《空间向量与立体几何》全章复习与巩固

合集下载

数学人教A版选择性必修第一册第一章空间向量与立体几何章末复习

数学人教A版选择性必修第一册第一章空间向量与立体几何章末复习
且 = . 求直线与平面所成的角.
以O为坐标原点, 建立如图所示
空间直角坐标系Oxyz .
设OD SO OA OB OC a ,
z
a a

则A(a , 0, 0), B(0, a , 0), C ( a , 0, 0), P 0, , ,
2 2
⊥ 1 . 1 ⊥ 平面
当 = 4, = 3, 1 = 5时, 求平面与平面1 1 的夹角的余弦值.
D
C
1
1
A1
B1
E
F
D
C
A
B
(2) 以A为原点建立如图所示空间直角坐标系, 则A(0,0,0), A1 (0,0,5),
B(4,0,0), B1 (4,0,5), D(0, 3,0), C (4, 3,0).
n AP ax y z 0

2
2
取z 1, 则x 0, y 1,
所以n (0, 1,1),
设直线BC 与平面PAC 所成的
则 sin cos CB, n
,
CB n 2
所以直线BC 与平面PAC 所成的角为30.
由(1)知 A1C (4, 3, 5)是平面AEF的一个
法向量.
设平面BDD1 B1的法向量为n ( x , y , z ),
n BB1 5 z 0

,
n BD 4 x 3 y 0
令x 3, 得y 4, n (3, 4, 0)
z
D
C
1
1
A1
B1
E
y
F
D
C
A
B
x

空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何知识点和习题(含答案)

空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a +b =b +a ;加法结合律:(a +b +c )=a +(b +c );分配律:(λ +μ )a =λ a +μ a ;λ (a +b )=λ a +λ b .(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ ,使得a ∥λ b .②共面向量定理:如果两个向量a ,b 不共线,则向量c 与向量a ,b 共面的充要条件是存在惟一一对实数λ ,μ ,使得c =λ a +μ b .③空间向量分解定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在惟一的有序实数组λ 1,λ 2,λ 3,使得p =λ 1a +λ 2b +λ 3c .(3)空间向量的数量积运算:①空间向量的数量积的定义:a ·b =|a ||b |c os 〈a ,b 〉;②空间向量的数量积的性质:a ·e =|a |c os <a ,e >;a ⊥b ⇔a ·b =0;|a |2=a ·a ;|a ·b |≤|a ||b |.③空间向量的数量积的运算律:(λ a )·b =λ (a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c .(4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);λ a =(λ a 1,λ a 2,λ a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =λ b ⇔a 1=λ b 1,a 2=λ b 2,a 3=λ b 3(λ ∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式:设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a b a b a 在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是 .)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ;②l ⊥m ⇔a ⊥b ⇔a ·b =0;③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ;⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ;⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v ②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然 ]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l-β 在二面角的棱上任取一点O,在两个半平面内分别作射线OA⊥l,OB⊥l,则∠AOB 叫做二面角α -l-β 的平面角.利用向量求二面角的平面角有两种方法:方法一:如图,若AB,CD分别是二面角α -l-β 的两个面内与棱l垂直的异面直线,则二面角AB与的夹角的大小.α -l-β 的大小就是向量CD方法二:如图,m1,m2分别是二面角的两个半平面α ,β 的法向量,则〈m1,m2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题.【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直.4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系.6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1如图,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上,且AP=2P A1,点S在棱BB1上,且B1S=2SB,点Q,R分别是O1B1,AE的中点,求证:PQ∥RS.【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S ,)32,2,3(RS PQ =-= ∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD ,∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1). 由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1). ∴),1,0,2(),2,1,0(==CN AM 设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角.设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB ∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A ⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a a D ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB a DC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a a AD a a a AC =-= 23||||cos 111==∴⋅AD AC ADAC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ .30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC 【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E .∵P A =AC =1,P A ⊥AC ,∴PC =BC =2,∴CD ⊥PB .∵EA ⊥PB , ∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA ∴⋅=>=<⋅33||||,cos DC EA DCEA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a 得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1). ∴⋅-=>=<⋅33||||,cos b a b a b a ∵二面角A -PB -C 为锐二面角,∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设P A =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP == ∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面P AC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面P AC ,∴DE ⊥平面P AC ,∴∠DAE 是直线AD 与平面P AC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠⋅AE AD AEAD DAE即直线AD 与平面P AC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面P AC ,∴DE ⊥AE ,DE ⊥PE ,∴∠AEP 是二面角A -DE -P 的平面角.∵P A ⊥底面ABC ,∴P A ⊥AC ,∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3.注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2 (B)2 (C)5 (D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( )(A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n(B)θ >ϕ,m <n (C)θ <ϕ,m <n (D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题1一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( ) (A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b (C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b 2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38(C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000(B)3cm 38000(C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______. 8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ; (Ⅱ)求证:MN ∥平面A 1ABB 1; (Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°. 不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量.设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55 习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9π 9.5 10.①、②、③ 三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE . ∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形,∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C .∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1).同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为θ ,∵,515||||cos 2121==⋅n n n n θ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵P A ⊥AB ,AB ⊥AC ,∴AB ⊥平面P AC ,故AB ⊥PC .∵P A =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB .(Ⅱ)Rt △P AB 的面积1211==⋅AB PA S .Rt △P AC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△P AB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH .∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||. BA BM BA BM = 即,)12()12()2(14222λλλ+++-+-=+解得λ =1. ∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos 〉MS ,GB 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==⋅MS GB MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

《空间向量与立体几何》单元复习与巩固

《空间向量与立体几何》单元复习与巩固

《空间向量与立体几何》单元复习与巩固知识网络知识要点梳理知识点一:平面的法向量定义:已知平面,直线,取的方向向量,有,则称为为平面的法向量。

注意:一个平面的法向量不是唯一的,在应用时,可适当取平面的一个法向量。

已知一平面内两条相交直线的方向向量,可求出该平面的一个法向量。

知识点二:用向量方法判定空间中的平行关系空间中的平行关系主要是指:线线平行、线面平行、面面平行。

(1)线线平行设直线,的方向向量分别是,,则要证明,只需证明,即。

(2)线面平行①设直线的方向向量是,平面的向量是,则要证明,只需证明,即。

②根据线面平行的判定定理:“如果直线(平面外)与平面内的一条直线平行,那么这条直线和这个平面平行”,要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量。

③根据共面向量定理可知,如果一个向量和两个不共线的向量是共面向量,那么这个向量与这两个不共线的向量确定的平面必定平行,因此要证明一条直线和一个平面平行,只要证明这条直线的方向向量能够用平面内两个不共线向量线性表示即可。

(3)面面平行①由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可。

②若能求出平面,的法向量,,则要证明,只需证明。

知识点三:用向量方法判定空间的垂直关系空间中的垂直关系主要是指:线线垂直、线面垂直、面面垂直。

(1)线线垂直设直线,的方向向量分别为,,则要证明,只需证明,即。

(2)线面垂直①设直线的方向向量是,平面的向量是,则要证明,只需证明。

②根据线面垂直的判定定理转化为直线与平面内的两条相交直线垂直。

(3)面面垂直①根据面面垂直的判定定理转化为证相应的线面垂直、线线垂直。

②证明两个平面的法向量互相垂直。

知识点四:利用向量求空间角(1)求异面直线所成的角已知a,b为两异面直线,A,C与B,D分别是a,b上的任意两点,a,b所成的角为,则。

注意:两异面直线所成的角的范围为(00,900]。

【高中数学】复习、巩固、模拟学案:第一章空间向量与立体几何知识点总结(详实、真题)

【高中数学】复习、巩固、模拟学案:第一章空间向量与立体几何知识点总结(详实、真题)

【高中数学】复习、巩固、模拟学案:选择必修1第一章空间向量与立体几何一、空间向量及运算:(一)空间向量的相关概念1. 空间向量的定义:在空间中,我们把具有大小和方向的量叫做向量。

方向和大小是向量的两要素。

2、空间向量的表示方法:(1)几何表示:用有向线段表示(2)代数表示:○1用带箭头的小写字母表示,如、○2用有向线段的起点和终点坐标表示,如3、向量的模:向量的大小叫做向量的长度或模,记作、4、特殊向量:零向量:长度为0的向量叫作零向量单位向量:模为1的向量叫作单位向量相等向量:长度相等方向相同的向量称为相等向量;相反向量:长度相等方向相反的向量称为相反向量。

(二)空间向量的加减、数乘运算:原理:向量为自由向量,具有平移不变性。

空间中任意两个向量都可以平移到同一个平面内,成为同一平面内的两个向量。

1、向量加法的三角形法则:=+=+OB OA AB a b首尾连,起点到终点(首尾相连,自始至终)2、向量加法的平行四边形法则:向量共起点,和为对角线。

3、向量减法的三角形法则:=-=-BA OA OB a b共起点,连终点,指向前。

4、空间向量三角形加法法则的推广:多边形折线法则首尾顺次相接的若干个空间向量的和等于起始向量的起点指向末尾向量终点的向量(首尾连,起点到终点);若首尾顺次相接的若干个空间向量构成一个封闭图形,则它们的和为零向量。

5、空间向量加法平行四边形法则的推广:平行六面体法则共起点且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.6、向量的数乘运算:实数与空间向量的乘积仍为一个向量,称为向量的数乘运算(1)当>0,与向量方向相同(同向伸缩)(2)当<0,与向量方向相反(反向伸缩)(3)当=0,为零向量的长度是的倍。

(三)空间向量的加减与数乘运算律空间向量的加法、减法、数乘运算统称为向量的线性运算: (1)加法交换律:+=+.(2)加法结合律:(+)+=+(+). (3)数乘分配律:λ(+)=λ+λ. (4)线性运算:=(四)共线向量(1)共线向量定义:如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线向量或平行向量,平行于,记作。

空间向量与立体几何复习

空间向量与立体几何复习

解:建立如图所示空间坐标系,
则B→CD→1=B=(-(22,2,0,0,1)),.D→D1=(0,0,1),
O
y
设平面 BD1 的法向量 n=(x,y,z). x
n·D→B=2x+2y=0,
令x=1得
∴n·D|c→Dos1〈 =zn=,0B,→C1〉|=||B∴B→→CCn11=|·|nn(||1=,-52·1,02)=.
②求cos = cos CD, AB
二、直线AB和平面所成的角:
CD | AB |
定义:平面的垂线为AO,斜线AB与射影BO所成的角.
求斜线AB和平面所成的角 :
A
①求 AB和平面法向量 n
②求cos AB, n AB n AB | n |
③求sin cos AB, n
n
B
o
线面角正弦=斜线与法向量夹角余弦绝对值
(4)解方程组,令其中一个量的值求另外两个,
即得法向量。
一、平行关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
m
D
平面 , 的法向量分别为
线线平行:
n1
, n2

l ∥ m AB ∥ CD AB kCD

x1 y1
=
A
x2
y2
=
b
C
x3 y3
线面平行
Aa B n
l ∥ AB n1 AB n1 0 ;
面面平行
∥ n1 ∥ n2 n1 kn2
n1
n2
二、垂直关系:
设直线 l, m 的方向向量分别为 AB,CD ,
B
l
a
平面 , 的法向量分别为 n1 , n2 ,

选修2-1 空间向量与立体几何 复习

选修2-1 空间向量与立体几何  复习

绵阳市开元中学高2013级高二(下)数学期末复习选修2—1 第三章 空间向量与立体几何题卷设计:绵阳市开元中学 王小凤老师 学生姓名一.知识归纳1.空间向量及其运算(1)空间中的平行(共线)条件:()//0,a b b R a b λλ≠⇒∃∈=(2)空间中的共面条件:,,a b c 共面(,b c 不共线),,x y R a xb y c ⇔∃∈=+推论:对于空间任一点O 和不共线三点A 、B 、C ,若O P xO A yO B zO C =++()1x y z ++=,则四点O 、A 、B 、C 共面(3)空间向量基本定理:如果三个向量,,a b c 不共面,那么对空间任一向量p x a yb z c =++(4)空间向量的坐标运算若()()111222,,,,,a x y z b x y z ==,则:①()121212,,a b x x y y z z ±=±±± ②()111,,a x y zλλλλ=③a =④12121a b x x y y z z⋅=++⑤cos ,a ba b a b<>==2.空间向量在立体几何证明中的应用(1)//A B C D ⇔//AB CD(2)AB C D ⊥⇔0AB CD ⋅=(3)//A B α⇔AB 垂直于平面的法向量或证明AB与平面内的基底共面;(4)A B α⊥⇔AB 平行于平面的法向量或AB垂直于平面内的两条相交的直线所在的向量;(5)//αβ⇔两平面的法向量平行或一个面的法向量垂直于另一个平面; (6)αβ⊥⇔两平面的法向量垂直或一个面的垂线(或法向量)在另一个面内。

3.空间向量在立体几何求值中的应用二.考点训练考点一. 与向量相关的概念1.下列命题是真命题的是( )A .若表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是共面向量.B .若a b = ,则,a b的长度相等而方向相同或相反.C .若向量,A B C D满足C D AB > ,且AB C D 与同向,则AB CD > . D .若两个非零向量AB C D 与满足0AB CD +=,则AB‖CD .2.空间的一个基底{},,a b c 所确定平面的个数为( ) A.1个B.2个C.3个D.4个以上3.已知A 、B 、C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A 、B 、C 一定共面的是( ) A .OC OB OA OM ++= B .OC OB OA OM --=2 C .OC OB OA OM 3121++=D .OC OB OA OM 313131++=4.若a 、b 、c 为任意向量,下列命题是真命题的是 ( ) A.若=b a = B .若c a b a ⋅=⋅,则c b = C .()()()b ac a c b c b a ⋅⋅=⋅⋅=⋅⋅ D=,且a 与b 夹角为︒45,则b b a ⊥-)( 考点二. 向量的加减及数乘运算5.已知空间四边形ABCD 中,c OC ,b OB ,a OA ===,点M 在OA 上,且OM=2MA ,N 为BC 中点,则MN =( ) A .cb a 213221+- B .c b a 212132++-C .c b a 212121-+D .c b a 213232-+6.直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则( ) A .c b a -+ B .c b a +- C .c b a ++- D .c b a -+-7.设向量a b 与互相垂直,向量c 与它们构成的角都是060,且5,3,8a b c ===那么()()()2332________,23________a c b a a b c+⋅-=+-=.8.若向量a 与b 的夹角为60°,4=b ,(2)(3)72a b a b +-=-,则a =( ) A.2B.4 C.6D.129.已知平行六面体''''ABCD A B C D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85 B. C. D .5010.设A 、B 、C 、D 是空间不共面的四点,且满足0,0,0=⋅=⋅=⋅AD AC AD AB AC AB , 则△BCD 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .不确定考点三. 向量的坐标运算11.已知的值分别为与则若μλμλλ,//),2,12,6(),2,0,1(b a b a -=+=( )A .21,51 B .5,2 C .21,51--D .5,2--12. 已知向量)0,1,1(=a ,)2,0,1(-=b ,且b a k +与b a -2互相垂直,k 等于( )A.1B.51 C.57 D.5313.已知()()2,4,,2,,26a x b y a b ===⊥,若a 且,则x y +的值等于__________14.若直线l 的方向向量为(102)=,,a ,平面α的法向量为(204)u =--,,,则( ) A.α∥l B.lα⊥ C.lα⊂ D.l 与α斜交15.若平面αβ,的法向量分别为(122)=-,,u ,(366)v =--,,,则( ) A.αβ∥B.αβ⊥ C.αβ,相交但不垂直 D.以上均不正确16.已知()()()2,5,1,2,2,4,1,4,1A B C ---,则向量AB AC与的夹角为( )A. 030B.045C.060D.09017.若向量 ()()1,,2,2,1,2a b λ==- ,,a b 夹角的余弦值为89,则λ等于__________18. 若()()2,2,0,3,2,a x b x x ==-,且,a b 的夹角为钝角,则x 的取值范围是( )A. 4x <-B. 40x -<<C. 04x <<D. 4x >19.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是 .20.已知()()3cos ,3sin ,12cos ,2sin ,1P ααββ==和Q ,则P Q 的取值范围是( ) A .[]0,5 B .[]0,25 C .[]1,5 D.()1,521.已知A (1,1,1)、B (2,2,2)、C (3,2,4),则∆ABC 的面积为( ) A .3B .32C .6D .2622.已知)2,1,2(-=a ,)1,2,2(=b ,则以a 、b 为邻边的平行四边形的面积为 ( ) A.65 B. 265 C.4 D. 8考点四. 向量的应用(一)证明平行、垂直问题;23. 如图,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 是PC 的中点,作EF ⊥PB 于点F 。

空间向量与立体几何知识点和知识题(含答案解析)

空间向量与立体几何知识点和知识题(含答案解析)

§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

(完整)空间向量与立体几何知识点和习题(含答案),推荐文档

由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.,取直线l的方向向量a,则向量及一个向量a,那么经过点A以向量用空间向量刻画空间中平行与垂直的位置关系:的方向向量分别是a,b,平面α ,β 的法向量分别是,k∈R;0;0;,k∈R;k∈R;=0.用空间向量解决线线、线面、面面的夹角问题:,b是两条异面直线,过空间任意一点分别是二面角的两个半平面α ,β 的法向量,则〈根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分.掌握空间向量的线性运算及其坐标表示..掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂.理解直线的方向向量与平面的法向量..能用向量语言表述线线、线面、面面的垂直、平行关系..能用向量方法解决线线、线面、面面的夹角的计算问题.建立空间直角坐标系,设法证明存在实数k ,使得RS k PQ =如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,1(3,0,2),B 1(0,4,2),E (3,4,0).PA 1, ∴),34,0,0()2,00(32321===AA AP ⋅)同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(2要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0)N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,,2,0),=(2,2,0),=(-1,1,4),=(-1,EF AK OG 本文下载后请自行对内容编辑修改删除,:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0)C (0,2,0),N (2,2,1).),1,0,2(),2,1,0(=CN 所成的角为θ ,则CN ,52||||cos ==⋅CN AM CN AM θ∴异面直线AM 和CN 所成角的余弦值是⋅52取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC .B P ∥MA ,B Q ∥NC ,所成的角.6,522=+==QC PC PQ Q空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成ABC -A 1B 1C 1的底面边长为a ,侧棱长为利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),取A 1B 1的中点D ,则,连接AD ,C ⋅))2,2,0(a a D ),2,0,0(),0,,0(),0,0,231a AA a AB a ==,011=⋅AA DC 本文下载后请自行对内容编辑修改删除,PB的中点D,连接CD,作AE⊥PB于E.,PA⊥AC,2,∴CD⊥PB.DC夹角的大小就是二面角A-PB-C的大小.,0(),0,0,2(),0,-==CP CB =(a 1,a 2,a 3),(b 1,b 2,b 3).=1,得).0,2,1(-=a 得取b 3=1,得⎪⎩⎪⎨⎧=+-=,0,02321b b b 3如图建立空间直角坐标系.,由已知可得A (0,0,0),),0,23,0(),0,23,21(a C a a B -),0,0,21(),,0,0a BC a =∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .,0PAC .的中点,DE ∥BC ,∴E 为PC 的中点.⋅)21,43,0(),21,3a a E a a ⊥平面PAC ,(B)θ >ϕ(D)θ <ϕ中,E,F,G,H分别为所成角的大小是______.6,且对角线与底面所成角的余弦值为D1中,AA1=2AB,则异面直线1本文下载后请自行对内容编辑修改删除,的底面是直角梯形,∠BAD=90°,,PA⊥底面ABCD,PD所成的角为θ ,则cosθ =______.C1D1中,AA1=2AB=4,点平面角的余弦值.中,底面ABCD是边长为OA的中点,N为BC的中点.OCD;所成角的大小.平面角的余弦值.习题1和平面α ,下列命题正确的是( α (B)若a ∥α (B)38000(D)4000cm 2的正方形,另外两个侧面都是有一个内角为( )(C)223本文下载后请自行对内容编辑修改删除,C11;平面角的余弦值.PA⊥AB,PA⊥AC,AB⊥AC MAB;C ;ABB 1;的体积.中,底面ABCD 为矩形,SD ⊥底面SD =2.点M 在侧棱SC 上,∠的中点;的平面角的余弦值.练习1-3D .42本文下载后请自行对内容编辑修改删除,,0),E (0,2,1),A 1).4∴A 1C ⊥BD ,A 1C ,0=⊥平面DBE .是平面DA 1E 的法向量,则,得n =(4,1,-2).14,,22(),0,22,0(-D P =-=),2,22,0(OD OP n =(x ,y ,z ),则⋅OP n 本文下载后请自行对内容编辑修改删除,是CA 和平面α 所成的角,则∠,CO =1.3=AO ABO =∠BAO =45°,∴=AO BO ).1,0,0(),0,3,0(),C A ).1,3,0(-=AC 是平面ABC 的一个法向量,取x =1,得=+=-,03,033z y y x 1=n 是平面β 的一个法向量.AB 1=E ,连接DE .四边形A 1ABB 1是正方形,是BC 的中点,∴DE ∥A 平面A 1BD ,∴A 1C ∥平面⊄解:建立空间直角坐标系,设AB =AA 1=1,⋅-)1,0,21(),01B 是平面A 1BD 的一个法向量,,01=D B 取r =1,得n 1=(2,0,1).0=1234是直三棱柱,∴BB 1⊥平面A 1B 1C 1⊥平面BCC 1B 1,∴BC 1⊥A 1⊥B 1C ,∴BC 1⊥平面A 1B 1C 分别为A 1C 1、BC 1的中点,得MN 平面A 1ABB 1,∴MN ⊄MH .MH ∥A 1B 1,,∴MH ⊥平面BCC 1B 1,∴的体积==⋅⋅∆3111MH S V B BC A (,0,0),则B (22,),12,12,2(λλ++--=BM 故.60 >=BM |.BA BM =解得λ =,)12()1222λλ+++-的中点.,0,0)得AM 的中点22(G 本文下载后请自行对内容编辑修改删除,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《空间向量与立体几何》全章复习与巩固编稿:李霞审稿:张林娟【学习目标】1.了解空间向量的概念,空间向量的基本定理及其意义,掌握空间向量的正交分解、线性运算、数量积及其坐标表示;2.运用向量的数量积判断向量的共线与垂直,理解直线的方向向量与平面的法向量;3.能用向量方法证明有关线、面位置关系的一些定理及问题;4.能用向量方法解决线线、线面、面面的夹角的计算问题及一些简单的距离问题.【知识网络】【要点梳理】要点一:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段AB 表示,A 叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用a (而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作||AB 或||a .向量的夹角:过空间任意一点O 作向量a b ,的相等向量OA 和OB ,则∠AOB 叫作向量a b ,的夹角,记作〈〉,a b ,规定0π≤〈〉≤,a b .如图:零向量:长度为0或者说起点和终点重合的向量,记为0.规定:0与任意向量平行. 单位向量:长度为1的空间向量,即||1a =. 相等向量:方向相同且模相等的向量. 相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.a 平行于b 记作b a//,此时.a b 〈〉,=0或a b 〈〉,=π. 共面向量:平行于同一个平面的向量,叫做共面向量. 要点诠释:(1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关. 只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.(3)对于任意一个非零向量a,我们把a a叫作向量a 的单位向量,记作0a .0a 与a同向.(4)当a b 〈〉,=0或π时,向量a 平行于b ,记作b a //;当 a b 〈〉,=2π时,向量a b ,垂直,记作a b ⊥. 要点二:空间向量的基本运算 空间向量的基本运算: 运算类型几何方法运算性质向 量 的 加 法1平行四边形法则:OC OA ABa b=+=+加法交换率:.a b b a +=+加法结合率: ()()a b c a b c ++=++()a b a b -=+-AB BC=AC + 0AB BA=+2三角形法则:OB OA AB a b=+=+向 量 的 减 法 三角形法则: BA OA OB a b=-=-AB OA OB =-向 量 的 乘 法 a λ是一个向量,满足:λ>0时,a λ与a 同向; λ<0时,a λ与a 异向;λ=0时, a λ=0()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+a ∥b a b λ⇔=向 量 的 数 量 积1.a b 是一个数:||||cos()a b a b a b =,;2.0a =,0b=或a b ⊥ ⇔b a •=0.a b b a =()()()a b a b a b λλλ==()a b c a c b c +=+22||a a =||||||a b a b ≤要点三:空间向量基本定理共线定理:两个空间向量a 、b (b ≠0 ),a //b 的充要条件是存在唯一的实数λ,使b aλ=.共面向量定理:如果两个向量,a b 不共线,则向量p 与向量,a b 共面的充要条件是存在唯一的一对实数,x y ,使p xa yb =+.要点诠释:(1)可以用共线定理来判定两条直线平行(进而证线面平行)或证明三点共线. (2)可以用共面向量定理证明线面平行(进而证面面平行)或证明四点共面. 空间向量分解定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++.要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是零向量0.(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点四:空间向量的直角坐标运算 空间两点的距离公式若111(,,)A x y z ,222(,,)B x y z ,则①222111212121(,,)(,,)(,,)AB OB OA x y z x y z x x y y z z =-=-=---; ②2||(AB AB ==;③ AB 的中点坐标为121212222x +x y +y z +z ⎛⎫⎪⎝⎭,,.空间向量运算的的坐标运算设111(,,)a x y z =,222(,,)b x y z =,则 ① 121212(,,)a b x x y y z z +=+++; ② 121212(,,)a b x x y y z z -=---; ③ 111(,,)()a x y z R λλλλλ=∈; ④ 121212a b x x y y z z ⋅=++;⑤ 222111a a a x y z ==++,222222b b b x y z ==++; ⑥ ()121212222222111222cos 00x x y y z z a b a b a b a bx y zx y z++==≠≠++++,,.空间向量平行和垂直的条件若111(,,)a x y z =,222(,,)b x y z =,则①12//a b a b x x λλ⇔=⇔=,12y y λ=,12()z z R λλ=∈⇔111222x y z x y z ==222(0)x y z ≠; ②12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. 要点诠释:(1)空间任一点P 的坐标的确定:过P 作面xOy 的垂线,垂足为'P ,在面xOy 中,过'P 分别作x 轴、y 轴的垂线,垂足分别为A C 、,则|'|||||x P C y AP z PP ===,,''.如图: (2)夹角公式可以根据数量积的定义推出:a ba b |a ||b|cos a b cos a b |a ||b|⋅⋅=<⋅>⇒<⋅>=⋅,其中θ的范围是[0,]π.(3)0与任意空间向量平行或垂直. 要点五:用向量方法讨论垂直与平行图示向量证明方法线线平行 (a //b )a //b(a b ,分别为直线a b ,的方向向量)线线垂直 (a b ⊥)⊥a b(a b ,分别为直线a b ,的方向向量)线面平行 (l //α)⊥a n ,即0=⋅a n(a 是直线l 的方向向量,n 是平面α的法向量).线面垂直 (l α⊥)a //n(a 是直线l 的方向向量,n 是平面α的法向量) 面面平行 (α//β)//u v(u v ,分别是平面α,β的法向量)面面垂直 (αβ⊥)⊥u v ,即0=u v(u ,v 分别是平面α,β的法向量)要点诠释:(1)直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量:已知平面α,直线l α⊥,取l 的方向向量a ,有α⊥a ,则称为a 为平面α的法向量. 一个平面的法向量不是唯一的.要点六:用向量方法求角图示向量证明方法异面直线所成的角||cos ||||AC BD AC BD θ⋅=⋅(A ,C 是直线a 上不同的两点,B ,D 是直线b 上不同的两点)直线和平面的夹角||sin |cos |||||θϕ⋅==⋅a u a u(其中直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ)二面角cos θ(平面α与β的法向量分别为1n 和2n ,平面α与β的夹角为θ)要点诠释:①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。

②当法向量1n ,2n 的方向同时指向二面角的内侧或外侧时,二面角θ的大小等于1n ,2n 的夹角的补角12,π-〈〉n n 的大小。

要点七:用向量方法求距离图示向量证明方法点到平面的距离PAd=AA'=nn(n为平面π的法向量)与平面平行的直线到平面的距离PAd=AA'=nn(n是平面π的公共法向量)两平行平面间的距离PAd=AA'=nn(n是平面α,β的一个公共法向量)要点诠释:(1)在直线上选取点时,应遵循“便于计算”的原则,可视情况灵活选择.(2)空间距离不只有向量法一种方法,比如点面距还有一种重要的求法为等积转化法.(3)各种距离之间有密切联系,有些可以相互转化,如两条平行线的距离可转化为求点到直线的距离,平行线面间的距离或平行平面间的距离都可转化成点到平面的距离.而且我们在求解时往往又转化为空间向量的处理方法.要点八:立体几何中的向量方法用空间向量解决立体几何问题的“三步曲”1.建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题)2.通过向量运算研究点、线、面之间的位置关系及它们之间的距离和夹角等问题;(进行向量运算)3.把向量的运算结果“翻译”成相应的几何意义.(回到图形问题)用坐标法解决立体几何中问题的一般步骤1.建立适当的空间直角坐标系;2.写出相关点的坐标及向量的坐标;3.进行相关的计算;4.写出几何意义下的结论. 【典型例题】类型一:空间向量的概念及运算例1.在四面体O ABC 中,=OA a ,=OB b ,OC =c ,D 为BC 的中点,E 为AD 的中点,则OE =________(用a ,b ,c 表示).【思路点拨】将a ,b ,c 看作已知条件,不断的应用向量加法的三角形法则和平行四边形法则、减法的三角形法则、向量的数乘法则,层层推进,最终得到OE 的向量表示. 【答案】111++244a b c【解析】【总结升华】1. 类比平面向量表达平面位置关系过程,掌握好空间向量的用途. 用向量的方法处理立体几何问题,使复杂的线面空间关系代数化.2. 由于A B C E ,,,四点共线,故最后的结果可以用共面向量定理检查,即若OE =++x y z a b c ,则=1x y z ++. 举一反三:【变式1】如图,在三棱柱111ABC A B C -中,M 是1BB 的中点,化简下列各式: (1)1CB BA +; (2)112AC CB AA ++; (3)1AA AC CB --. 【答案】(1)11CB BA CA +=;(2)112AC CB AA AM ++=;(3)11AA AC CB BA --=.【变式2】如图,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点. 若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是( )A . 1122a b c -++ B .1122a b c ++ C . 1122a b c --+ D . 1122a b c -+ 【答案】A 【解析】法一:1111()2BM BB B M AD AB AA =+=-+=1122a b c -++.法二:()11111111111=++=++=D+=+=222222a b c AB AD AA BA AD AA B AA B M BB BM -++-; ()11111111111=++=++=+=+=222222a b c AB AD AA AB AD AA AC AA A M AA AM ++; ()11111111=++=+==2222a b c AB AD AA AC AA C M CC CM ++ ; ()11111111=+==+2222a b c AB AD AA DB AA D M DD DM -+-=+=. 故选A .类型二:空间向量的直角坐标运算例2. 设a =(1,5,-1),b =(-2,3,5). (1)当(λ+a b )∥(3-a b )时,求λ的值;(2)当(a -3b )⊥(λa +b )时,求λ的值.【思路点拨】根据空间向量平行与垂直条件及直角坐标的相关公式进行运算. 【解析】(1)∵ =a (1,5,-1),=b (-2,3,5),∴ 3-=a b (1,5,-1)-3(-2,3,5)=(1,5,-1)-(-6,9,15)=(7,-4,-16).λ+=a b (1,5,-1)+(-2,3,5)=(λ,5λ,λ-)+(-2,3,5)=(2λ-,53λ+,5λ-+).∵ ()λ+a b ∥(3-a b ), ∴25357416λλλ-+-+==--,解得13λ=-. (2)由(3-a b )⊥(λ+a b )⇔(7,-4,-16)·(2λ-,53λ+,5λ-+)=07(2)4(53)16(5)0λλλ⇔--+--+=,解得1063λ=. 举一反三:【变式1】已知12(253)(325)M M ,,-,,-,-,设在线段12M M 上的一点M 满足122=4M M MM ,则向量OM 的坐标为________. 【答案】1119442⎛⎫ ⎪⎝⎭,,【变式2】(2015秋 齐齐哈尔校级期中)已知(221)(101)(314)A B C ,-,,,,,,-,,则向量AB 与AC 夹角的余弦值为________.【变式3】空间四边形OABC 中,OB =OC ,∠AOB =∠AOC =60°,则cos OABC 〈〉,等于( )A .12 B C .12- D .0【答案】D设OA =a ,OB =b ,OC =c ,则||||=b c , 所以()OABC =-a c b 11||||||||022=-=a c a b . 所以OA ⊥BC .所以cos 0OABC 〈〉=,. 类型三:共线和共面向量定理的应用例3.已知平行四边形ABCD ,从平面AC 外一点O 引向量OE kOA =,OF kOB =,OG kOC =,OH kOD =. 求证:(1)四点E F G H 、、、共面; (2)平面AC //平面EG .【思路点拨】(1)利用共面向量定理证明四点E F G H 、、、共面; (2)由向量共线得到线线平行,利用平面平行的判定定理证明. 【解析】(1)()()()===OE kOA k OB BA k OB CD k OB OD OC kOB kOD kOC OF OH OG =+=+=+++ ,∵1111+-=,由共线向量定理可知,点E F G H 、、、共面. (2)()EF OF OE kOB kOA k OB OA k AB ==== ,∴EF //AB又∵EF ⊄平面AC ,AB ⊂平面AC , ∴EF ∥平面AC . 同理FG ∥平面AC , ∵=EFFG F ,∴平面AC //平面EG .【总结升华】在求一个向量由其他向量来表示的时候,通常是利用向量的三角形法则、平行四边形法则和共线向量的特点,把要求的向量逐步分解,向已知向量靠近,进行求解. 若要证明两直线平行,只需判断两直线所在的向量是否满足线性关系a b λ=即可.在本题第(1)题的解析中运用了共面向量定理的推论,其实利用共面向量定理也可以给予证明,同学们试一试. 举一反三:【变式1】与向量()=1,1,0a 平行的单位向量的坐标为( )A. (1,1,0)B. (0,1,0)C. (1,1,1)D. 22(,,0)22或22(,,0)22--. 【答案】D【变式2】已知A B C ,,三点不共线,O 为平面ABC 外一点,若由向量1253OP OA OB OC λ=++确定的点P 与A B C ,,共面,那么λ=【答案】215类型四:空间向量在立体几何中的应用例4.如图所示,四棱锥P -ABCD 中,底面ABCD 为矩形,PD ⊥底面ABCD ,AD =PD ,E ,F 分别为CD 、PB 的中点.(1)求证:EF ⊥平面PAB ;(2)设AB=2BC,求AC与平面AEF所成角的正弦值.【思路点拨】证明线面垂直,求线面所成角的问题,题设中的垂直关系易考虑建立空间直角坐标系,(1)转化为求0,0EF AB EF PB==;(2)先求平面AEF的法向量,再利用公式求解.【解析】(1)建立空间直角坐标系(如图).设AD=PD=1,AB=2a(a>0),则E(a,0,0),C(2a,0,0),A(0,1,0),B (2a,1,0),P(0,0,1),1122F a⎛⎫⎪⎝⎭,,.∴1122EF⎛⎫= ⎪⎝⎭,,,(211)PB a=-,,,(200)AB a=,,.∵110(200)022EF AB a⎛⎫==⎪⎝⎭,,,,,∴EF AB⊥,即EF⊥AB.同理EF⊥PB,又AB∩PB=B,∴EF⊥平面PAB.(2)由AB2,得22a=22a=,得2002E⎛⎫⎪⎪⎝⎭,211222F⎛⎫⎪⎪⎝⎭,,,200)C,,,有(210)AC=-,,,210AE⎛⎫=-⎪⎪⎝⎭,,1122EF⎛⎫= ⎪⎝⎭,,.设平面AEF的法向量为n=(x,y,1),由EFAE⎧=⎪⎨=⎪⎩,,nn得11(1)00222(1)1002x yx y⎧⎛⎫=⎪⎪⎝⎭⎪⎨⎛⎫⎪-=⎪⎪⎪⎝⎭⎩,,,,,,,,,11222yx y⎧+=⎪⎪⇒-=,,解得12yx=-⎧⎪⎨=⎪⎩,,于是(211)=--,,n . 设AC 与平面AEF 所成的角为θ,AC 与n 的夹角为AC 〈〉,n , 则||sin |cos |||||AC AC AC θ=〈〉=,,n nn |(210)(211)|321021---==++++,,,,. 【总结升华】在空间图形中,如果线段较多,关系较为复杂(如平行、垂直、角和距离等均有涉及),常常需要多种方法灵活使用,合理结合,才能达到较为理想的效果,在建立坐标后,应根据条件确定相应点的坐标,然后通过向量的坐标计算解决相应问题. 举一反三:【变式1】(2015 上海)如图,在长方体中1111ABCD A B C D -,11AA =,2AB AD ==,E 、F 分别是棱AB 、BC 的中点,证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11A C FE 所成的角的大小.【答案】如图,以为原点建立空间直角坐标系,可得有关点的坐标为 ,,,,,.因为 ,, 所以 ,因此直线 与直线共面,即,,, 四点共面.设平面 的法向量为 ,则 ,,又,,故ABCDF1A 1B 1C 1D解得取 ,得平面的一个法向量.又,故因此直线与平面所成角的正弦值为.【变式2】如图所示,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M 、N 分别为PC 、PB 的中点.(1)求证:PB ⊥DM ;(2)求CD 与平面ADMN 所成的角的正弦值.【答案】如图,以A 为坐标原点建立空间直角坐标系A -xyz ,设BC =1,则A (0,0,0),P (0,0,2),B (2,0,0),C (2,1,0),M 1112⎛⎫ ⎪⎝⎭,,,D (0,2,0).(1)因为3(202)1102PBDM ⎛⎫=--= ⎪⎝⎭,,,,,所以PB ⊥DM .(2)因为(202)(020)0PBAD =-=,,,,,所以PB ⊥AD .又因为PB ⊥DM ,所以PB ⊥平面ADMN .因此PB DC 〈〉,的余角即是CD 与平面ADMN 所成的角.因为10cos5||||PB DCPB DCPB DC〈〉==,,所以CD与平面ADMN所成的角的正弦值为105.例5.如图所示的几何体ABCDE中,DA⊥平面EAB,CB∥DA,EA=DA=AB=2CB,EA ⊥AB,M是EC的中点.(1)求证:DM⊥EB;(2)求二面角M-BD-A 的余弦值.【解析】建立如图所示的空间直角坐标系,并设EA=DA=AB=2CB=2,则(1)3112DM⎛⎫=-⎪⎝⎭,,,(220)EB=-,,,所以0DM EB=,从而得DM⊥EB .(2)设1()x y z=,,n是平面BDM的法向量,则由1DM⊥n,1DB⊥n及3112DM⎛⎫=-⎪⎝⎭,,,(022)DB=-,,,得1132220DM x y zDB y x⎧=+-=⎪⎨⎪=-=⎩,,nn可以取1(122)=,,n.显然,2=n(1,0,0)为平面ABD的一个法向量.设二面角M-BD-A的平面角为θ,则此二面角的余弦值121212||1cos|cos|||||3θ=〈〉==,n nn nn n.【总结升华】本题主要考查空间想象能力及坐标运算能力,若用立体几何逻辑推理的方法也可以证明计算,但适当建系后解题较直观.举一反三:【变式1】过正方形ABCD的顶点A作线段PA⊥平面ABCD,如果PA=AB,那么平面ABP与平面CDP所成的二面角的大小为()A.30°B.45°C.60°D.90°【答案】B设PA=AB=a,则PD=2a,设二面角为θ,则2cos2ABPCDPSθ==△△S.故选B.【变式2】如图所示,四棱锥P-ABCD中,底面ABCD是边长为a的正方形,且PD=a,PA=PC=2a,求平面APB与平面PBD夹角的大小.【答案】在△PAD中,PD=AD=a,PA=2a,∴PD⊥AD,同理在△PCD中PD⊥CD.如图分别以DA、DC、DP所在直线为x、y、z轴,建立空间直角坐标系.则A (a ,0,0),B (a ,a ,0),P (0,0,a ).∴ AP = (-a ,0,a ),AB =(0,a ,0),DB =(a ,a ,0),DP =(0,0,a ). 设平面PAB 的法向量为m =(x ,y ,z ).由00AB AP ⎧=⎪⎨=⎪⎩,,m m 得00ay ax az =⎧⎨-+=⎩,.令z =1,得=m (1,0,1).同理设平面PDB 的法向量为()x y z '''=,,n .由00DB DP ⎧=⎪⎨=⎪⎩,,n n 得n =(-1,1,0), ∴ ||1|cos |||||222〈〉===,m n m n m n .∴ 平面PAB 与平面PDB 的夹角为60°.【变式3】如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.10 【解析】以B 为原点,1BA BB 、分别为x 轴、y 轴建立空间直角坐标系,由MN ⊥平面111A B C ,得111100MN AC MN A B ⎧⋅=⎪⎨⋅=⎪⎩ 即2325()(2)()(2)50232()(22)0a b a ⎧-+-=⎪⎪⎨⎪--=⎪⎩解得24a b ⎧=⎪⎪⎨⎪=⎪⎩故M ,所以线段BM 的长为10||BM =。

相关文档
最新文档