的物种之间可以进行遗传信息的重组和转移。

3 :熔点温度或者解链温度,是变性进行到一半时的温度4同裂酶:有时,一些限制性内切酶虽然来源不同,但是识别序列相同,这样的酶称为同裂酶(同切酶或异源同工酶)。

此种酶切割位点可同可不同。

5 技术:是一种在体外快速扩增特定基因或序列的方法,即聚合酶链式反应技术。

(已知的短片段1以内)6质粒不相容性:不同质粒有的可共存于同一细胞中,但有的不行。

不能同寓于一个细胞中的不同质粒称为不相容性质粒。

7转录单元:始于启动子,止于终止子,中间是一段转录区,转录为单链的一段序列8杂种位点::由一对同尾酶分别产生的粘性末端共价结合形成的位点。

一般不能被原来的任何一种同尾酶识别。

9基因表达:基因通过的转录和的转译等过程,将其所携带的遗传信息转变成蛋白质(或转录本)的过程。

10基因组文库:某一特定生物的很多克隆的集合,其中克隆数足够大以覆盖每一个基因。

11 :开放阅读框,以起始密码子开始终止密码子结束的一串三联体核苷酸序列。

起始密码子:终止密码子:12克隆:动词:是指从一个共同祖先经无性繁殖得到的一群遗传上同一的分子、细胞或个体所组成的特殊生命群体;名词:指从同一个祖先产生这类同一的分子群体、细胞群体或个体群体的过程。

13蛋白质印迹杂交技术:将蛋白样本通过聚丙烯酰胺电泳按分子量大小分离,再转移到杂交膜上,然后通过一抗/二抗复合物对靶蛋白进行特异性检测的方法。

14同尾酶:指来源不同、识别靶序列不同但产生相同的粘性末端的核酸内切酶。

基因工程知识要点

基因工程知识要点

基因⼯程知识要点第⼀章1.基因⼯程:是在分⼦⽔平上进⾏的遗传操作,指将⼀种或多种⽣物体(供体)的基因或基因组提取出来,或者⼈⼯合成的基因,按照⼈们的愿望进⾏严密的设计,经过体外加⼯重组,转移到另⼀种⽣物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。

2.基因⼯程的基本过程为哪些?切—接—转—增—检①获得⽬的基因:从供体细胞分离出基因组DNA,⽤内切酶将外源DNA切开。

——切(同时选择运载⽬的基因的载体)②⽬的基因与载体DNA拼接:⽤DNA连接酶将含有外源基因的DNA⽚段接到载体分⼦上,形成DNA重组分⼦。

——接③重组体分⼦导⼊受体细胞:借助于细胞转化⼿段将DNA重组分⼦导⼊受体细胞中。

——转④短时间培养转化细胞,以扩增DNA重组分⼦或使其整合到受体细胞的基因组中。

——增⑤筛选和鉴定转化细胞,获得使外源基因⾼效稳定表达的基因⼯程菌或细胞。

——检3.哪些基因是真核⽣物特有的?①假基因:核苷酸序列同其相应的正常功能基因基本相同,但却不能合成出功能蛋⽩质的失活基因。

②基因家族:由功能相关的基因成套组合形成③重复序列哪些是原核⽣物特有的:插⼊序列。

哪些是真核和原核共有的:移动基因、重叠基因第⼆章1.寄主细胞控制的限制与修饰宿主控制限制——核酸限制性内切酶宿主控制修饰——修饰的甲基转移酶以λ(k)噬菌体侵染E.coli B菌株为例解释寄主控制与修饰的现象。

(简述寄主控制的限制与修饰现象。

⼤多数细菌的噬菌体侵染都存在着⼀些功能性障碍。

所谓的寄主控制的限制与修饰现象简称(R/M体系)。

R/M体系:寄主是由两种酶活性配合完成的⼀种是修饰的甲基转移酶——修饰另⼀种是核酸内切限制酶——限制R/M体系的作⽤:保护⾃⾝的DNA不受限制;破坏外源DNA使之迅速降解;2. 简述Ⅰ型、Ⅱ型和Ⅲ型核酸内切酶的基本特性。

(1)Ⅰ型酶基本特性①有内切酶活性和甲基化酶活性——互斥②需要ATP、SAM(S—腺苷甲硫氨酸)和Mg 2+辅助因⼦;③EcoB和EcoK是由三种不同亚基组成。

基因工程复习重点

基因工程复习重点

Southern blotting:即DNA印迹杂交,以碱基互补配对为原则,将DNA影印转移与标记探针进行高特异性杂交的方法。

Cosmid:黏粒载体,含有λ噬菌体的cos位点和质粒的复制子,是专门为克隆大片段设计的载体。

cDNA library:利用某种生物的总mRNA合成cDNA,再将这些cDNA与载体连接,转入细菌细胞中进行保存和扩增称cDNA文库。

RACE:通过反转录和PCR技术进行cDNA末端快速扩增,得到基因转录本的未知序列,从而获得mRNA完整序列的方法。

RT-PCR:即逆转录PCR,先用逆转录酶作用于mRNA,以寡聚dT为引物合成cDNA 第一链,然后用已知一对引物,扩增嵌合分子的一种方法。

MCS:包含多个限制酶切位点的一段短的DNA序列。

插入失活:若把外源DNA片段插入到载体的选择标记基因中而使此基因失活,丧失其原有的表现特性,此方法叫插入失活。

PCR:是模拟体内DNA复制条件,应用DNA聚合酶反应,特异性扩增某一DNA片段的技术。

mRNA差异显示技术:根据真核生物mRNA带有3’poly(dA) 的结构,合成poly(dT)12MN引物与mRNA的3’端互补,在反转录酶的作用下合成cDNA-mRNA 杂交分子。

然后合成5’随机引物(10bp) 和poly(dT)12MN引物,PCR扩增获得所有mRNA的cDNA分子。

巢式PCR:巢式PCR使用两对PCR引物扩增完整的片段。

第一对PCR引物扩增片段和普通PCR相似。

第二对引物称为巢式引物(因为他们在第一次PCR扩增片段的内部)结合在第一次PCR产物内部,使得第二次PCR扩增片段短于第一次扩增。

实时荧光定量PCR:在PCR反应体系中加入荧光基因,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析。

蛋白质印迹法:又称免疫印迹法,在蛋白质凝胶电泳和固相免疫测定基础上发展起来的蛋白质检测技术,检测蛋白样品中是否存在抗原,也可以评价新抗体的特异性。

大学基因工程复习归纳重点复习资料

大学基因工程复习归纳重点复习资料

基因工程复习归纳第一章绪论1.基因工程的定义:是指按照人们的愿望,经过严密的设计,将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体/宿主)内,使之按照人们的意愿稳定遗传、并表达出新的性状的技术。

2.基因工程概念的发展:遗传工程→DNA重组技术→分子/基因克隆(Molecular/Gene→基因工程→基因操作。

应用领域以“基因工程”、“DNA重组”为主基因工程基因工程的历史性事件1973:Boyer和Cohen建立DNA重组技术1978:Genetech公司在大肠杆菌中表达出胰岛素1982:世界上第一个基因工程药物重组人胰岛素上市1988:PCR技术诞生1989:我国第一个基因工程药物rhIFNα1b上市2003: 世界上第一个基因治疗药物重组腺病毒-p53上市3.基因工程的三大关键元件基因(供体):外源基因、目的基因载体:能将外源基因带入受体细胞,并能稳定遗传的DNA分子(克隆载体、表达载体)。

宿主(受体):,能摄取外源DNA、并能使其稳定维持的细胞(组织、器官或个体)。

4.基因工程的基本步骤(切、接、转、增、检(大肠杆菌是中心角色)(1)目的基因的获取:从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。

(2)重组体的制备:将目的基因的DNA片断插入到能自我复制并带有选择性标记(抗菌素抗性)的载体分子上。

(3)重组体的转化:将重组体(载体)转入适当的受体细胞中。

(4)克隆鉴定:挑选转化成功的细胞克隆(含有目的基因)。

(5)目的基因表达:使导入寄主细胞的目的基因表达出我们所需要的基因产物。

第二章 DNA重组克隆的单元操作一、用于核酸操作的工具酶1.限制性核酸内切酶(主要存在于原核细菌中,帮助细菌限制外来DNA的入侵)。

限制性核酸内切酶的功能与类型其中II型限制性核酸内切酶:切割位点专一,适于DNA重组,是DNA重组中最常用工具酶。

生物技术概论基因工程部分复习重点

生物技术概论基因工程部分复习重点

1、PCR:一种模拟DNA体内复制过程的体外DNA复制过程,在一个离心管的缓冲液体系中,加入DNA模板,d-NTPs、引物和DNA聚合酶,通过变性、退火、延伸三个温度的不断循环,使目标DNA得到快速大量的复制,需要两条合成的寡核苷酸片断和耐热的DNA聚合酶。

2、启动子:在基因序列中,标志着转录起始的可以被RNA聚合酶识别的位点(DNA区段),一般位于基因的上游。

3、终止子:位于基因的编码序列之外(一般在下游)的一段标志着转录停止的RNA聚合酶识别位点。

4、Ti质粒:根癌农杆菌核外的一种环状双链DNA分子,约200kb,Ti质粒的结构上可分为毒性区、T-DNA区、结合转移区、复制起始区。

5、SD序列:位于起始密码子上游的一段保守序列,为细菌核糖体有效结合和翻译起始所必须,一般长约3-9bp,位于起始密码子上游3-11碱基的位置,它与16S核糖体RNA的3端互补,控制翻译的起始。

6、反义链:下链或模板链,在基因的DNA双链中,转录时作为mRNA合成模板的那条单链。

7、基因文库:是指汇集了某一生物基因组DNA全部序列的重组体DNA群体(转化子群)。

具体来说,构建基因文库时,首先将代表某一生物类型的全部DNA片段分别插入到特定载体上,然后将重组载体导入到宿主细胞并获得大量的含有重组载体的克隆(一般为单菌落或噬菌斑)。

8、DNA探针:经放射性或非放射性物质标记已知的特定的DNA序列。

9、载体构建:用限制性酶切取目的基因,再用同一种限制酶切开质粒,用连接酶把目的基因和质粒连接起来的过程。

10、转化:将普通的质粒分子导入受体细胞的过程。

11、感受态细胞:经过处理后处于容易接受外源DNA状态的细胞。

12、多克隆位点:克隆载体中的一段用于插入外源DNA片段的特定区域,由一系列的紧密相连的限制性内切酶位点组成,而且每个限制性内切酶位点应该在整个载体中是唯一的。

13、选择标记基因:在基因工程中的一类用于选择转化细胞(菌)的抗性基因,通常是一些抗生素抗性基因,比如对氨苄青霉素、四环素氯霉素、卡那霉素以及潮霉素等具有抗性的基因,这样,通过在培养基中加入特定的抗生素就可以选择得到转化的细胞(菌)。

基因工程复习重点

基因工程复习重点

二、简答题1、说明限制性内切核酸酶的命名原则要点。

答:限制性内切核酸酶采用三字母的命名原则,即属名+种名+株名的各一个首字母,再加上序号. 基本原则: 3-4个字母组成,方式是:属名+种名+株名+序号; 首字母: 取属名的第一个字母,且斜体大写;第二字母: 取种名的第一个字母,斜体小写;第三字母: (1)取种名的第二个字母,斜体小写;(2)若种名有词头,且已命名过限制酶,则取词头后的第一字母代替.第四字母: 若有株名,株名则作为第四字母,是否大小写,根据原来的情况而定,但用正体. 顺序号: 若在同一菌株中分离了几种限制酶,则按先后顺序冠以I,Ⅱ,Ⅲ,…等,用正体.2、什么是限制性内切核酸酶的星号活性?受哪些因素影向?答:Ⅱ类限制酶虽然识别和切割的序列都具有特异性,但是这种特异性受特定条件的限制,即在一定环境条件下表现出来的特异性。

条件的改变,限制酶的特异性就会松动,识别的序列和切割都有一些改变,改变后的活性通常称第二活性,而将这种因条件的改变会出现第二活性的酶的右上角加一个星号表示,因此第二活性又称为星号活性。

概括起来,诱发星活性的因素有如下几种:(1)高甘油含量(>5%, v/v);(2)限制性内切核酸酶用量过高(>100U/ugDNA);(3)低离子强度(<25 mmol/L);(4)高pH(8.0以上);(5)含有有机溶剂,如DMSO,乙醇等;(6)有非Mg2+的二价阳离子存在(如Mn2+,Cu2+,C02+,Zn2+等)。

3、影响DNA连接酶催化连接反应的因素有哪些?答:(1)DNA的纯度(2)DNA甲基化的程度(3)酶切消化反应的温度(4)DNA的分子结构(5)核酸内切限制酶的缓冲液4、什么是Klenow酶?有哪些活性?在基因工程中有什么作用?答:Klenow酶是1974年Klenow用枯草杆菌蛋白酶水解DNA聚合酶I,得到两个片段,其中大片段的分子量为75kDa,它具有5'-3'聚合酶和3'-5'外切核酸酶的活性,小片段具有5'-3'外切核酸酶活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

质粒拷贝数即一个细胞内质粒的数量与染色体数量之比。

每种质粒在相应的宿主细胞内保持相对稳定的拷贝数。

根据在每个细胞中的分子数(拷贝数)多寡,质粒可分为两大复制类型:严谨型质粒:分子量大,低拷贝数,1-3拷贝松弛型质粒:分子量小,高拷贝数,10-60拷贝天然存在的野生型质粒由于分子量大、拷贝数低、单一酶切位点少、遗传标记不理想等缺陷,不能满足克隆载体的要求,因此往往需要以多种野生型质粒为基础进行人工构建。

理想的载体应该有两种抗菌素抗性基因。

穿梭质粒载体;人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的质粒载体。

优点;①利用大肠杆菌进行基因克隆、表达②也能利用其它细胞系统(酵母、枯草杆菌、哺乳动物细胞等)进行基因表达。

③可以自如地在两种不同寄主细胞之间来回转移基因。

蓝白斑筛选的机理由α-互补产生的Lac+ 细菌较易识别,它在生色底物X-gal(5-溴-4氯-3-吲哚-β-D-半乳糖苷)下存在下被IPTG(异丙基硫代-β-D-半乳糖苷)诱导形成蓝色菌落。

当外源片段插入到载体的多克隆位点上后会导致读码框架改变, 表达蛋白失活, 产生的氨基酸片段失去α-互补能力, 因此在同样条件下含重组质粒的转化子在生色诱导培养基上只能形成白色菌落。

在麦康凯培养基上,α-互补产生的Lac+细菌由于含β-半乳糖苷酶,能分解麦康凯培养基中的乳糖,产生乳酸,使pH下降,因而产生红色菌落,而当外源片段插入后,失去α-互补能力,因而不产生β-半乳糖苷酶,无法分解培养基中的乳糖,菌落呈白色。

这样,LacZ基因上缺失近操纵基因区段的突变株与带有完整近操纵基因区段的β-半乳糖苷酶阴性的不同突变株之间实现互补,这种互补现象叫做 -互补蛋白质分离纯化的一般程序可分为以下几个步骤:(一)材料的预处理及细胞破碎分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。

所以要采用适当的方法将组织和细胞破碎。

常用的破碎组织细胞的方法有:1. 机械破碎法2. 渗透破碎法(二) 蛋白质的抽提通常选择适当的缓冲液溶剂把蛋白质提取出来。

抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。

(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。

根据蛋白质溶解度的差异进行的分离。

常用方法:1. 等电点沉淀法2. 盐析法(四)样品的进一步分离纯化用等电点沉淀法、盐析法所得到的蛋白质一般含有其他蛋白质杂质,须进一步分离提纯才能得到有一定纯度的样品。

常用的纯化方法有:凝胶过滤层析、离子交换纤维素层析蛋白筛选(SDS)实验原理是:在电场的作用下,带电粒子能在聚丙烯凝胶中迁移,其迁移速度与带电粒子的大小、构型和所带的电荷有关。

十二烷基磺酸钠(SDS)能与蛋白质的结合,改变蛋白质原有的构象,使其变成近似于雪茄烟形的长椭圆棒,其短轴长度一样,而长轴与分子量大小成正比。

在SDS-PAGE中,SDS-复合物的迁移率不再受蛋白的电荷和形状的影响,而只与蛋白质的分子量正相关。

在一定浓度的凝胶中,由于分子筛效应,则电泳迁移率就成为蛋白质分子量的函数,实验证实分子量在15kD~200 kD 的范围内,电泳迁移与分子量的对数呈直线关系,用此法可根据已知分子量白质的电泳迁移率和分子量的对数做出标准曲线,再根据未知蛋白质的电泳迁移率求得分子量。

同时也可根据不同分离级分的蛋白条带的多少来判定分离纯化产物的纯度。

mRNA翻译的起始效率主要由其5‘ 端的结构序列所决定,称为核糖体结合位点(RBS)包涵体型异源蛋白的表达分泌型异源蛋白的表达融合型异源蛋白的表达在某些生长条件下,大肠杆菌能积累某种特殊的生物大分子,它们致密地集聚在细胞内,或被膜包裹或形成无膜裸露结构,这种水不溶性的结构称为包涵体包涵体表达形式的优点1能简化外源基因表达产物的分离操作:2能在一定程度上保持表达产物的结构稳定3对宿主细胞无伤害4外源蛋白表达高包涵体表达形式的缺点:以包涵体形式表达的重组蛋白丧失了原有的生物活性,必须通过有效的变性复性操作,才能回收得到具有正确空间构象(因而具有生物活性)的目标蛋白,因此包涵体变复性操作的效率对目标产物的收率至关重要。

(以包涵体形式表达目的蛋白的操作:如果未进行特殊设计,外源基因在大肠杆菌中表达的蛋白量占细胞总蛋白量20%以上时,表达产物一般倾向于形成包涵体。

因此,以包涵体形式表达目的基因操作的关键就是选择高表达的载体。

事实上,这种高表达率也是包涵体法的长处所在分泌型异源蛋白的表达:在大肠杆菌中表达的异源蛋白按其在细胞中的定位可分为两种形式:即以可溶性或不溶性(包涵体)状态存在于细胞质中;或者通过运输或分泌方式定位于细胞周质,甚至穿过外膜进入培养基中。

蛋白产物N端信号肽序列的存在是蛋白质分泌的前提条件分泌表达形式的优点):1目的蛋白稳定性高2目的蛋白易于分离3目的蛋白末端完整分泌表达形式的缺点):大肠杆菌的蛋白分泌机制并不健全,信号肽并非总是有助于蛋白质的转运,有可能形成包涵体。

分泌型目的蛋白表达系统的构建:只要将细菌素释放蛋白编码基因克隆在一个合适的质粒上即可构建完全分泌型的受体细胞。

此时,用另一种携带大肠杆菌信号肽编码序列和目的基因的表达质粒转化上述完全分泌型受体细胞,并使用相同性质的启动子介导目的基因的转录,则可实现目的蛋白从重组大肠杆菌中的完全分泌。

融合型异源蛋白的表达:除了直接表达异源蛋白外,还可将外源基因与受体菌自身的蛋白质编码基因拼接在一起,并作为一个开放型阅读框架进行表达。

由这种杂合基因表达出的蛋白质称为融合蛋白。

以融合形式表达目的蛋白的优缺点1目的蛋白稳定性高2目的蛋白易于分离3目的蛋白表达率高4目的蛋白溶解性好5目的蛋白需要回收(缺点)融合蛋白表达质粒的构建原则):受体细胞的结构基因能高效表达,且其表达产物可以通过亲和层析进行特异性简单纯化。

两个结构基因拼接位点处的序列设计十分重要,它直接决定着融合蛋白的裂解工艺。

源基因应装在受体蛋白编码基因的下游,为融合蛋白提供终止密码子。

在某些情况下,并不需要完整的受体结构基因,目的是尽可能避免融合蛋白分子中两种组份的分子量过于接近,为目的蛋白分离回收创造条件外。

两个蛋白编码序列应保持一致的翻译阅读框架大肠杆菌表达外源基因的优势1全基因组测序,共有4405个开放型阅读框架2基因克隆表达系统成熟完善3繁殖迅速、培养简单、操作方便、遗传稳定4被美国FDA批准为安全的基因工程受体生物限制性内切核酸酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。

1、Ⅱ型限制性内切核酸酶的基本特性有哪些?只有一种多肽,以同源二聚体的形式存在,其识别和切割DNA分子具有严格的特异性①识别序列的特异性:识别序列为4-6bp的双重螺旋对称结构的回文序列②切割位点的特异性:在识别序列内或附近特异切割。

3、DNA连接酶的作用特点有哪些?了解这些特点有何利用价值?作用特点:①不能连接两条单链DNA或环化DNA,只能连接双链DNA分子的单链缺口。

②只能连接失去一个磷酸二酯键形成的单链断裂,不能连接缺失一个或多个氨基酸缺口③只作用于3端羟基和5端磷酸的链④连接反应需要ATP或NAD+和Mg2+利用价值:可对缺口DNA,平末端DNA,黏性末端DNA进行连接。

载体:能携带外源基因(或DNA片段)进入细胞复制、整合或表达的工具。

质粒载体:存在于多种宿主细胞中,独立于染色体外的可自主复制闭合环状的DNA分子,整合或表达的工具。

噬菌体载体:应用噬菌体作为载体,广泛应用于大片段DNA克隆和文库构建的一类载体,代表有λ类噬菌体载体,M13噬菌体载体。

RNAi:RNA干扰,是双链RNA对基因表达的阻断作用被称为RNA干扰。

VIGS:病毒诱导的基因沉默,是利用植物体内天然存在的免疫机制,将目的基因片段构建到病毒载体中并用病毒侵染寄主植物,目的基因片段作为病毒的一部分同病毒一起复制并扩散到整株植物,植物体的防御机制被病毒激活后,在识别病毒和目的基因的同时,将内源的目的基因mRNA降解,从而达到基因沉默的目的。

1、克隆载体必须满足那些基本条件?基本条件:①具有对受体细胞的可转移性,能携带外源基因进入宿主细胞;②能在宿主细胞中自主复制,并实现外源基因的增殖;③具有由单一限制性内切核酸酶识别位点组成的多克隆位点,可供外源基因的插入;④具有合适的选择性标记,用于筛选。

2、质粒具有那些特征?特征:①独立复制性:质粒含有一个与相应的顺式作用控制要素结合在一起的复制起始区,能利用寄主细胞的DNA复制系统进行自主复制。

②质粒的不相容性:两种质粒在同一宿主细胞中不能共存③转移性:其含有tra基因,能指令宿主细胞与受体细胞结合,使质粒从一个细胞转移到另一个细胞。

④携带特殊的遗传标记:野生型的质粒DNA上往往携带一个或多个遗传标记基因,这使得寄主生物产生正常生长非必需的附加性状,如物质抗性和物质合成。

3、你认为理想的载体应该是怎样的?如何设计?理想的载体:①分子较小,可携带比较大的DNA片段;②能独立于染色体而进行自主复制并且是高效的复制;③要有尽可能多种限制酶的切割位点,但每一种限制酶又要最少的切割位点(多克隆位点,MCS);④有适合的标记,易于选择;⑤有时还要求载体要能启动外源基因进行转录及表达,并且尽可能是高效的表达;⑥从安全角度考虑,要求载体不能随便转移,仅限于在某些实验室内特殊菌种内才可复制等等。

设计:①加入合适的选择标记基因②增加或减少合适的酶切位点③缩短长度,切去不必要的片段,提高导入效率,增加装载量④改变复制子,变严谨为松弛,变少拷贝为多拷贝⑤根据基因工程的要求,假装特殊的基因元件基因工程定义:在体外将外源基因进行切割并与一定的载体连接,构成重组DNA分子并导入相应受体细胞,使外源基因在受体细胞中进行复制、表达,使目的基因大量扩增或得到相应基因的表达产物或进行定向改造生物性状。

上游技术:(狭义基因工程)外源基因重组、克隆和表达的设计与构建下游技术:(广义基因工程)含有外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因的表达、分离、纯化过程。

基本过程:(操作)从复杂的生物基因组中,经过酶切消化或PCR扩增等步骤,分离出带有目的基因的DNA片断。

(切)用限制性内切酶分别将外源DNA和载体分子切开。

(接)目的基因与载体DNA的体外重组,形成重组DNA分子。

(转)把重组的DNA分子引入受体细胞,并建立起无性繁殖系。

(选)筛选出所需要的无性繁殖系,并保证外源基因在受体细胞中稳定遗传、正确表基因工程的四大要素:目的基因、载体、工具酶、宿主细胞。

限制性内切酶的概念:一类能够识别双链DNA分子中的某种特定的核苷酸序列,并由此处切割DNA双链结构的核酸内切酶。

相关文档
最新文档