基因工程知识点超全
基因工程知识点总结

基因工程总结一.概念(1)原理:。
(2)优点:与杂交育种相比,;与诱变育种相比,。
(3)基因工程成功的原因:①成功拼接的原因:②成功表达的原因:二.基本工具1、两种酶:(1):作用特点:。
(2):E ·coli DNA 连接酶与T 4 DNA 连接酶的区别:2、一种运载体(1)条件:①;②;③具有特殊的标记基因(作用:)(2)种类:最常用;其他动植物病毒、三、操作程序(1):方法:①:不知道脱氧核苷酸序列②:已知目的基因两端一小段序列,便于③利用化学方法人工合成:知道全部序列,且基因比较小。
这种方法不需要模板。
(2)——基因工程的核心基因表达载体的组成:(3)生物种类常用方法受体细胞将目的基因插入到Ti 植物动物受精卵将含有目的基因的表+微生物原核细胞Ca 2处理细胞→感受态细胞→重组表达载体DNA 分子与感受态细胞混合→感受态细胞吸收DNA 分子质粒的T-DNA 上→农达载体提纯→取卵转化过程杆菌→导入植物细胞→整合到受体细胞染(受精卵)→显微注射→受精卵发育→获得色体的DNA 上→表达具有新性状的动物(4)①目的基因是否插入到转基因生物的染色体DNA 上:②是否转录:③是否翻译:④个体水平鉴定:抗虫、抗病接种实验易错点说明:1、切割目的基因和运载体的要求:用限制酶。
目的是:。
同种的含义是:同一种或相同两种,即单酶切或双酶切。
选择双酶切的原因是。
2、工具≠工具酶;运载体≠质粒。
3、启动子≠起始密码子,终止子≠终止密码子起始密码子和终止密码子位于mRNA上,分别控制翻译过程的启动和终止。
启动子:。
终止子:一段有特殊结构的DNA短片段,位于基因的尾端,作用是使转录过程停止。
4、基因探针的要求:①单链②有③5、农杆菌转化法中的“2”次导入:第一次:将含有目的基因的T—DNA的质粒导入农杆菌;第二次(非人工操作):将含有目的基因的T—DNA导入受体细胞并整合到植物细胞的染色体DNA上。
6、转化:。
高中生物选修三基因工程知识点总结

高中生物选修三基因工程知识点总结
高中生物选修三(基因工程)知识点总结如下:
1. 基因工程的基本步骤:
- 分离基因:从目标DNA序列中分离特定的基因。
- 转录:将分离得到的基因转录成RNA。
- 修饰:对转录后的基因进行修饰,使其更具表达效果。
- 克隆:用适当的载体将修饰过的基因导入目标细胞中。
- 表达:使目标细胞中导入的基因表达。
2. 基因工程的主要方法:
- 重组DNA技术:包括文库制备、扩增和筛选。
- 外源DNA片段导入技术:包括限制性内切酶消化、连接、转化、融合等。
- 自组织培养技术:包括离心、培养基选择、细胞培养等。
- 基因编辑技术:包括CRISPR/Cas9、CRISPR-Cas13a等。
3. 基因工程的应用:
- 细胞治疗:通过基因工程手段治疗一些遗传性疾病。
- 农业育种:通过基因工程技术改良作物品质和产量。
- 生物恐怖袭击防御:通过基因工程技术检测和防御生物恐怖袭击。
- 环境污染治理:通过基因工程技术处理污染物。
4. 基因工程的限制:
- 伦理和道德问题:基因工程技术可能会带来未知的伦理和道德
问题。
- 技术成本:基因工程技术相对其他技术更为复杂,成本较高。
- 技术安全:基因工程技术的安全性需要持续进行研究和维护。
5. 基因工程的安全性问题:
- 基因突变:基因工程过程中可能会引发基因突变,导致不良后果。
- 质量控制:基因工程技术的产品需要进行质量控制,以确保其质量和稳定性。
高考生物《基因工程知识点》总汇

高考生物《基因工程知识点》总汇1、基因工程的先导是?艾弗里等人的工作证明了DNA可以从一种生物个体转移到另一种生物个体2、不同生物的基因为什么可以连接在一起?因为所有生物的DNA基本结构是相同的3、真核生物的基因为什么可以在原核生物体内表达?(或者原核生物的基因为什么可以在真核生物体内表达?)所有生物共用一套密码子4、基因工程育种的原理是什么?具有什么优点?原理:基因重组优点:打破了生殖隔离,定向改造生物的性状5、与DNA有关的酶的比较6、特定的核苷酸序列,并在特定的位点上进行切割7、限制酶不切割自身DNA的原因是什么?原核生物DNA分子中不存在该酶的识别序列或识别序列已经被修饰。
8、DNA连接酶可以连接什么样的末端?①同一种限制酶切割形成的相同的黏性末端②两种不同限制酶切割后形成的相同黏性末端③任意的两个平末端9、如何防止载体或目的基因的黏性末端自己连接即所谓“环化”?可用不同的限制酶分别处理含目的基因的DNA和载体,使目的基因两侧及载体上各自具有两个不同的黏性末端。
10、载体需具备的条件及其作用11、基因工程的基本操作步骤是哪四步?目的基因的获取;基因表达载体的构建;将目的基因导入受体细胞;目的基因的检测与鉴定12、目的基因的获取方法有哪些?三种方法都需要模板吗?①从基因文库中获取目的基因②利用PCR技术扩增目的基因③通过化学方法人工合成前两种需要模板,从基因文库中寻找目的基因时需要用DNA探针利用DNA分子杂交的方法找到目的基因;化学方法人工合成不需要模板,只要知道核苷酸序列就行,这是一个纯粹的化学反应13、CDNA文库和基因组文库的区别?cDNA是指以mRNA为模板,在逆转录酶的作用下形成的互补DNA。
以细胞的全部mRNA 逆转录合成的cDNA组成的重组克隆群体成为cDNA文库。
cDNA文库只包含表达的基因,并且逆转录得来的基因缺乏内含子和启动子、终止子等调控序列基因组文库指的是将某种生物的基因组DNA切割成一定大小的片段,并与合适的载体重组后导入宿主细胞,进行克隆得到的所有重组体内的基因组DNA片段的集合,它包含了该生物的所有基因。
基因工程主要知识点整理

第一章基因克隆基因工程的基本技术有哪些?答:对核算分子的分离、纯化、回收、分析和检测、切割、连接和修饰,以及序列测定、诱变、扩增和转移等基因操作技术。
构建基因文库一般使用什么作为载体?答:一般使用大肠杆菌作为载体克隆与亚克隆?答:克隆在一等程度上等同于基因的分离。
亚克隆是将目的基因所对应的小段的DNA片段找出来。
PCR对基因克隆有什么作用?答:现在基因克隆可以不用通过构建基因文库来实现,可以通过理性设计和PCR扩增获得大多数所需要的基因。
但是尽管如此,在不知道基因序列的情况下,如相互作用的基因,表达调控因子,新基因等,还需要构建基因文库来进行基因克隆。
第二章分子克隆工具酶限制与修饰系统?答:限制系统可以排除外来DNA。
限制的作用实际就是降解外源DNA,维护宿主稳定的保护机制。
甲基化是常见的修饰作用,宿主通过甲基化来达到识别自身遗传物质和外来遗传物质的作用。
并且能够保证自身的DNA不被降解。
使用最广泛的限制酶?答:EcoR I是应用最广泛的限制性内切酶限制性内切酶的命名?答:宿主属名第一字母、种名头两个字母、菌株号+序列号。
如:HindIII限制与修饰系统分类?答:至少可分为3类。
II类所占比例最大,其酶分子为内切酶与甲基化分子不在一起,识别位点为4-6bp的回文序列,切割位点为识别位点中或者靠近识别位点。
其限制反应与甲基化反应是分开的反应。
不需要ATP的参与。
限制酶识别的序列长度?结构?答:一般为4-6个bp,即每256和每4096个碱基中存在一个识别位点。
回文序列,不对称序列,多种不同序列,间断对称序列限制酶产生的末端?答:1、黏末端2、平末端3、非对称突出末端什么是同裂酶?分类?答:识别相同序列的限制酶称为同裂酶。
但他们的切割位点有可能不同。
分为:1、同位同切酶2、同位异切酶3、同工多位酶4、其他限制性内切酶的作用是什么?它的反酶是什么?答:什么是同尾酶?答:许多不同的限制酶切割DNA产生的末端是相通的,切实对称的,即他们可产生相同的黏性突出末端。
基因工程知识点

基因工程各章知识点第一章绪论1.基因工程的首例操作实验三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用基因工程的诞生:72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌2.基因工程的基本概念基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。
供体、载体、受体是基因工程的三大基本元件。
3.基因工程的基本操作过程a分离目的DNA片段:酶切、PCR扩增、化学合成等。
b重组:体外连接的DNA和载体DNA,形成重组DNA分子。
c转化:将重组DNA分子导入受体细胞并与之一起增殖。
d筛选:鉴定出获得了重组DNA分子的受体细胞。
e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。
第二章载体1.理解用PBR322和PUC18作载体的克隆外源基因的原理。
答案不确定PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。
Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。
基因工程知识点总结

基因工程知识点总结基因工程是一门现代生物学领域的重要学科,它通过改造生物体的遗传物质,实现对生物体基因的精确操控和改良。
下面将对基因工程的相关知识点进行总结,以帮助读者更好地了解该领域的基本概念和技术应用。
一、基因工程的基本概念和原理基因工程是指通过人为手段修改生物体的基因组,以改变其性状和功能的技术。
其实现的基本原理包括基因定位、基因克隆和基因传递。
1. 基因定位:基因定位是指确定感兴趣的基因在基因组中的位置。
常用的方法有FISH(荧光原位杂交)和PCR(聚合酶链反应)等。
2. 基因克隆:基因克隆是指将感兴趣的基因从一个生物体中复制到另一个生物体中,使其在目标生物体中表达。
常用的方法有限制酶切、连接酶切和DNA合成等。
3. 基因传递:基因传递是指将经过克隆的基因导入到目标生物体中,并使其在目标生物体中稳定遗传。
常用的方法有基因枪、电穿孔和冷冻贮存等。
二、基因工程的应用领域基因工程技术在农业、医学和工业等领域有着广泛的应用,下面将分别介绍其主要应用领域。
1. 农业应用:基因工程技术在农业领域的应用主要包括转基因作物的培育和遗传改良。
通过导入特定基因,转基因作物可以获得抗病虫害、耐逆性或提高产量等特点,从而增加农作物的产量和质量。
2. 医学应用:基因工程技术在医学领域的应用主要包括基因诊断、基因治疗和生物药物的生产。
通过基因诊断,可以准确检测遗传病的基因突变,为疾病的早期预测和治疗提供依据。
基因治疗则通过修复或替代患者体内的异常基因,治疗遗传性疾病。
此外,基因工程技术还被用于生产重组蛋白和抗体等生物药物。
3. 工业应用:基因工程技术在工业领域的应用主要包括酶的生产和环境修复。
通过基因工程技术,可以大量生产具有特定功能的酶,用于工业生产和制药领域。
此外,基因工程技术还可以改造微生物,使其能够降解有机物污染物,用于环境修复和生物能源开发。
三、基因工程的伦理和安全问题尽管基因工程技术具有重要的应用前景,但也带来了一些伦理和安全问题。
基因工程知识点总结

基因工程知识点总结基因工程,这个在现代生物学中熠熠生辉的领域,正以惊人的速度改变着我们的生活和对生命的认知。
它就像是一把神奇的钥匙,开启了无数未知的大门,为解决人类面临的诸多问题带来了前所未有的希望和可能。
一、基因工程的定义与基本原理基因工程,简单来说,就是按照人们的意愿,将一种生物的基因在体外进行切割、拼接和重组,然后导入另一种生物的细胞内,使之稳定遗传并表达出相应产物的技术。
其基本原理基于三个重要的步骤:首先是获取目的基因,这就像是在茫茫基因海洋中找到我们想要的那一颗珍珠;其次是构建基因表达载体,相当于给这颗珍珠打造一个合适的盒子,使其能够安全、有效地传递;最后是将重组 DNA 分子导入受体细胞,并使其在受体细胞中稳定存在和表达。
二、获取目的基因的方法1、从基因文库中获取基因文库就像是一个巨大的基因仓库,里面存储着各种各样的基因。
我们可以根据已知的信息,从这个文库中筛选出我们需要的目的基因。
2、利用 PCR 技术扩增目的基因PCR 技术就像是一个基因的复印机,能够以极少量的基因片段为模板,快速大量地复制出我们想要的基因。
3、人工合成法如果已知目的基因的核苷酸序列,或者其氨基酸序列,我们可以通过化学方法直接人工合成目的基因。
三、基因表达载体的构建基因表达载体是基因工程的核心部分,它就像是一辆专门运输基因的列车,需要具备多个关键组件。
1、启动子启动子是基因表达的“开关”,它能够控制基因在何时何地开始表达。
2、终止子终止子则是基因表达的“刹车”,告诉基因在何处停止表达。
3、标记基因标记基因就像是一个个小标签,帮助我们筛选出成功导入目的基因的受体细胞。
4、目的基因这是我们最终想要表达的基因片段。
四、将目的基因导入受体细胞1、导入植物细胞(1)农杆菌转化法农杆菌就像是一个天然的基因运输工具,能够将其携带的基因转移到植物细胞中。
(2)基因枪法通过高速的微粒将目的基因直接打入植物细胞。
(3)花粉管通道法利用花粉管通道将目的基因导入植物的受精卵中。
基因工程高三知识点

基因工程高三知识点基因工程是现代生物学中的一项重要技术,通过改变生物体的遗传物质(DNA)来创造新的基因组合或改变生物体的性状。
在高中生物学课程中,学生需要掌握基因工程的基本原理、应用以及相关的伦理和社会问题。
以下是基因工程的一些高三知识点。
一、基因工程的基本原理基因工程是利用DNA技术改变生物体的遗传信息,主要包括以下几个步骤:1. DNA提取:从感兴趣的生物体中提取DNA,通常使用PCR 技术扩增目标DNA片段。
2. DNA剪切:利用限制酶切割目标DNA,产生特定的切口。
3. DNA连接:将DNA片段连接到载体DNA上,形成重组DNA。
4. DNA转化:将重组DNA导入目标细胞中,使其具有新的遗传特性。
5. PCR扩增:使用聚合酶链反应扩增目标DNA的数量。
二、基因工程的应用领域1. 农业领域:基因工程可以用于改良作物,包括提高抗病虫害能力、增加产量、提高品质等。
2. 医学领域:基因工程可以用于制备重组蛋白药物,如胰岛素、生长激素等。
3. 环境领域:基因工程可以用于环境修复,包括通过基因修复技术降解污染物。
4. 科研领域:基因工程可以用于基因功能研究、疾病模型建立等。
三、基因工程的风险与伦理问题1. 生物安全风险:基因工程可能导致基因剥离和转基因生物的释放,风险包括基因污染、基因流动等。
2. 伦理问题:基因工程涉及到修改生物的基因组,可能引发对自然与人类的伦理关切,如人类基因改造、人类克隆等。
四、国际和国内基因工程的监管措施1. 国际监管:1992年生物安全议定书规定,转基因生物的跨国转运需要进行风险评估和合格证明。
2. 国内监管:我国设立了生物安全管理委员会,建立了转基因食品的安全管理体系。
五、基因工程的前景与挑战基因工程作为一种重要的生物技术,将会继续在农业、医学、环境等领域发挥重要作用。
但同时也面临着风险与挑战,需要加强监管、推动科学研究和公众教育。
总结:基因工程作为现代生物学的重要分支,已经在农业、医学、环境等领域取得了巨大的进展和应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程
一、基因工程的概念
基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。
由于基因工程是在
二、基因工程的基本工具
1、限制性核酸内切酶-----“分子手术刀”
2、DNA连接酶-----“分子缝合针”
3、基因进入受体细胞的载体-----“分子运输车”
1.“分子手术刀”——限制性核酸内切酶(限制酶)
(1)存在:主要存在于原核生物中。
(2)特性:特异性,一种限制酶只能
识别一种特定的核苷酸序列,并且能在
特定的切点上切割DNA分子。
(3)切割部位:磷酸二酯键
(4)作用:能够识别双链DNA分子的
某种特定核苷酸序列,并且使每一条链
中特定部位的两个核苷酸之间的磷酸
二酯键断开。
(5)识别序列的特点:
(6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。
当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。
2.“分子缝合针”——DNA连接酶
(1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。
(2)类型
相同点:都连接磷酸二酯键
3.“分子运输车”——载体
(1)载体具备的条件:
①能在受体细胞中复制并稳定保存。
②具有一个至多个限制酶切点,供外源DNA片段插入。
③具有标记基因,供重组DNA的鉴定和选择。
(2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。
(3)其他载体:λ噬菌体的衍生物、动植物病毒。
(4)载体的作用:
①作为运载工具,将目的基因送入受体细胞。
②在受体细胞内对目的基因进行大量复制。
【解题技巧】
(1)限制酶是一类酶,而不是一种酶。
(2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。
(3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。
(4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。
(5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。
(6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。
(7)基因工程中的载体与细胞膜上物质运输的载体不同。
基因工程中的载体是DNA分子,能将目的
基因导入受体细胞内;膜载体是蛋白质,与细胞膜的通透性有关。
(8)基因工程中有3种工具,但工具酶只有2种。
例1.限制酶MunⅠ和限制酶Eco RⅠ的识别序列及切割位点分别是-C↓AATTG-和-G↓AATTC-。
如图表示四种质粒和目的基因,其中,箭头所指部位为限制酶的识别位点,质粒的阴影部分表示标记基因。
适于作为图示目的基因载体的质粒是()
A
限制酶的应用特点
(1)在获取目的基因和切割载体时通常用同种限制酶,以获得相同的黏性末端。
但是如果用两种不同限制酶切割后形成的黏性末端相同时,在DNA连接酶的作用下目的基因与载体也可以连接起来。
(2)为了防止载体或目的基因的黏性末端自己连接,可用不同的限制酶分别处理目的基因和载体,使目的基因两侧及载体上具有两个不同的黏性末端
五种酶的比较
三、基因工程的操作步骤
1、目的基因的获取
2、基因表达载体的构建
3、将目的基因导入受体细胞
4、目的基因的检测与鉴定
1、目的基因的获取
获取目的基因的方法:
(1)直接分离法
从基因文库中获取目的基因
将含有某种生物不同基因的许多DNA短片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。
包括基因组文库和cDNA文库。
直接从基因组中获取目的基因最常用的方法是:“鸟枪法”。
(2)人工合成法
化学合成法:片段较小,核苷酸序列已知的目的基因,直接利用DNA合成仪用化学方法合成,不需要模板。
反转录法:以RNA为模板,在逆转录酶作用下合成目的基因DNA(cDNA)。
(4)利用PCR技术扩增目的基因
PCR技术:是一项在生物体外复制特定DNA片段的核酸合成技术。
由于PCR过程在高温下进行,因此需要使用热稳定的DNA聚合酶。
目的:通过指数式扩增获取大量的目的基因
前提:要有一段已知目的基因的脱氧核苷酸序列,以便合成引物。
2.基因表达载体的构建——基因工程的核心
(1)目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时使目的基因能够表达和发挥作用。
(3)基因表
达载体的构
建过程:
3.将目的基
因导入受体细胞
目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程,称为转化。
转化的关键是目的基因整合到受体细胞染色体基因组中。
金榜 P185
4.目的基因的检测与鉴定
[误区警示]
(1)标记基因的作用——筛选、检测目的基因是否导入受体细胞,常见的有抗生素抗性基因、发光
基因(表达产物为带颜色的物质)等。
(2)受体细胞常用植物受精卵或体细胞(经组织培养)、动物受精卵(一般不用体细胞)、微生物(大肠杆菌、酵母菌)等。
要合成糖蛋白、有生物活性的胰岛素则必须用真核生物酵母菌(需内质网、高尔基体的加工、分泌);一般不用支原体,原因是它营寄生生活;一定不能用哺乳动物成熟的红细胞,原因是它无细胞核,不能合成蛋白质。
(3)基因表达载体中,启动子(DNA片段)≠起始密码子(RNA);终止子(DNA片段)≠终止密码子(RNA)。
基因表达载体的构建是最核心、最关键的一步,在体外进行。
(4)目的基因与载体的连接方式有多种,如目的基因-目的基因、目的基因-载体、载体-载体等。
例3.下列有关基因工程操作的叙述中,正确的是() A
A.用同种限制酶切割载体与目的基因可获得相同的黏性末端
B.以蛋白质的氨基酸序列为依据合成的目的基因与原基因的碱基序列相同
C.检测到受体细胞含有目的基因就标志着基因工程操作的成功
D.用含抗生素抗性基因的质粒作为载体是因为其抗性基因便于与外源基因连接
例4 金榜P187 T2
四、基因工程的应用与蛋白质工程
1.乳腺生物反应器与工程菌生产药物的比较
(1)含义:
①乳腺生物反应器是指将外源基因在哺乳动物的乳腺中特异表达,利用动物的乳腺组织生产药物蛋白。
②工程菌是指用基因工程的方法,使外源基因得到高效表达的菌类细胞株系。
(2)两者区别:
2.蛋白质工程与基因工程的比较(金榜P189)
蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关系作为基础,通过基因修饰或基因合成,对现有蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。
3、基因工程的应用:金榜P189
4、基因治疗:
(1)概念:指利用正常基因置换或弥补缺陷基因的治疗方法。
(2)方法:基因置换、基因修复、基因增补、基因失活等。
如:腺苷酸脱氨酶(ADA)基因缺陷症的基因治疗。
(3)基因治疗的途径
体外基因治疗:先从病人的体内获得某种细胞进行培养,然后在体外完成基因转移,再筛选成功转移的细胞扩增培养,最后重新输入患者体内。
如腺苷酸脱氨酶基因的转移。
体内基因治疗:用基因工程的方法,直接向人体组织细胞中转移基因的治病方法。
5、基因诊断
(1)概念:又称DNA诊断,是采用基因检测的方法来判断患者是否出现了基因异常或携带病原体。
(2)方法:DNA分子杂交技术。
它的基因原理是:互补的DNA单链能够在一定条件下结合成双链,即能够杂交,这种结合是特异的,即严格按照碱基互补配对的原则进行。
当用一段已知基因的单链作探针(常用同位素、荧光分子等进行标记),与变性后的单链基因组DNA接触时,如果两者的碱基完成配对,互补地结合成双链,表明被测基因组DNA中含有已知的基因序列。
[误区警示]
(1)基因治疗后,缺陷基因没有改变。
基因治疗是把正常基因导入受体细胞中,以表达正常产物从而治疗疾病,对原来细胞中存在缺陷的基因没有清除或改变。
(2)对蛋白质分子进行改造,其本质是改变其基因组成。
如果对蛋白质直接改造,即使改造成功,被改造的蛋白质分子还是无法遗传。
(3)DNA分子作探针进行检测时应检测单链,即将待测双链DNA分子打开。
(4)青霉素是青霉菌产生的,不是通过基因工程产生的。
例5.下列关于蛋白质工程和基因工程的比较,不合理的是()
A.基因工程原则上只能生产自然界已存在的蛋白质,而蛋白质工程可以对现有蛋白质进行改造,从而制造一种新的蛋白质
B.蛋白质工程是在基因工程的基础上发展起来的,蛋白质工程最终还是要通过基因修饰或基因合成来完成
C.当得到可以在-70℃条件下保存半年的干扰素后,在相关酶、氨基酸和适宜的温度、pH条件下,干扰素可以大量自我合成
D.基因工程和蛋白质工程产生的变异都是可遗传的。