函数的单调性与值域的关系
函数的单调性与最大(小)值-高考数学复习

f(x)在区间[2,6]上的最大值为 1,最小值为5.
解题心得1.若函数f(x)在区间[a,b]上单调递增(减),则f(x)在区间[a,b]上的最
小(大)值是f(a),最大(小)值是f(b).
2.若函数f(x)在区间[a,b]上单调递增(减),在区间[b,c]上单调递减(增),则f(x)
能力形成点2
利用函数的单调性求最值
1
例3 已知函数 f(x)= .
-1
(1)判断f(x)在区间(1,+∞)内的单调性,并加以证明.
(2)求f(x)在区间[2,6]上的最大值和最小值.
解 (1)函数 f(x)在区间(1,+∞)内单调递减.
证明:任取 x2>x1>1,则
1
1
f(x1)-f(x2)=
−
件 都有 f(x1)<f(x2)
都有 f(x1)>f(x2)
那么就称函数 f(x)在区间 D 上
那么就称函数 f(x)在区间 D 上
单调递减
结 单调递增
论 当函数 f(x)在它的定义域上单调 当函数 f(x)在它的定义域上单调
递增时,称它是增函数
递减时,称它是减函数
图
示
结 如果函数 y=f(x)在区间 I 上单调递增或单调递减,那么就说函数 y=f(x)
的上升或下降确定其单调性
导数法
先求导数,再利用导数值的正负确定函数的单调区间
对于由基本初等函数的和、差构成的函数,可根据各初等函数
性质法
的单调性及f(x)±g(x)的单调性进行判断
对于复合函数y=f(g(x)),先将函数分解成y=f(t)和t=g(x),再讨论(
复合法
判断)这两个函数的单调性,最后根据复合函数“同增异减”的规
例析“值域”的作用

例析“值域”的作用
值域是指函数在定义域内所有可能取值的集合。
在数学中,值域的作用主要有以下几点:
1.确定函数的取值范围:值域可以帮助我们确定函数的取值范围,即函数可能的输出值。
通过分析函数的定义域和性质,我们可以确定函数的值域的上界和下界,从而了解函数的取值范围。
2.判定函数的单调性:值域和函数的单调性密切相关。
当函数在一些区间上单调递增时,其值域也是递增的。
同样地,当函数在一些区间上单调递减时,其值域也是递减的。
通过研究函数的定义域和性质,我们可以判定函数在该区间上的单调性。
3.确定函数的奇偶性:值域和函数的奇偶性也有关系。
当函数是奇函数时,其值域关于原点对称;当函数是偶函数时,其值域关于y轴对称。
通过研究函数的定义域和性质,我们可以确定函数的奇偶性。
4.分析函数在整个定义域上的行为:通过确定函数的值域,我们可以分析函数在整个定义域上的行为。
例如,当函数的值域是实数集合时,可以确定函数是一个全局函数。
当函数的值域是有限集合时,可以确定函数的图像是有界的。
通过分析函数的值域,我们可以了解函数的整体情况。
5.解决问题:值域在解决实际问题中也有重要的作用。
例如,我们可以通过分析函数的值域来确定问题的解集。
在应用数学中,我们常常需要确定函数值的范围,以便正确地解决问题。
综上所述,值域在数学中有着重要的作用。
通过确定函数的值域,我们可以了解函数的取值范围、单调性和奇偶性,进而分析函数在整个定义
域上的行为。
值域还在解决实际问题中起着重要的作用。
因此,研究函数值域是数学研究的重要课题之一。
函数的单调性与最值

函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间.2.函数的最值 1.下列函数中,定义域是R 且为增函数的是( ) A .y =e -x B .y =x 3 C .y =ln x D .y =|x |答案:B2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12答案:D3.已知函数f(x)=2x-1(x∈[2,6]),则函数的最大值为________.答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f(x)在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f(x)=1 x.3.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但f(x)·g(x),1f(x)等的单调性与其正负有关,切不可盲目类比.[小题纠偏]1.函数y=x2-6x+10在区间(2,4)上是()A.递减函数B.递增函数C.先递减再递增D.先递增再递减答案:C2.设定义在[-1,7]上的函数y=f(x)的图象如图所示,则函数y=f(x)的增区间为________.答案:[-1,1],[5,7]考点一函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.下列四个函数中,在(0,+∞)上为增函数的是()A.f(x)=3-x B.f(x)=x2-3xC.f(x)=-1x+1D.f(x)=-|x|解析:选C当x>0时,f(x)=3-x为减函数;当x ∈⎝⎛⎭⎫0,32时,f (x )=x 2-3x 为减函数, 当x ∈⎝⎛⎭⎫32,+∞时,f (x )=x 2-3x 为增函数; 当x ∈(0,+∞)时,f (x )=-1x +1为增函数; 当x ∈(0,+∞)时,f (x )=-|x |为减函数.2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1=ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1)=a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤: 取值作差(商)变形确定符号(与1的大小)得出结论(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调递减区间为(2,+∞),单调递增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调递增区间为(1-2,1)和(1+2,+∞);单调递减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫132x 2-3x +1的单调递增区间为( ) A .(1,+∞) B.⎝⎛⎦⎤-∞,34 C.⎝⎛⎭⎫12,+∞ D.⎣⎡⎭⎫34,+∞ 解析:选B 令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减. 所以y =⎝⎛⎭⎫132x 2-3x +1在⎝⎛⎦⎤-∞,34上单调递增. 考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以选择题、填空题的形式出现,有时也应用于解答题中的某一问中.常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c解析:选D 因f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e), ∴b >a >c .角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x -8)≤2时,x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)解析:选B 2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( )A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0解析:选D 当a =0时,f (x )=2x -3,在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log ax ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.下列函数中,定义域是R 且为增函数的是( )A .y =2-x B .y =x C .y =log 2 xD .y =-1x解析:选B 由题知,只有y =2-x与y =x 的定义域为R ,且只有y =x 在R 上是增函数.2.函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2] B .[-1,0] C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].3.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( ) A .(-∞,1] B .(-∞,-1] C .[-1,+∞)D .[1,+∞)解析:选A 因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎨⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4. ∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞)二保高考,全练题型做到高考达标1.给定函数:①y =x 12;②y =log 12(x +1);③y =|x -1|;④y =2x +1.其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④解析:选B ①是幂函数,在(0,+∞)上为增函数,故此项不符合要求;②中的函数图象是由y =log 12x 的图象向左平移1个单位得到的,函数y =log 12x 是(0,+∞)上的减函数,所以函数y =log 12(x +1)是(-1,+∞)上的减函数,故此项符合要求;③中的函数在(-∞,1)上为减函数,(1,+∞)上为增函数,符合要求;④中的函数在R 上为增函数,不符合要求.2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( ) A .(-∞,1] B .[3,+∞) C .(-∞,-1]D .[1,+∞)解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.函数f (x )=x1-x在( ) A .(-∞,1)∪(1,+∞)上是增函数 B .(-∞,1)∪(1,+∞)上是减函数 C .(-∞,1)和(1,+∞)上是增函数 D .(-∞,1)和(1,+∞)上是减函数解析:选C 函数f (x )的定义域为{x |x ≠1}.f (x )=x 1-x =11-x-1,根据函数y =-1x 的单调性及有关性质,可知f (x )在(-∞,1)和(1,+∞)上是增函数.4.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( )A .-1B .1C .6D .12解析:选C 由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6.5.已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log ax ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,13 C.⎣⎡⎭⎫17,13D.⎣⎡⎭⎫17,1解析:选C 当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意.6.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14. 答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞).答案:(-3,-1)∪(3,+∞)8.设函数f (x )=⎩⎪⎨⎪⎧ 1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧ x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1).答案:[0,1)9.已知函数f (x )=1a -1x(a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2, ∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数,∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25. 10.已知f (x )=x x -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.解:(1)证明:任设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增.(2)任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1.综上所述知a 的取值范围是(0,1].三上台阶,自主选做志在冲刺名校1.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫做“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( ) A .[1,+∞)B .[0, 3 ]C .[0,1]D .[1, 3 ]解析:选D 因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x(x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x在区间[1,3]上单调递减,故“缓增区间”I 为[1, 3 ].2.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值.解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0, 因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数.(3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2.∴f (x )在[2,9]上的最小值为-2.。
函数的单调性与值域的关系

的值域求得
例如:求函数 y= log2( x2 2 x 3) 的值域 解:函数的定义域为(-1,3),令 u= x2 2 x 3 x∈(-1,3) 易
5 / 14
求得:0<u≤4
因为函数 y= log2 u 为增函数,所以原函数的值域为:(﹣∞,2] (此题 还有其他解法)
(7)分离常数法(常用来解决“分式型”函数的值域)
解法一,分离系数法;
由 f(x)≤0,得 x2 ﹣2x+2a≤0,即 2a≤- x2 +2x,设 g(x)=- x2 +2x=﹣
( x 1)2 +1, x∈[-2,2]
∵g(x)在[-2,2]的最小值为 g( x)max g(﹣2)=﹣8, ∴2a≤﹣8, ∴ a≤﹣4 所以实数 a 的取值范围为: (﹣∞,﹣4]
∣ab∣≥2ab。②若 a,b∈ R ,则 a+b≥2 ab ,两个不等式均为当 a=b
时,等号成立。)
例如:求下列函数的值域
① y=x+ 1 (x>0)
x
② y= 3x (x≥0)
x2 4
解:①∵x>0,∴x+ 1 ≥2 x. 1 =2,当且仅当 x= 1 时,即 x=1 时,等号成
x
x
x
立.所以函数的值域为[2,+∞) ②当 x=0 时,y=0,当 x>0 时,y= 3 ,
2
( 2 ,+∞)内为增函数,在定义域(-∞, ﹣ 2 )内是减函数 5.函数的值域和最值 (1)函数的值域(见函数的概念一节) (2)函数的最值 ①函数最大值的定义:一般地,设函数 y=f(x)的定义域为 I,若存在
2 / 14
实数 M 满足:<1>对任意的 x∈I,都有 f(x)≤M;<2>存在 x0 ∈I,使 得 f( x0 )=M。那么,称 M 是函数 y=f(x)的最大值。 ②函数最小值的定义:一般地,设函数 y=f(x)的定义域为 I,若存在
2021届高考数学(理)考点复习:函数的单调性与最值(含解析)

2021届高考数学(理)考点复习函数的单调性与最值1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f (x1)<f (x2),那么就说函数f (x)在区间D上是增函数当x1<x2时,都有f (x1)>f (x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f (x)在区间D上是增函数或减函数,那么就说函数y=f (x)在这一区间具有(严格的)单调性,区间D叫做y=f (x)的单调区间.2.函数的最值前提设函数y=f (x)的定义域为I,如果存在实数M满足条件(1)对于任意的x∈I,都有f (x)≤M;(2)存在x0∈I,使得f (x0)=M (1)对于任意的x∈I,都有f (x)≥M;(2)存在x0∈I,使得f (x0)=M结论M为最大值M为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x1,x2∈D,x1≠x2,f(x1)-f (x2)x1-x2>0⇔f (x)在D上是增函数;对∀x1,x2∈D,x1≠x2,(x1-x 2)·[f (x 1)-f (x 2)]>0⇔f (x )在D 上是增函数.减函数类似. 2.写出函数y =x +ax (a >0)的增区间.提示 (-∞,-a ]和[a ,+∞).1.(2020·新课标Ⅱ)设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A. 是偶函数,且在1(,)2+∞单调递增B. 是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D. 是奇函数,且在1(,)2-∞-单调递减【答案】D 【解析】由()ln 21ln 21f x x x =+--得()f x 定义域为12x x ⎧⎫≠±⎨⎬⎩⎭,关于坐标原点对称,又()()ln 12ln 21ln 21ln 21f x x x x x f x -=----=--+=-,()f x ∴为定义域上的奇函数,可排除AC ;当11,22x ⎛⎫∈-⎪⎝⎭时,()()()ln 21ln 12f x x x =+--, ()ln 21y x =+在11,22⎛⎫- ⎪⎝⎭上单调递增,()ln 12y x =-在11,22⎛⎫- ⎪⎝⎭上单调递减,()f x ∴在11,22⎛⎫- ⎪⎝⎭上单调递增,排除B ;当1,2x ⎛⎫∈-∞-⎪⎝⎭时,()()()212ln 21ln 12ln ln 12121x f x x x x x +⎛⎫=----==+ ⎪--⎝⎭, 2121x μ=+-在1,2⎛⎫-∞- ⎪⎝⎭上单调递减,()ln f μμ=在定义域内单调递增,根据复合函数单调性可知:()f x 在1,2⎛⎫-∞-⎪⎝⎭上单调递减,D 正确. 2.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是__________. 【答案】23()()2f x x =-- (答案不唯一)【解析】对于23()()2f x x =--,其图象的对称轴为32x =, 则f (x )>f (0)对任意的x ∈(0,2]都成立, 但f (x )在[0,2]上不是单调函数.1.(2019•平谷区一模)下列函数中,在区间(0,)+∞上为增函数的是( ) A .1y x=B .y lnx =C .sin y x =D .2x y -=【答案】B【解析】根据题意,依次分析选项: 对于A ,1y x=,为反比例函数,在(0,)+∞上为减函数,不符合题意; 对于B ,y lnx =,为指数函数,在区间(0,)+∞上为增函数,符合题意; 对于C ,sin y x =,为正弦函数,在(0,)+∞上不是单调函数,不符合题意; 对于D ,12()2x x y -==,是指数函数,在(0,)+∞上为减函数,不符合题意;故选B .2.(2019•西城区一模)下列函数中,值域为R 且在区间(0,)+∞上单调递增的是( ) A .22y x x =+ B .12x y += C .31y x =+D .(1)||y x x =-【答案】C【解析】根据题意,依次分析选项:对于A ,222(1)1y x x x =+=+-,其值域为[1-,)+∞,不符合题意; 对于B ,12x y +=,其值域为(0,)+∞,不符合题意;对于C ,31y x =+,值域为R 且在区间(0,)+∞上单调递增,符合题意; 对于D ,22,0(1)||,0x x x y x x x x x ⎧-=-=⎨-+<⎩,在区间1(0,)2上为减函数,不符合题意;故选C .3.(2016•安庆三模)若函数2()||2f x x a x =++,x R ∈在区间[3,)+∞和[2-,1]-上均为增函数,则实数a 的取值范围是( ) A .11[3-,3]- B .[6-,4]- C .[3-,22]- D .[4-,3]-【答案】B【解析】2()||2f x x a x =++,22()()||2||2()f x x a x x a x f x -=-+-+=++=,()f x ∴为实数集上的偶函数,由2()||2f x x a x =++在区间[3,)+∞和[2-,1]-上均为增函数,知()f x 在[3,)+∞上为增函数,在[1,2]上为减函数,∴函数22(0)y x ax x =++>的对称轴[2,3]2a x =-∈,得[6a ∈-,4]-.故选B .4.(2016•天津二模)若221,0()(1)(1),0axax x f x a a e x ⎧+=≠⎨-<⎩,在定义域(,)-∞+∞上是单调函数,则a 的取值范围是( ) A .2]B .[2,1)[2,)--+∞C .(,2]2]-∞⋃D .2(0,)[2,)3+∞【答案】C【解析】()f x 在定义域(,)-∞+∞上是单调函数时,①函数的单调性是增函数时,可得当0x =时,22(1)11ax a e ax -+=, 即211a -,解之得22a0x 时,21y ax =+是增函数,0a ∴>又0x <时,2(1)ax a e -是增函数,210a ∴->,得1a <-或1a >因此,实数a 的取值范围是:12a <②函数的单调性是减函数时,可得当0x =时,22(1)11ax a e ax -+=, 即211a -,解之得2a -或2a.0x 时,21y ax =+是减函数,0a ∴<又0x <时,2(1)ax a e -是减函数,210a ∴->,得1a <-或1a >因此,实数a 的取值范围是:2a - 综上所述,得(,2]2]a ∈-∞⋃故选C .5.(2020春•天津期末)下列函数中,在(0,)+∞上为增函数的是( ) A .()3f x x =- B .2()3f x x x =-C .1()f x x=-D .()||f x x =-【答案】C【解析】根据题意,依次分析选项:对于A ,()3f x x =-为一次函数,在(0,)+∞上为减函数,不符合题意; 对于B ,2()3f x x x =-为二次函数,在3(0,)2上为减函数,不符合题意;对于C ,1()f x x=-为反比例函数,在(0,)+∞上为增函数,符合题意; 对于D ,()||f x x =-,当0x >时,()f x x =-,则函数()f x 在(0,)+∞上为减函数,不符合题意; 故选C .6.(2019秋•武昌区期末)下列函数在(0,2)上是增函数的是( ) A .2y x =- B .12y x =-C .21()2x y -=D .12log (2)y x =-【答案】D【解析】对于A ,函数在(0,2)递减,不合题意; 对于B ,函数在(0,2)递减,不合题意; 对于C ,函数在(0,2)递减,不合题意; 对于D ,函数在(0,2)递增,符合题意; 故选D .7.(2020春•郑州期末)函数2()2f x x lnx =-的单调减区间是( ) A .(0,1) B .(1,)+∞ C .(,1)-∞ D .(1,1)-【答案】A【解析】函数2()2(0)f x x lnx x =->的导数为 2()2f x x x'=-, 令()0f x '<,解得01x <<. 即有单调减区间为(0,1). 故选A .8.(2020•北京模拟)下列函数中,在(0,)+∞内单调递增,并且是偶函数的是( ) A .2(1)y x =-- B .cos 1y x =+C .||2y lg x =+D .2x y =【答案】C【解析】A .2(1)y x =--的对称轴为1x =,为非奇非偶函数,不满足条件.B .cos 1y x =+是偶函数,但在(0,)+∞内不是单调函数,不满足条件.C .||2y lg x =+为偶函数,在(0,)+∞内单调递增,满足条件,D .2x y =,(0,)+∞内单调递增,为非奇非偶函数,不满足条件.故选C .9.(2019春•武邑县校级期中)函数()af x x x=+在区间(2,)+∞上单调递增,那么实数a 的取值范围是( ) A .02a < B .04a <C .4aD .4a【答案】D【解析】根据题意,函数()af x x x=+,其导数222()1a x a f x x x -'=-=, 若()af x x x=+在区间(2,)+∞上单调递增,则22()0x a f x x -'=在(2,)+∞上恒成立,则有2a x 在(2,)+∞上恒成立, 必有4a , 故选D .10.(2019秋•东海县期中)函数1()f x x=的单调减区间是( ) A .(0,)+∞B .(,0)-∞C .(-∞,0)(0⋃,)+∞D .(,0)-∞和(0,)+∞【答案】D【解析】根据题意,函数1()f x x =,其定义域为{|0}x x ≠其导数21()f x x'=-, 分析可得:当0x >时,()0f x '<,即函数()f x 在(0,)+∞上为减函数, 当0x <时,()0f x '<,即函数()f x 在(,0)-∞上为减函数; 综合可得:函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞; 故选D .11.(2019秋•钟祥市校级期中)函数||1y x =-的单调递减区间为( ) A .(0,)+∞ B .(,0)-∞ C .(,1)-∞- D .(1,)-+∞【答案】B【解析】当0x 时,||11y x x =-=-,此时函数为增函数, 当0x <时,||11y x x =-=--,此时函数为减函数, 即函数的单调递减区间为(,0)-∞, 故选B .12.(2019秋•金凤区校级期中)下列函数在(0,)+∞上单调递增的是( ) A .2||y x = B .1y x =C .1()2x y =D .2y x x =-【答案】A【解析】根据题意,依次分析选项:对于A ,2,02||2,0x x y x x x ⎧==⎨-<⎩,在(0,)+∞上单调递增,符合题意;对于B ,1y x=,为反比例函数,在(0,)+∞上单调递减,不符合题意; 对于C ,1()2x y =,为指数函数,在(0,)+∞上单调递减,不符合题意;对于D ,2y x x =-,为二次函数,在1(0,)2上单调递减,不符合题意;故选A .13.(2019秋•赫章县期中)下列函数在[1-,)+∞上单调递减的是( ) A .2()3f x x x =-- B .()14x f x =+ C .()(2)f x lg x =+ D .()|21|f x x =-+【答案】A【解析】根据题意,依次分析选项:对于A ,2()3f x x x =--,为二次函数,其开口向下且对称轴为32x =-,在[1-,)+∞上单调递减,符合题意;对于B ,()14x f x =+,在R 上为增函数,不符合题意; 对于C ,()(2)f x lg x =+,在R 上为增函数,不符合题意;对于D ,121,2()|21|121,2x x f x x x x ⎧---⎪⎪=-+=⎨⎪+<-⎪⎩,在1(1,)2--上为增函数,不符合题意;故选A .14.(2019秋•香坊区校级月考)已知函数21()2x f x x +=+,则函数()y f x =的单调增区间是( ) A .(,)-∞+∞B .(,2)-∞-C .(-∞,2)(2-⋃,)+∞D .(,2)-∞-和(2-.)+∞【答案】D【解析】根据题意,函数213()222x f x x x +-==+++,其导数23()(2)f x x '=+, 易得在区间(,2)-∞-和(2,)-+∞上,()0f x '>, 即函数()f x 在区间(,2)-∞-和(2-.)+∞为增函数, 故选D .15.(2019春•温州期中)函数(21)y m x b =-+在R 上是减函数.则( ) A .12m >B .12m <C .12m >-D .12m <-【答案】B【解析】根据题意,函数(21)y m x b =-+在R 上是减函数, 则有210m -<,解可得12m <, 故选B .16.(2019•湖南模拟)定义在R 的函数3()f x x m =-+与函数32()()g x f x x x kx =++-在[1-,1]上具有相同的单调性,则k 的取值范围是( ) A .(-∞,2]- B .[2,)+∞C .[2-,2]D .(-∞,2][2-,)+∞【答案】B【解析】根据题意,函数3()f x x m =-+,其定义域为R ,则R 上()f x 为减函数,322()()g x f x x x kx x kx m =++-=-+在[1-,1]上为减函数, 必有12kx =,解可得2k , 即k 的取值范围为[2,)+∞; 故选B .17.(2019秋•金台区期中)函数221()2x x y -+=的单调递增区间是( )A .[1-,)+∞B .(-∞,1]-C .[1,)+∞D .(-∞,1]【答案】C【解析】令22t x x =-+, 则1()2t y =,由22t x x =-+的对称轴为1x =,可得函数t 在(,1)-∞递增,[1,)+∞递减, 而1()2t y =在R 上递减,由复合函数的单调性:同增异减,可得函数221()2x x y -+=的单调递增区间是[1,)+∞,故选C .18.(2019秋•天津期中)函数254y x x =-+( ) A .5[,)2+∞B .5[,4)2C .[4,)+∞D .5[1,),[4,)2+∞【答案】C【解析】令2540x x -+, 解得:4x 或1x ,而函数254y x x =-+的对称轴是:52x =, 由复合函数同增异减的原则,故函数254y x x =-+[4,)+∞, 故选C .19.(2019秋•项城市校级月考)下列函数中,在区间(0,1)上是递增函数的是( ) A .|1|y x =+ B .3y x =-C .1y x=D .24y x =-+【答案】A【解析】A .(0,1)x ∈时,|1|1y x x =+=+,∴该函数在(0,1)上是递增函数,;所以该选项正确B .3y x =-是一次函数,在(0,1)上是递减函数,所以该选项错误;C .1y x=是反比例函数,在(0,1)上是递减函数,所以该选项错误; D .24y x =-+是二次函数,在(0,1)上是递减函数,所以该选项错误.故选A .20.(2019•西湖区校级模拟)函数()2f x lnx x =-的定义域为___________;单调递减区间是___________.【答案】(0,)+∞;1(2,)+∞【解析】函数()f x 的定义域为(0,)+∞;112()2xf x x x-'=-=, 令()0f x '<,得12x >, ∴函数的单调递减区间为1(2,)+∞.故答案为:(0,)+∞;单调递减区间为1(2,)+∞.21.(2019•西湖区校级模拟)函数42y x x=+的单调递增区间为___________,值域为___________. 【答案】(,2)-∞和(2,)+∞,(-∞,42][42-,)+∞ 【解析】24()20f x x '=->,解得2x >或2x <-函数42y x x=+的单调递增区间为(,2)-∞和(2,)+∞,单调递减区间为[2-0),(02],即函数在2x =-(2)42f -=-,在2x =处有极小值(2)42f = 所以函数的值域为(-∞,42][42-,)+∞.故答案为:(,2)-∞和(2)+∞,(-∞,42][42-,)+∞.22.(2018•浙江模拟)已知函数已知函数222,2()1,2x x x f x log x x ⎧-+⎪=⎨->⎪⎩,则(f f (4))___________;函数()f x 的单调递减区间是___________.【答案】1,[1,2]【解析】f (4)2log 411=-=; (f f ∴(4))f =(1)21211=-+⨯=;2x 时,2()2f x x x =-+,对称轴为1x =;()f x ∴在[1,2]上单调递减; ()f x ∴的单调递减区间为[1,2].故答案为:1,[1,2].23.(2017•河东区一模)已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是___________. 【答案】[3,3]-【解析】由题意知,32()1f x x ax x =-+--, 则2()321f x x ax '=-+-,32()1f x x ax x =-+--在R 上是单调函数, 2()3210f x x ax ∴'=-+-在R 上恒成立, 则△2(2)4(3)(1)0a =-⨯-⨯-,解得33a-,∴实数a 的取值范围是[3,3]-,故答案为:[3,3].24.(2016•永康市模拟)设函数21,1()2,1x x x f x ax x ⎧+=⎨+>⎩,若(f f (1))4a =,则实数a =___________,函数()f x 的单调增区间为___________. 【答案】2,(0,)+∞【解析】函数21,1()2,1x x x f x ax x ⎧+=⎨+>⎩,可得f (1)2=,(f f (1))f =(2)424a a =+=, 解得2a =;21,1()22,1x x x f x x x ⎧+=⎨+>⎩的增区间为(0,1)[1,)+∞(0,)=+∞.故答案为:2,(0,)+∞25.(2019秋•徐汇区校级期中)函数2()2f x x x =-+的单调递增区间为___________. 【答案】(-∞,1]【解析】根据题意,22()2(1)1f x x x x =-+=--+,是开口向下的二次函数,其对称轴为1x =, 故()f x 的单调递增区间为(-∞,1];故答案为:(-∞,1].26.(2019秋•香坊区校级月考)函数224y x x =--+的值域是___________,单调递增区间是___________.【答案】[0,2];[2,4]【解析】根据题意,函数224y x x =-+设24t x x =-+,必有240t x x =-+,解可得04x , 必有04t ,则2042x x -+,则有02y ,即函数的值域为[0,2];又由24t x x =-+,必在区间[0,2]上为增函数,则[2,4]上为减函数,则函数()f x 的递增区间为[2,4];故答案为:[0,2];[2,4].27.(2019春•江阴市期中)已知2()(2)2f x x m x =-++在[1,3]上是单调函数,则实数m 的取值范围为___________. 【答案】0m 或4m【解析】根据题意,2()(2)2f x x m x =-++为二次函数,其对称轴为22m x +=, 若()f x 在[1,3]上是单调函数,则有212m +或232m +, 解可得0m 或4m ,即m 的取值范围为0m 或4m ; 故答案为:0m 或4m .28.(2018秋•驻马店期末)已知()f x 是定义在[1-,)+∞上的单调递增函数,则不等式2()(2)2x xf e f --的解集是___________.【答案】[2,6]【解析】根据题意,()f x 是定义在[1-,)+∞上的单调递增函数, 则22()(2)2122x x x xf e f e ---⇒--,解可得:26x ,即不等式的解集为[2,6]; 故答案为:[2,6].29.(2019秋•秦州区校级月考)已知函数|1|1()()2x f x -=,则()f x 的单调递增区间是___________.【答案】(,1)-∞【解析】1|1|11()11()()2221x x x x f x x ---⎧⎪==⎨⎪<⎩;()f x ∴在(,1)-∞上单调递增;即()f x 的单调递增区间为(,1)-∞. 故答案为:(,1)-∞.30.(2019秋•思明区校级期中)函数()|2|f x x x =-的单调减区间为___________. 【答案】[1,2]【解析】当2x >时,2()2f x x x =-, 当2x 时,2()2f x x x =-+,这样就得到一个分段函数222,2()2,2x x x f x x x x ⎧->=⎨-+⎩.2()2f x x x =-的对称轴为:1x =,开口向上,2x >时是增函数; 2()2f x x x =-+,开口向下,对称轴为1x =, 则1x <时函数是增函数,12x <<时函数是减函数. 即有函数的单调减区间是[1,2]. 故答案为:[1,2].31.(2018秋•定远县期末)若函数()|2|(4)f x x x =--在区间(5,41)a a +上单调递减,则实数a 的取值范围是___________. 【答案】2152a【解析】函数(2)(4)(2)()|2|(4)(2)(4)(2)x x x f x x x x x x --⎧=--=⎨--<⎩ ∴函数的增区间为(,2)-∞和(3,)+∞,减区间是(2,3).在区间(5,41)a a +上单调递减,(5a ∴,41)(2a +⊆,3),得25413a a ⎧⎨+⎩,解之得2152a故答案为:2152a.32.(2019•西湖区校级模拟)已知函数22();[1,)x x af x x x++=∈+∞(1)若12a =,求函数()f x 的最小值.(2)求函数()f x 的单调区间. 【解析】(1)1()22f x x x=++,在区间2[)+∞上单调递增,所以()f x 在[1,)+∞上是增函数, 所以7[()](1)2min f x f ==(2)22()2,[1,)x x a af x x x x x++==++∈+∞当0a 时,()f x 在[1,)+∞上是增函数当0a >时,()f x 在)a 上递减,在(,)a +∞递增,所以 ①1,01a a <时,()f x 在[1,)+∞上是增函数;②当1a >时,()f x 在a 上是减函数,在(,)a +∞上是增函数; 综上所述,当1a 时,()f x 在[1,)+∞上是增函数当1a >时,()f x 在)a 上是减函数,在(,)a +∞上是增函数. 33.(2019秋•秦淮区校级期中)(1)求函数()1f x x x =-+ (2)求函数212log (21)y x x =-++的单调区间.【解析】(11(0)x t t +=,则21x t =-, 所以21(0)y t t t =--,因为抛物线21y t t =--开口向上,对称轴为直线12t =, 所以当12t =时,y 取得最小值为54-,无最大值,所以函数()f x 的值域为5[,)4-+∞.(2)设221t x x =-++.令2210x x -++>,解得1212x <+ 所以函数212log (21)y x x =-++的定义域为(12,12),2(1)2t x =--+,对称轴方程为1x =,221t x x ∴=-++在(12,1)上为单调增函数,而在(1,12)+上为单调减函数,因为12log y t =为单调减函数,∴函数212log (21)y x x =-++的单调增区间为(1,12)+,单调减区间为(12,1).34.(2018秋•合肥期末)已知函数1()22x x f x =-. (1)判断()f x 在其定义域上的单调性,并用单调性的定义证明你的结论; (2)解关于x 的不等式2(log )f x f <(1). 【解析】(1)1()22(2)()2x x x x f x f x --=-=--=-,则函数()f x 是奇函数, 则当0x 时,设120x x <,则2112121212121122()()22222222x x x x x x x x x x f x f x --=--+=-+121212221(22)22x x x x x x -=-,120x x <,12122x x ∴<,即12220x x -<,12221x x >,则12()()0f x f x -<,即12()()f x f x <, 则()f x 在[0,)+∞上是增函数, ()f x 是R 上的奇函数, ()f x ∴在R 上是增函数.(2)()f x 在R 上是增函数,∴不等式2(log )f x f <(1)等价为不等式2log 1x <,即02x <<.即不等式的解集为(0,2).。
高中数学 函数的单调性与最值

专题 函数的单调性与最值1.函数的单调性 (1)单调函数的定义自左向右看图象是上升的自左向右看图象是下降的单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做函数y =f (x )的单调区间. 2.函数的最值 (1)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×)(2)相同单调性函数的和、差、积、商函数还具有相同的单调性.(×)(3)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×) (4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)对于函数f(x),x∈D,若x1,x2∈D,且(x1-x2)[f(x1)-f(x2)]>0,则函数f(x)在D上是增函数.(√)(6)函数f(x)=log5(2x+1)的单调增区间是(0,+∞).(×)考点一求函数的单调性(区间)A.y=x+1B.y=(x-1)2C.y=2-x D.y=log0.5(x+1)答案:A(2)函数f(x)=lg x2的单调递减区间是________.答案:(-∞,0)(3)判断并证明函数f(x)=axx2-1(其中a>0)在x∈(-1,1)上的单调性.(二次除以一次的处理;拓展一次除以一次)[方法引航]判断函数单调性的方法(1)定义法:取值,作差,变形,定号,下结论.(2)利用复合函数关系:简称“同增异减”.(3)图象法:从左往右看,图象逐渐上升,单调增;图象逐渐下降,单调减.(4)性质法:增函数与减函数的加减问题。
1.下列函数中,定义域是R且为增函数的是()A.y=e-x B.y=x C.y=ln x D.y=|x|选B.2.函数y=|x|(1-x)在区间A上是增函数,那么区间A是()A .(-∞,0) B.⎣⎢⎡⎦⎥⎤0,12 C .[0,+∞) D.⎝ ⎛⎭⎪⎫12,+∞选B.3.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上是减函数,在[a ,+∞)上是增函数.(掌握对勾函数;明确对勾函数的特征)考点二 利用函数的单调性求最值[例2] (1)函数f (x )=2x x +1在[1,2]上的最大值和最小值分别是________.答案:43,1(2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域为⎣⎢⎡⎦⎥⎤12,2,则a =________. 答案:251.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于( ) A .-1 B .1 C .6 D .12 f (x )的最大值为f (2)=23-2=6.考点三 函数单调性的应用[例3] (1)已知11122x y⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则下列不等关系一定成立的是( )A .22x y <B .22log log x y <C .33x y > D .cos cos x y <(2)已知f (x )=⎩⎨⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________. 答案:⎣⎢⎡⎭⎪⎫32,2[方法引航] (1)利用单调性比较大小,首先把不在同一个单调区间上的变量转化为同一个单调区间,再结合单调性进行比较.(2)已知函数的单调性确定参数的值域范围要注意以下两点:①任意子区间上也是单调的;②注意衔接点的取值.1.在本例(2)中,若f (x )不变且a ∈⎣⎢⎡⎭⎪⎫32,2.解不等式f (4a 2-2a -5)<f (a +2).f (4a 2-2a -5)<f (a +2)的解集为⎣⎢⎡⎭⎪⎫32,74.2.定义在R 上的函数()f x =25,1,, 1.x ax x a x x---≤>⎧⎨⎩ 对任意12xx ≠都有,1212()[()()]0x x f x f x -->成立,则实数a 的取值范围是( )A. [-3,-2]B. [-3,0)C.(-∞,-2]D. (-∞,0)[易错警示]定义域的请求——求函数单调区间先求我1.函数的单调区间是定义域的子集,求函数的单调区间必须做到“定义域优先”的原则.[典例1] 函数f (x )=x 2+x -6的单调增区间为________.[答案] [2,+∞)[警示] 求函数的单调区间,应该先求定义域,在定义域内寻找减区间、增区间;若增区间或减区间是间断的,要分开写,不能用“并集符号”合并联结. 2.利用函数单调性解不等式时也要先求定义域.[典例2] 已知,定义在[-2,3]上的函数f (x )是减函数,则满足f (x )<f (2x -3)的x 的取值范围是________. [答案] ⎣⎢⎡⎭⎪⎫12,3[警示] 这类不等式应等价于:单调性和定义域构成的不等式组.[高考真题体验]1.下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-xB .y =cos xC .y =ln(x +1)D .y =2-x选项D 符合题意.2.设函数f (x )=ln(1+x )-ln(1-x ),则f (x )是( ) A .奇函数,且在(0,1)上是增函数 B .奇函数,且在(0,1)上是减函数 C .偶函数,且在(0,1)上是增函数 D .偶函数,且在(0,1)上是减函数 故选A.3.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A .f (x )=1x 2 B .f (x )=x 2+1 C .f (x )=x 3 D .f (x )=2-x故选A. 4.函数f (x )=xx -1(x ≥2)的最大值为________.答案:25.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案:⎝ ⎛⎭⎪⎫12,32课时规范训练 A 组 基础演练1.函数y =x 2-6x +10在区间(2,4)上是( ) A .递减函数 B .递增函数 C .先递减再递增 D .先递增再递减解析:选C.2.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫1x >f (1)的实数x 的取值范围是( )A .(-∞,1)B .(1,+∞)C .(-∞,0)∪(0,1)D .(-∞,0)∪(1,+∞) x 的取值范围是x >1或x <0.3.函数f (x )中,满足“对任意x 1,x 2∈(0,+∞),当x 1<x 2时,都有f (x 1)>f (x 2)”的是( ) A .f (x )=1x B .f (x )=(x -1)2 C .f (x )=e xD .f (x )=ln(x +1) 4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A .a >-14 B .a ≥-14 C .-14≤a <0 D .-14≤a ≤0综上所述得-14≤a ≤0.5.函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( )A .a =-3B .a <3C .a ≤-3D .a ≥-3选C.6.已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是________.答案:(-1,0)∪(0,1)7.y =-x 2+2|x |+3的单调增区间为________.答案:(-∞,-1],[0,1]8.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________. 答案:(-∞,1]9.函数f (x )=x 2-4x -4在闭区间[t ,t +1](t ∈R )上的最小值记为g (t ). (1)试写出g (t )的函数表达式; (2)求g (t )的最小值. g (t )=⎩⎪⎨⎪⎧t 2-2t -7 (t <1),-8 (1≤t ≤2),t 2-4t -4 (t >2).(2)画出g (t )的图象如图所示,由图象易知g (t )的最小值为-8. 10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证(判断)f (x )在(-∞,-2)上单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.B 组 能力突破1.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是( ) A .f (a +1)>f (2) B .f (a +1)<f (2) C .f (a +1)=f (2)D .不能确定选A.2.已知f (x )=⎩⎨⎧x 2-4x +3,x ≤0-x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是( ) A .(-∞,-2) B .(-∞,0) C .(0,2) D .(-2,0)选A.3.函数f (x )=log 5(2x +1)的单调递增区间是________. 答案:⎝ ⎛⎭⎪⎫-12,+∞4.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(函数背景是什么?) (1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1,由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2), 所以f (x )在(0,+∞)上是单调递减函数. (3)∵[2,9]⊆(0,+∞),∴f (x )在[2,9]上为减函数f (x )min =f (9).由题意可知f (x 1)=f ⎝ ⎛⎭⎪⎫x 1x 2+f (x 2),∴f (9)=f ⎝ ⎛⎭⎪⎫93+f (3)=2f (3)=-2.∴f (x )在[2,9]上的最小值为-2.专题 函数的奇偶性与周期性1.函数的奇偶性(1)周期函数对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×)(3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√)(5)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√)(6)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (7)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (8)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√)考点一判断函数的奇偶性命题点用函数奇偶性定义判断[例1](1)A.y=x B.y=e xC.y=cos x D.y=e x-e-x答案:D(2)下列函数中为偶函数的是()A.y=1x B.y=lg|x|C.y=(x-1)2D.y=2x答案:B(3)函数f(x)=3-x2+x2-3,则()A.不具有奇偶性B.只是奇函数C.只是偶函数D.既是奇函数又是偶函数答案:D[方法引航]判断函数的奇偶性的三种重要方法(1)定义法:(2)图象法:函数是奇(偶)函数的充要条件是它的图象关于原点(y轴)对称.(3)性质法:①“奇+奇”是奇,“奇-奇”是奇,“奇·奇”是偶,“奇÷奇”是偶;②“偶+偶”是偶,“偶-偶”是偶,“偶·偶”是偶,“偶÷偶”是偶;③“奇·偶”是奇,“奇÷偶”是奇.判断下列函数的奇偶性(1)f(x)=(x+1) 1-x 1+x;(2)f(x)=lg 1-x1+x.(其它底数)(其它变形形式)原函数是奇函数.考点二函数的周期性及应用[例2](1)下列函数不是周期函数的是()A.y=sin x B.y=|sin x| C.y=sin|x| D.y=sin(x+1) 答案:C(2)已知函数f(x)是定义在R上的偶函数,若对于x≥0,都有f(x+2)=-1f(x),且当x∈[0,2)时,f(x)=log2(x+1),则求f(-2 017)+f(2 019)的值为________.答案:0[方法引航](1)利用周期f(x+T)=f(x)将不在解析式范围之内的x通过周期变换转化到解析式范围之内,以方便代入解析式求值.(2)判断函数周期性的几个常用结论.①f(x+a)=-f(x),则f(x)为周期函数,周期T=2|a|.②f(x+a)=1f(x)(a≠0),则函数f(x)必为周期函数,2|a|是它的一个周期;③f(x+a)=-1f(x),则函数f(x)必为周期函数,2|a|是它的一个周期.1.若将本例(2)中“f(x+2)=-1f(x)”变为“f(x+2)=-f(x)”,则f(-2 017)+f(2019)=________.答案:02.若本例(2)条件变为f(x)对于x∈R,都有f(x+2)=f(x)且当x∈[0,2)时,f(x)=log 2(x +1),求f (-2 017)+f (2 019)的值.f (-2 017)+f (2 019)=2.拓展延伸:已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1m(x i +y i )=( )A .0B .mC .2mD .4m 解析:选B.考点三 函数奇偶性的综合应用[例3] (1)若函数f (x )=2x -a 是奇函数,则使f (x )>3成立的x 的取值范围为( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)答案:C (注重多种解法) (2)函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f⎝ ⎛⎭⎪⎫12=25. ①确定函数f (x )的解析式;②用定义证明f (x )在(-1,1)上是增函数; ③解不等式f (t -1)+f (t )<0. 解:①a =1.∴f (x )=x 1+x2,经检验适合题意.②证明:(略)f (x )在(-1,1)上为增函数. ③0<t <12.3.设奇函数()f x 在(0,+∞)上为增函数,且)1(f =0,则不等式()()0f x f x x--<的解集为( )A .(-1,0)∪(1,+∞)B .(-∞,-1)∪(0,1)C .(-∞,-1)∪(1,+∞)D .(-1,0)∪(0,1)(4)已知f (x )是R 上的奇函数,当x ≥0时,f (x )=x 3+ln(1+x ),则当x <0时,f (x )=( )A .-x 3-ln(1-x )B .x 3+ln(1-x )C .x 3-ln(1-x )D .-x 3+ln(1-x )答案:C[方法引航] (1)根据奇偶性求解析式中的参数,是利用f (-x )=-f (x )或f (-x )=f (x )在定义域内恒成立,建立参数关系.(2)根据奇偶性求解析式或解不等式,是利用奇偶性定义进行转化.1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值是________. 答案:132.定义在R 上的偶函数y =f (x )在[0,+∞)上递减,且f ⎝ ⎛⎭⎪⎫12=0,则满足f (x )<0的x 的集合为( ) A.⎝ ⎛⎭⎪⎫-∞,12∪(2,+∞) B.⎝ ⎛⎭⎪⎫12,1∪(1,2) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎭⎪⎫12,1∪(2,+∞) 满足不等式f<0的x 的集合为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 3.已知函数f (x )=-x +log 21-x 1+x +1,则f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12的值为( )A .2B .-2C .0D .2log 213f ⎝ ⎛⎭⎪⎫12+f ⎝ ⎛⎭⎪⎫-12=2.[方法探究]“多法并举”解决抽象函数性质问题[典例] 定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),f (x +2)=-f (x )且f (x )在[-1,0]上是增函数,给出下列四个命题:①f (x )是周期函数;②f (x )的图象关于x =1对称;③f (x )在[1,2]上是减函数;④f (2)=f (0),其中正确命题的序号是________(请把正确命题的序号全部写出来).[分析关系] ①f (x +y )=f (x )+f (y )隐含了用什么结论?什么方法探究? ②f (x +2)=-f (x ),隐含了什么结论?用什么方法探究.③若f (x )的图象关于x =1对称,其解析式具备什么等式关系?从何处理探究? ④f (x )在[-1,0]上的图象与[1,2]上的图象有什么关系?依据什么指导? ⑤f (2),f (0)从何处计算.[解析] 第一步:f (x +y )=f (x )+f (y )对任意x ,y ∈R 恒成立. (赋值法):令x =y =0,∴f (0)=0.令x +y =0,∴y =-x ,∴f (0)=f (x )+f (-x ). ∴f (-x )=-f (x ),∴f (x )为奇函数.第二步:∵f (x )在x ∈[-1,0]上为增函数,又f (x )为奇函数,∴f (x )在[0,1]上为增函数. 第三步:由f (x +2)=-f (x )⇒f (x +4)=-f (x +2) ⇒f (x +4)=f (x ),(代换法)∴周期T =4,即f (x )为周期函数.第四步:f (x +2)=-f (x )⇒f (-x +2)=-f (-x ).(代换法) 又∵f (x )为奇函数,∴f (2-x )=f (x ),∴关于x =1对称.第五步:由f (x )在[0,1]上为增函数,又关于x =1对称, ∴[1,2]上为减函数.(对称法)第六步:由f (x +2)=-f (x ),令x =0得f (2)=-f (0)=f (0).(赋值法) [答案] ①②③④[回顾反思] 此题用图象法更直观.[高考真题体验]1.(2014·高考课标全国卷Ⅰ)设函数f (x ),g (x )的定义域都为R ,且f (x )是奇函数,g (x )是偶函数,则下列结论中正确的是( ) A .f (x )g (x )是偶函数 B .|f (x )|g (x )是奇函数 C .f (x )|g (x )|是奇函数 D .|f (x )g (x )|是奇函数选C.2.已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12.则f (6)=( )A .-2B .-1C .0D .2解析:选D3.已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.答案:-24.(2015·高考课标全国卷Ⅰ)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 答案:15.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f (x )=⎩⎨⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝ ⎛⎭⎪⎫32=________.答案:1课时规范训练 A 组 基础演练1.下列函数中为偶函数的是( ) A .y =x 2sin x B .y =x 2cos x C .y =|ln x | D .y =2-x解析:选B.2.下列函数中既不是奇函数也不是偶函数的是( ) A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-xD .y =lg1x +1解析:选D.3.若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)等于( )A .-1B .1C .-2D .2 解析:选A.4.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=( )A .-2B .0C .1D .2 解析:选A.5.设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )=⎩⎨⎧4x 2-2,-2≤x ≤0x ,0<x <1,则f ⎝ ⎛⎭⎪⎫52=( )A .0B .1 C.12 D .-1解析:选D.6.函数f (x )对于任意实数x 满足条件f (x +2)=1f (x ),若f (1)=-5,则f (f (5))=________. 答案:-157.已知f (x )是定义在R 上的偶函数,f (2)=1,且对任意的x ∈R ,都有f (x +3)=f (x ),则f (2 017)=________. 答案:18.函数f (x )=e x +x (x ∈R )可表示为奇函数h (x )与偶函数g (x )的和,则g (0)=________. 答案:19.已知f (x )是R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg(2-x ),求f (x )的解析式.∴f (x )=⎩⎪⎨⎪⎧-x lg (2+x ) x ∈[0,+∞)-x lg (2-x ) x ∈(-∞,0)B 组 能力突破1.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( ) A .2 B.154 C.174 D .a 2解析:选B.3.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)解析:选D.4.定义在R上的函数f(x),对任意x均有f(x)=f(x+2)+f(x-2)且f(2 016)=2 016,则f(2 028)=________.解析:∵x∈R,f(x)=f(x+2)+f(x-2),∴f(x+4)=f(x+2)-f(x)=-f(x-2),∴f(x+6)=-f(x),∴f(x+12)=f(x),则函数f(x)是以12为周期的函数.又∵f(2 016)=2 016,∴f(2 028)=f(2 028-12)=f(2 016)=2 016.答案:2 0165.函数f(x)的定义域为D={x|x≠0},且满足对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2).(1)求f(1)的值;(2)判断f(x)的奇偶性并证明你的结论;(3)如果f(4)=1,f(x-1)<2,且f(x)在(0,+∞)上是增函数,求x的取值范围.解:(1)∵对于任意x1,x2∈D,有f(x1·x2)=f(x1)+f(x2),∴令x1=x2=1,得f(1)=2f(1),∴f(1)=0.(2)令x1=x2=-1,有f(1)=f(-1)+f(-1),∴f(-1)=12f(1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x),∴f(x)为偶函数.(3)依题设有f(4×4)=f(4)+f(4)=2,由(2)知,f(x)是偶函数,∴f(x-1)<2⇔f(|x-1|)<f(16).又f(x)在(0,+∞)上是增函数.∴0<|x-1|<16,解得-15<x<17且x≠1.∴x的取值范围是{x|-15<x<17且x≠1}.专题二次函数与幂函数1.幂函数(1)幂函数的定义形如y=xα(α∈R)的函数称为幂函数,其中x是自变量,α为常数.(2)五种幂函数的图象(3)五种幂函数的性质y=(1)二次函数的图象和性质R ①一般式:y=ax2+bx+c(a≠0).②顶点式:y=a(x+h)2+k(其中a≠0,顶点坐标为(-h,k)).③两根式:y=a(x-x1)(x-x2)(其中a≠0,x1、x2是二次函数的图象与x轴的两个交点的横坐标).3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)当α<0时,幂函数y=xα是定义域上的减函数.(×)(2)二次函数y=ax2+bx+c,x∈[a,b]的最值一定是4ac-b24a.(×)(3)二次函数y=ax2+bx+c,x∈R,不可能是偶函数.(×)(4)当n>0时,幂函数y=x n是定义域上的增函数.(×)(5)若函数f(x)=(k2-1)x2+2x-3在(-∞,2)上单调递增,则k=±22.(×)考点一二次函数解析式________.答案:x2+2x[方法引航]根据已知条件确定二次函数解析式,一般用待定系数法,规律如下:1.若函数f(x)=(x+a)(bx+2a)(常数a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=________.答案:-2x2+4考点二 二次函数图象和性质[例2] (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;解:(1) f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)由于函数f (x )的图象开口向上,对称轴是x =-a ,所以要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4.[方法引航] (1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是考查对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系进行分类讨论;(2)二次函数的单调性问题则主要依据二次函数图象的对称轴进行分析讨论求解; (3)对于二次函数的综合应用,要综合应用二次函数与二次方程和二次不等式之间的关系进行转化.1.若本例已知条件不变,求f (x )的最小值. 当a ≥4时,f (x )min =19-8a . 当-6≤a ≤4时,f (x )min =3-a 2. 当a <-6时,f (x )min =39+12a .2.若本例已知条件不变,f(x )=0在[-4,6]上有两个不相等实根,求a 的取值范围.解:要使f (x )=0,在[-4,6]上有两个不等实根,需⎩⎪⎨⎪⎧ f (-a )<0-4≤-a ≤6f (-4)≥0f (6)≥0即⎩⎪⎨⎪⎧3-a 2<0,-6≤a ≤4,19-8a ≥0,36+12a ≥0.解得,-134≤a <-3或3<a ≤198.3.若本例中f (x )>0在x ∈(0,6]上恒成立,求a 的取值范围. 解:x 2+2ax +3>0,在x ∈(0,6]上恒成立, 即2a >-⎝ ⎛⎭⎪⎫x +3x 在x ∈(0,6]上恒成立,只需求u =-⎝ ⎛⎭⎪⎫x +3x ,x ∈(0,6]的最大值.∵x +3x ≥23,当且仅当x =3时,取等号. ∴u max =-23, ∴2a >-23,∴a >- 3.综合运用:已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) 注重巧解 A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3}解析:选D.考点三 幂函数图象与性质[例3] (1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )答案:C(2)已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,且x ∈(0,+∞)时,f (x )是增函数,则m 的值为( ) A .-1 B .2 C .-1或2 D .3答案:B (3)已知f (x )=,若0<a <b <1,则下列各式正确的是( )A .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f (b )<f (a )C .f (a )<f (b )<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f (a )<f ⎝ ⎛⎭⎪⎫1b <f (b )答案:C[方法引航] (1)若幂函数y =x α(α∈R )是偶函数,则α必为偶数.当α是分数时,一般将其先化为根式,再判断.(2)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.,(3)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.1.若四个幂函数y =x a ,y =x b ,y =x c ,y =x d 在同一坐标系中的图 象如图所示,则a ,b ,c ,d 的大小关系是( )A .d >c >b >aB .a >b >c >dC .d >c >a >bD .a >b >d >c解析:选B.2.若,则实数a 的取值范围是________.(陷阱) 解析:不等式等价于a +1>3-2a >0或3-2a <a +1<0或a +1<0<3-2a . 解得a <-1或23<a <32. 答案:(-∞,-1)∪⎝ ⎛⎭⎪⎫23,32[规范答题] “三个二次”间的转化二次函数与一元二次方程、一元二次不等式统称为“三个二次”,它们常有机结合在一起,而二次函数是“三个二次”的核心,通过二次函数的图象将其贯穿为一体.因此,有关二次函数的问题,常利用数形结合法、分类讨论法转化为方程与不等式来解决.[典例] (本题满分12分)已知f (x )=ax 2-2x (0≤x ≤1) (1)求f (x )的最小值;(2)若f (x )≥-1恒成立,求a 的范围; (3)若f (x )=0的两根都在[0,1]内,求a 的范围.[规范解答] (1)①当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为x =1a .2分 ⅰ.当0<1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内,∴f (x )在⎣⎢⎡⎦⎥⎤0,1a 上递减,在⎣⎢⎡⎦⎥⎤1a ,1上递增.∴f (x )min =f ⎝ ⎛⎭⎪⎫1a =1a -2a =-1a .4分ⅱ.当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2. 6分③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧, ∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =⎩⎨⎧a -2,a <1,-1a ,a ≥1.8分(2)只需f (x )min ≥-1,即可.由(1)知,当a <1时,a -2≥-1,∴a ≥1(舍去); 当a ≥1时,-1a ≥-1恒成立,∴a ≥1.10分 (3)由题意知f (x )=0时,x =0,x =2a (a ≠0), 0∈[0,1],∴0<2a ≤1,∴a ≥2.12分 [规范建议] (1)分清本题讨论的层次 第一层:函数类型a =0和a ≠0.第二层:开口方向a>0和a<0.第三层:对称轴x=1a与区间[0,1]的位置关系,左、内、右.(2)讨论后要有总结答案.[高考真题体验]1.(2016·高考全国丙卷)已知则()A.b<a<c B.a<b<cC.b<c<a D.c<a<b解析:选A.2.(2015·高考山东卷)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是()A.a<b<c B.a<c<bC.b<a<c D.b<c<a解析:选C.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=1x B.y=e-xC.y=-x2+1 D.y=lg|x|解析:选C.4.设函数则使得f(x)≤2成立的x的取值范围是________.答案:(-∞,8]5.已知a>0,b>0,ab=8,则当a的值为________时,log2a·log2(2b)取得最大值.答案:4课时规范训练 A 组 基础演练1.若函数f (x )是幂函数,且满足f (4)=3f (2),则f ⎝ ⎛⎭⎪⎫12的值为( )A.13B.12C.23D.43解析:选A.2.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )解析:选C.4.如果函数f (x )=x 2+bx +c 对任意的实数x ,都有f (1+x )=f (-x ),那么( ) A .f (-2)<f (0)<f (2) B .f (0)<f (-2)<f (2) C .f (2)<f (0)<f (-2) D .f (0)<f (2)<f (-2) 解析:选D.5.若f (x )=x 2-ax +1有负值,则实数a 的取值范围是( ) A .a ≤-2 B .-2<a <2 C .a >2或a <-2 D .1<a <3解析:选C.6.若方程x 2-11x +30+a =0的两根均大于5,则实数a 的取值范围是________. 解析:令f (x )=x 2-11x +30+a . 结合图象有⎩⎪⎨⎪⎧Δ≥0f (5)>0,∴0<a ≤14.答案:0<a ≤147.若二次函数f (x )=ax 2-4x +c 的值域为[0,+∞),则a ,c 满足的条件是________. 解析:由已知得⎩⎪⎨⎪⎧a >0,4ac -164a =0,⇒⎩⎪⎨⎪⎧a >0,ac -4=0.答案:a >0,ac =48.已知f (x )=4x 2-mx +5在[2,+∞)上是增函数,则实数m 的取值范围是________.解析:因为函数f (x )=4x 2-mx +5的单调递增区间为⎣⎢⎡⎭⎪⎫m 8,+∞,所以m 8≤2,即m ≤16.答案:(-∞,16]9.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,求a 的值. 解:函数f (x )=-x 2+2ax +1-a =-(x -a )2+a 2-a +1, 对称轴方程为x =a .(1)当a <0时,f (x )max =f (0)=1-a , ∴1-a =2,∴a =-1.(2)当0≤a ≤1时,f (x )max =a 2-a +1, ∴a 2-a +1=2,∴a 2-a -1=0, ∴a =1±52(舍).(3)当a >1时,f (x )max =f (1)=a ,∴a =2. 综上可知,a =-1或a =2.10.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式;(2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解:(1)因为f (-2)=1,即4a -2b +1=1,所以b =2a . 因为方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2. 所以f (x )=(x +1)2.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1=⎝ ⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,∴所求实数k 的取值范围为(-∞,0]∪[6,+∞).B 组 能力突破1.若幂函数y =(m 2-3m +3)·x m 2-m -2的图象不过原点,则m 的取值是( ) A .-1≤m ≤2 B .m =1或m =2 C .m =2D .m =1解析:选B.由幂函数性质可知m 2-3m +3=1,∴m =2或m =1.又幂函数图象不过原点,∴m 2-m -2≤0,即-1≤m ≤2,∴m =2或m =1.2.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b . 其中正确的是( ) A .②④ B .①④ C .②③D .①③解析:选B.由函数图象知,a <0,与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac .对称轴x =-b2a =-1,∴2a -b =0.当x =-1时,对应最大值,f (-1)=a -b +c >0. ∵b =2a ,a <0,∴5a <2a ,即5a <b . 3.已知幂函数f (x )=,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )==1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,∴3<a <5. 答案:(3,5)5.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎨⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1, 解得a =1,b =2.∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].指数与指数函数1.根式 (1)根式的概念若x n =a ,则x 叫做a 的n 次方根,其中n >1且n ∈N *,式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. (2)a 的n 次方根的表示x n =a ⇒⎩⎪⎨⎪⎧x =n a (当n 为奇数且n ∈N *时),x =±n a (当n 为偶数且n ∈N *时).2.有理数指数幂 (1)幂的有关概念 ①正分数指数幂:=na m (a >0,m ,n ∈N *,且n >1);②负分数指数幂: (a >0,m ,n ∈N *,且n >1);③0的正分数指数幂等于0,0的负分数指数幂无意义. (2)有理数指数幂的性质 ①a r a s =a r +s (a >0,r ,s ∈Q ); ②(a r )s =a rs (a >0,r ,s ∈Q ); ③(ab )r =a r b r (a >0,b >0,r ∈Q ). 3.指数函数的图象与性质R4.(1)na n与(na)n都等于a(n∈N*).(×)(2)函数y=a-x是R上的增函数.(×)(3)函数y=a x2+1(a>1)的值域是(0,+∞).(×)(4)当x>0时,y=a x>1.(×)(5)函数y=2x-1+1,过定点(0,1).(×)考点一指数幂的运算解:[方法引航]指数幂的化简方法(1)有括号的先算括号里的,无括号的先做指数运算.(2)先乘除后加减,负指数幂化成正指数幂的倒数.(3)底数是负数,先确定符号,底数是小数,先化成分数,底数是带分数的,先化成假分数.(4)若是根式,应化为分数指数幂,尽可能用幂的形式表示,运用指数幂的运算性质来解答.1.化简-(-1)0的结果为()(易错)A.-9B.7C.-10 D.9解析:选B.-(-1)0=-1=8-1=7.考点二指数函数图象及应用命题点1.指数函数图象的变换2.指数函数图象的应用[例2](1)函数x b的是()A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<0答案:D(2)k为何值时,方程|3x-1|=k无解?有一解?有两解?[方法引航](1)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.1.函数f (x )=2|x -1|的图象是( )解析:选B.f (x )=2|x -1|的图象是由y =2|x |的图象向右平移一个单位得到,故选B. 2.(2017·河北衡水模拟)若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围是________.解析:曲线|y |=2x +1与直线y =b 的图象如图所示,由图象可知:如果|y |=2x +1与直线y =b 没有公共点,则b 应满足的条件是b ∈[-1,1].答案:[-1,1]考点三 指数函数的性质 [例3] (1)(2017·天津模拟)设y 1=40.9,y 2=80.48,y 3=⎝ ⎛⎭⎪⎫12-1.5,则( )A .y 3>y 1>y 2B .y 2>y 1>y 3C .y 1>y 2>y 3D .y 1>y 3>y 2答案:D (2)不等式2-x2+2x>⎝ ⎛⎭⎪⎫12x +4的解集为________. 答案:{x |-1<x <4} (3)已知函数f (x )=⎝ ⎛⎭⎪⎫13ax 2-4x +3①若f (x )有最大值3,求a 的值; ②若f (x )的值域是(0,+∞),求a 的值. 解:①令g (x )=ax 2-4x +3,f (x )=⎝ ⎛⎭⎪⎫13g (x ),由于f (x )有最大值3,所以g (x )应有最小值-1, 因此必有⎩⎪⎨⎪⎧a >0,3a -4a =-1,解得a =1,即当f (x )有最大值3时,a 的值等于1.②由指数函数的性质知,要使y =⎝ ⎛⎭⎪⎫13g (x )的值域为(0,+∞).应使g (x )=ax 2-4x +3的值域为R ,因此只能a =0.(因为若a ≠0,则g (x )为二次函数,其值域不可能为R ).故a 的值为0.[方法引航] (1)比较两个指数幂大小时,尽量化同底或同指,当底数相同,指数不同时,构造同一指数函数,然后比较大小;当指数相同,底数不同时,构造两个指数函数,利用图象比较大小.(2)解决简单的指数方程或不等式问题应利用指数函数的单调性,要特别注意底数a 的取值范围,并在必要时进行分类讨论.(3)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性的求解方法,与前面所讲一般函数的求解方法一致,只需根据条件灵活选择即可.1.若本例(1)中的三个数变为y 1=,y 2=,y 3=,则大小关系如何.解析:构造指数函数y =⎝ ⎛⎭⎪⎫25x(x ∈R ),由该函数在定义域内单调递减可得y 2<y 3,又y =⎝ ⎛⎭⎪⎫25x (x ∈R )与y =⎝ ⎛⎭⎪⎫35x (x ∈R )之间有如下结论:当x >0时,有⎝ ⎛⎭⎪⎫35x >⎝ ⎛⎭⎪⎫25x ,故,即y 1>y 3,∴y 1>y 3>y 2.答案:D2.在本例(3)中,若a =-1,求f (x )的单调区间. 解:当a =-1时,f (x )=⎝ ⎛⎭⎪⎫13-x 2-4x +3,令g (x )=-x 2-4x +3,由于g (x )在(-∞,-2)上单调递增,在(-2,+∞)上单调递减,而y =⎝ ⎛⎭⎪⎫13t在R上单调递减,所以f (x )在(-∞,-2)上单调递减,在(-2,+∞)上单调递增,即函数f (x )的单调递增区间是(-2,+∞),单调递减区间是(-∞,-2). 3.在本例(3)中,若a =1,求使f (x )=1的x 的解. 解析:当a =1时,f (x )=⎝ ⎛⎭⎪⎫13x 2-4x +3=1∴x 2-4x +3=0,∴x =1或x =3. 答案:1或3[方法探究]整体换元法,巧化指数式指数式的运算化简除了定义和法则外,根据不同的题目结构,可采用整体换元等方法.一、根据整体化为同指数[典例1] 计算(3-2)2 018·(3+2)2 019的值为________. [答案]3+ 2二、根据整体化为同底数[典例2] 若67x =27,603y =81,则3x -4y =________.期末考试第一题 [解析] ∵67x =27,603y =81,[答案] -2三、根据整体构造代数式 [典例3] 已知a 2-3a +1=0,则=________.[解析] ∵a 2-3a +1=0,∵a ≠0,∴a +1a =3.[答案]5四、根据整体构造常数a x ·a -x =1 [典例4] 化简4x4x +2+41-x 41-x +2=________.[答案] 1 五、根据整体换元[典例5] 函数y =⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.[解析] 因为x ∈[-3,2], 所以若令t =⎝ ⎛⎭⎪⎫12x ,则t ∈⎣⎢⎡⎦⎥⎤14,8,故y =t 2-t +1=⎝ ⎛⎭⎪⎫t -122+34.当t =12时,y min =34;当t =8时,y max =57. 故所求函数值域为⎣⎢⎡⎦⎥⎤34,57.[答案] ⎣⎢⎡⎦⎥⎤34,57[高考真题体验]1.已知则( )A .b <a <cB .a <b <cC .b <c <aD .c <a <b解析:选A.2.已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数.记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .c <a <b C .a <c <b D .c <b <a 解析:选B.3.下列函数中,满足“f (x +y )=f (x )f (y )”的单调递增函数是( ) A .f (x )=x 3 B .f (x )=3x C .f (x )=D .f (x )=⎝ ⎛⎭⎪⎫12x解析:选B.5.已知函数f (x )=a x +b (a >0,a ≠1)的定义域和值域都是[-1,0],则a +b =________. 答案:-326.(2015·高考福建卷)若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上单调递增,则实数m 的最小值等于________. 答案:1课时规范训练 A 组 基础演练1.函数y =a x -a (a >0,且a ≠1)的图象可能是( )解析:选C.2.在同一坐标系中,函数y =2x 与y =⎝ ⎛⎭⎪⎫12x 的图象之间的关系是( )A .关于y 轴对称B .关于x 轴对称C .关于原点对称D .关于直线y =x 对称解析:选A4.函数y =2x -2-x 是( )A .奇函数,在区间(0,+∞)上单调递增B .奇函数,在区间(0,+∞)上单调递减C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减 解析:选A.5.设函数f (x )=⎩⎪⎨⎪⎧1x(x >0),e x (x ≤0),若F (x )=f (x )+x ,x ∈R ,则F (x )的值域为( )A .(-∞,1]B .[2,+∞)C .(-∞,1]∪[2,+∞)D .(-∞,1)∪(2,+∞)解析:选C.6.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. 解析:由题意知0<2-a <1,解得1<a <2. 答案:(1,2)7.计算:=________.答案:28.若函数f (x )=a x -x -a (a >0,且a ≠1)有两个零点,则实数a 的取值范围是________. 答案:(1,+∞)9.设a >0且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值. 解:令t =a x (a >0且a ≠1), 则原函数化为y =(t +1)2-2(t >0). ①当0<a <1时,x ∈[-1,1],t =a x∈⎣⎢⎡⎦⎥⎤a ,1a , 此时f (t )在⎣⎢⎡⎦⎥⎤a ,1a 上为增函数.所以f (t )max =f ⎝ ⎛⎭⎪⎫1a =⎝ ⎛⎭⎪⎫1a +12-2=14.所以⎝ ⎛⎭⎪⎫1a +12=16,所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎢⎡⎦⎥⎤1a ,a ,此时f (t )在⎣⎢⎡⎦⎥⎤1a ,a 上为增函数.所以f (t )max =f (a )=(a +1)2-2=14, 解得a =3(a =-5舍去).综上得a =13或3.10.已知函数f (x )=b ·a x (其中a ,b 为常量且a >0,a ≠1)的图象经过点A (1,6),B (3,24). (1)试确定f (x );(2)若不等式⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在x ∈(-∞,1]上恒成立,求实数m 的取值范围.解:(1)∵f (x )=b ·a x 的图象过点A (1,6),B (3,24), ∴⎩⎪⎨⎪⎧b ·a =6, ①b ·a 3=24, ②②÷①得a 2=4,又a >0且a ≠1,∴a =2,b =3,∴f (x )=3·2x .(2)由(1)知⎝ ⎛⎭⎪⎫1a x +⎝ ⎛⎭⎪⎫1b x -m ≥0在(-∞,1]上恒成立化为m ≤⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x在(-∞,1]上恒成立. 令g (x )=⎝ ⎛⎭⎪⎫12x +⎝ ⎛⎭⎪⎫13x ,则g (x )在(-∞,1]上单调递减, ∴m ≤g (x )min =g (1)=12+13=56,故所求实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,56.B 组 能力突破1.偶函数f (x )满足f (x -1)=f (x +1),且在x ∈[0,1]时,f (x )=x ,则关于x 的方程f (x )=⎝ ⎛⎭⎪⎫110x 在x ∈[0,4]上解的个数是( )A .1B .2C .3D .4解析:选D.2.已知函数f (x )=⎩⎨⎧(1-3a )x +10a ,x ≤7,a x -7,x >7是定义域上的递减函数,则实数a的取值范围是( ) A.⎝ ⎛⎭⎪⎫13,12 B.⎝ ⎛⎦⎥⎤13,611 C.⎣⎢⎡⎭⎪⎫12,23 D.⎝ ⎛⎦⎥⎤12,611 解析:选B.3.已知f (x )=9x -13x +1,且f (a )=3,则f (-a )的值为________.结论: 答案:-1 4.设函数f (x )=aa 2-1(a x -a -x )(a >0,a ≠1)(1)讨论f(x)的单调性;(2)若m∈R满足f(m)>f(m2+2m-2),求m的范围.解:(1)当a>1时,a2-1>0,y=a x为增函数,y=a-x为减函数,从而y=a x-a -x为增函数.所以f(x)为增函数.当0<a<1时,a2-1<0,y=a x为减函数,y=a-x为增函数,从而y=a x-a-x 为减函数.所以f(x)为增函数.故当a>0且a≠1时,f(x)在定义域内单调递增.(2)由(1)知函数f(x)在R上单调递增.∴由f(m)>f(m2+2m-2)得m>m2+2m-2,即m2+m-2<0,(m+2)(m-1)<0,∴-2<m<1.故m的范围为(-2,1).对数与对数函数1.对数的概念如果a x=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质与运算法则(1)对数的运算法则:如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log m a M n=nm log a M.(2)对数的性质:①a log a N=N;②log a a N=N(a>0且a≠1).(3)对数的重要公式:①换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1);②log a b=1log b a,推广log a b·log b c·log c d=log a d.3.对数函数的图象与性质(1)定义域:(0,+∞)指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.5.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若MN>0,则log a(MN)=log a M+log a N.(×)(2)函数y=ln 1+x1-x与y=ln(1+x)-ln(1-x)的定义域相同.(√)其它底数呢?(3)对数函数y=log a x(a>0且a≠1)的图象过定点(1,0).(√)(4)log2x2=2log2x.(×)(5)当x>1时,log a x>0.(×)(6)当x>1时,若log a x>log b x,则a<b.(×)考点一 对数式的运算[例1] (1)若x =log 43,则(2x -2-x )2等于( ) A.94 B.54 C.103 D.43答案:D(2) 2lg 2-lg 125的值为( ) (略) A .1 B .2 C .3 D .4 答案:B[方法引航] (1)首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算性质化简合并.(2)将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.1.已知4a =2,lg x =a ,则x =________. 答案:102.已知函数f (x )=⎩⎨⎧log 2x ,x >0,3-x +1,x ≤0,则f (f (1))+f ⎝ ⎛⎭⎪⎫log 312的值是( )A .5B .3C .-1 D.72 解析:选A.。
专题07 函数:高中常见函数的单调性与值域、最值-2023学年高一数学培优2019第一册)(解析版)

专题7常见函数的单调性与值域、最值目录【题型一】单调性定义................................................................................................................................................1【题型二】1:反比例函数..........................................................................................................................................3【题型三】2:一元二次函数......................................................................................................................................5【题型四】3:分段函数..............................................................................................................................................7【题型五】4:“对勾”函数........................................................................................................................................8【题型六】5:“双刀”函数(双曲函数)..............................................................................................................10【题型七】6:无理函数............................................................................................................................................12【题型八】7:max 与min 函数.................................................................................................................................14【题型九】8:“放大镜”函数..................................................................................................................................16【题型十】9:取整函数(高斯函数)....................................................................................................................18培优第一阶——基础过关练......................................................................................................................................20培优第二阶——能力提升练......................................................................................................................................22培优第三阶——培优拔尖练.. (26)【题型一】单调性定义【典例分析】下列说法错误的是()A .函数()f x 的定义域为(),a b ,若()12,,x x a b ∀∈,当12x x <时,()()21f x f x <,则函数()f x 是(),a b 上的减函数B .函数()f x 的定义域为(),a b ,若()12,,x x a b ∃∈,当12x x <时,()()21f x f x <,则函数()f x 不是(),a b 上的增函数C .若函数()f x 在[],a b 上是增函数,在(],b c 上也是增函数,则函数()f x 在[],a c 上是增函数D .若函数()f x 在[],a b 上是增函数,在[],b c 上也是增函数,则函数()f x 在[],a c 上是增函数【答案】C【分析】根据函数单调性定义知AB 正确,举出反例(),011,12x x f x x x ≤≤⎧=⎨-<≤⎩知C 错误,D 选项两区间有重合部分,正确,得到答案.【详解】由减函数的定义,知A 说法正确;对于B ,()12,,x x a b ∃∈,当12x x <时,()()12f x f x >,所以()f x 不是(),a b 上的增函数,B 说法正确;对于C ,若(),011,12x x f x x x ≤≤⎧=⎨-<≤⎩,则()f x 在[0,1]和(1,2]上均是增函数,但()f x 在[0,2]上不是增函数,C 说法错误;对比C 选项,D 选项两区间有重合部分,正确.故选:C .1.若函数()f x 在[],a b 上是增函数,对于任意的1x ,[]2,x a b ∈(12x x ≠),则下列结论不正确的是()A .()()12120f x f x x x ->-B .()()()12120x x f x f x -->⎡⎤⎣⎦C .()()()()12f a f x f x f b ≤<≤D .()()12f x f x ≠【答案】C【分析】根据函数单调性的等价条件进行判断即可.【详解】解:由函数的单调性定义知,若函数()f x 在给定的区间上是增函数,则12x x -,与()()12f x f x -同号,由此可知,选项A ,B ,D 都正确.若12x x >,则()()12f x f x >,故选项C 不正确.故选:C.2.下列有关函数单调性的说法,不正确的是()A .若()f x 为增函数,()g x 为增函数,则()()f x g x +为增函数B .若()f x 为减函数,()g x 为减函数,则()()f x g x +为减函数C .若()f x 为增函数,()g x 为减函数,则()()f x g x +为增函数D .若()f x 为减函数,()g x 为增函数,则()()f x g x -为减函数【答案】C【解析】根据函数的单调性定义及性质,可判断选项A ,B ,D 选项正确,选项C 可结合具体函数说明其不正确.【详解】根据不等量的关系,两个相同单调性的函数相加单调性不变,选项A,B 正确;选项D:()g x 为增函数,则()g x -为减函数,()f x 为减函数,()()()f x g x +-为减函数,选项D 正确;选选C:若()f x 为增函数,()g x 为减函数,则()()f x g x +的增减性不确定.例如()2f x x =+为R 上的增函数,当()12g x x =-时,()()22xf xg x +=+在R 上为增函数;当()3g x x =-时,()()22f x g x x +=-+在R 上为减函数,故不能确定()()f x g x +的单调性.故选:C3.下列函数f x ()中,满足“对任意()120x x ∈+∞,,,且12x x <都有()()12f x f x >”的是()A .f x =()B .2f x xx=-()C .22f x x x =+-()D .3f x x =-()【答案】D【解析】对任意1x ,()20x ∈+∞,,且12x x <都有()()12f x f x >,可知函数f x ()在()0+∞,上单调递减,结合选项即可判断.【详解】“对任意1x ,()20x ∈+∞,,且12x x <都有()()12f x f x >”,∴函数f x ()在()0+∞,上单调递减,结合选项可知,A :f x =()()0+∞,单调递增,不符合题意,B :2f x x x=-()在()0+∞,单调递增,不符合题意,C :2219224f x x x x ⎛⎫=+-=+- ⎪⎝⎭()在()0+∞,单调递增,不符合题意,D :3f x x =-()在()0+∞,单调递减,符合题意.故选:D .【题型二】1:反比例函数【典例分析】()f x =,*N x ∈,则()f x 取得最大值时的x 值为______.【答案】45【分析】先对函数变形,判断函数的单调性,从而可求出函数的最值【详解】()x f x +=+此函数是由反比例函数y =个单位,再向上平移1个单位得到的,所以()f x 在(-∞和)+∞上单调递减,因为*N x ∈,4445<<,所以()f x 取得最大值时的x 值为45.故答案为:451.关于函数3125x y x -=-,下列说法正确的是()A .若x N ∈,则函数只有最大值没有最小值B .若x N ∈,则函数只有最小值没有最大值C .若x N ∈,则函数有最大值没有最小值D .若x N ∈,则函数有最小值也有最大值【答案】D【分析】根据反比例函数的性质求出函数的最值即可.【详解】函数的定义域为52x x ⎧⎫≠⎨⎬⎩⎭,()31325+3131322==+252522(25)x x y x x x --=---,由反比例函数的性质,得y 在5()2+∞,单调递减,此时32y >;y 在5()2-∞,单调递减,此时32y <;若x ∈N ,则min y 在5()2-∞,上取到,所以min 25x y y ===-,同理,max y 在5()2+∞,上取到,所以max y 38x y ===,所以当x ∈N ,函数有最大值和最小值.故选:D2.已知函数()211x f x x +=-,其定义域是[)8,4--,则下列说法正确的是A .()f x 有最大值53,无最小值B .()f x 有最大值53,最小值75C .()f x 有最大值75,无最小值D .()f x 无最大值,最小值75【答案】A【分析】先化简函数()f x ,再根据反比例函数单调性确定函数最值取法【详解】因为函数()()2132132111x x f x x x x -++===+---,所以()f x 在[)8,4--上单调递减,则()f x 在8x =-处取得最大值,最大值为53,4x =-取不到函数值,即最小值取不到.故选A .3..已知函数31()1x f x x -=-,其定义域是[4-,2)-,则()A .()f x 有最大值73-,最小值135-B .()f x 有最大值73-,无最小值C .()f x 有最大值135-,最小值73-D .()f x 有最小值135-,无最大值【答案】D【解析】利用分离常数法化函数()f x ,求出[4x ∈-,2)-时()f x 的取值范围,即可得出结论.【详解】解:函数312()311x f x x x-==-+--,因为[4x ∈-,2)-,所以(2x -∈,4],所以1(3x -∈,5];所以22[15x ∈-,2)3,所以2133[15x -+∈--,73-,所以13()[5f x ∈-,7)3-,所以()f x 有最小值为135-,无最大值.故选:D .【题型三】2:一元二次函数【典例分析】若函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,则b a -()A .有最大值,但无最小值B .既有最大值,也有最小值C .无最大值,但有最小值D .既无最大值,也无最小值【答案】A【分析】取()2f x x=,判断b a -无最小值;由于()()()2222b a a b f a f b f -+⎛⎫=+- ⎪⎝⎭,故结合题意得2b a -≤,进而得答案.【详解】解:()2f x x =,不妨设0a b <<,则()2f x x =在[],a b 上的值域为22,a b ⎡⎤⎣⎦,由于函数2()f x x =在区间[,]a b 上的值域为[,1]()t t t +∈R ,所以221b a -=,故1b a a b-=+无最小值;因为()2f a a =,()2f b b =,222a b a b f ++⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,由于抛物线开口向上,故()()1,1f a t f b t ≤+≤+,2a b f t +⎛⎫≥ ⎪⎝⎭,所以()()()22112222b a a b f a f b f t t t -+⎛⎫=+-≤+++-= ⎪⎝⎭,所以2b a -≤,当且仅当22,22k kb a -+==-时取得最大值2.故选:A.1.函数y )A .3,2⎛⎫-∞- ⎪⎝⎭B .3,2⎡⎫-+∞⎪⎢⎣⎭C .[)0,+∞D .(],3∞--【答案】D 【分析】先考虑函数的定义域,再根据复合函数的单调性的判断方法可求函数的单调减区间.【详解】错解:令23t x x =+,y 23y t x x ==+,而y 在[)0,+∞上单调递增,23t x x =+在3,2⎛⎤-∞- ⎥⎝⎦上单调递减,在3,2⎡⎫-+∞⎪⎢⎣⎭上单调递增,根据复合函数同增异减的原则可知:y 3,2⎛⎤-∞- ⎥⎝⎦上单调递减,即其减区间为3,2⎛⎤-∞- ⎝⎦.故选:A.错因:没有考虑函数y .正解:由230x x +≥可得3x ≤-或0x ≥,故函数的定义域为(][),30,-∞-+∞ .令23t x x =+,y 23y t x x ==+,而y 在[)0,+∞上单调递增,23t x x =+在(],3-∞-上单调递减,在[)0+∞上单调递增,根据复合函数同增异减的原则可知:y (],3-∞-上单调递减,即其减区间为(],3-∞-.故选:D2..已知2()2a f x x ax =-+在区间[0,1]上的最大值为g (a ),则g (a )的最小值为()A .0B .12C .1D .2【答案】B【解析】由已知结合对称轴与区间端点的远近可判断二次函数取得最值的位置,从而可求.【详解】解:因为2()2a f x x ax =-+的开口向上,对称轴2a x =,①122a 即1a 时,此时函数取得最大值()()112a g a f ==-,②当122a >即1a >时,此时函数取得最大值()()02a g a f ==,故()1,12,12aa g a a a ⎧-⎪⎪=⎨⎪>⎪⎩ ,故当1a =时,()g a 取得最小值12.故选:B .3.若函数2()45f x x mx =-+在区间[1,)-+∞上是增函数,则(2)f 的最小值是A .8B .8-C .37D .37-【答案】C【详解】试题分析:由题意得18m ≤-,∴8m ≤-, ()224225f m =⨯-+,∴()22122f m =-,∴()221822f -≤-,.故选C .【题型四】3:分段函数【典例分析】.已知函数()21,=,2x c f x x x x c x ⎧-<⎪⎨⎪-≤≤⎩,若()f x 值域为1,24⎡⎤-⎢⎥⎣⎦,则实数c 的范围是()A .11,2⎡⎤--⎢⎣⎦B .1,2⎛⎫-∞- ⎪⎝⎭C .11,22⎡⎤-⎢⎥⎣⎦D .[)1,-+∞【答案】A【分析】由函数的解析式确定区间端点处函数值,结合函数图象,数形结合,确定参数的范围,即得答案.【详解】当=2x 时,()()221112422,244f f x x x x ⎛⎫=-==-=--≥- ⎪⎝⎭,()f x 值域为1,2,4⎡⎤-∴⎢⎥⎣⎦当x c <时,由()12f x x =-=,得12x =-,此时12c ≤-,由()22f x x x =-=,得220x x --=,得=2x 或1x =-,此时112c -≤≤-,综上112c -≤≤-,即实数c 的取值范围是11,2⎡⎤--⎢⎥⎣⎦,故选:A1.已知()32f x x =-,()22g x x x =-,若()()()()()()(),,g x f x g x F x f x f x g x ⎧≥⎪=⎨<⎪⎩,则()F x 的最值是()A.最大值为3,最小值1-B .最大值为7-C .最大值为3,无最小值D 1-【答案】B【分析】作出()F x 的图象,()F x 其实表示的是(),()f x g x 较小的值.如图实线部分,知有最大值而无最小值,且最大值不是3,故可得答案.【详解】解:根据已知条件,可以求出()23222232x x F x x x x x x ⎧+≤⎪⎪=-<<⎨⎪-≥⎪⎩,,,如图所示,()F x 在A 处取得最大值,没有最小值.由23+22x x x =-得2=3+2=7A A A x yx =∴-.所以有最大值7-,无最小值.故选:B .2..函数2,[1,0]()1,(0,1]x x f x x x⎧∈-⎪=⎨∈⎪⎩的最值情况为().A .最小值0,最大值1B .最小值0,无最大值C .最小值0,最大值5D .最小值1,最大值5【答案】B【分析】根据二次函数和反比例函数的性质进行求解即可.【详解】当[1,0]x ∈-时,函数2y x =单调递减,所以[0,1]y ∈,当(0,1]x ∈时,函数1y x=单调递减,所以1y ≥,综上所述:0y ≥,所以()f x 有最小值0,无最大值.故选:B.【题型五】4:“对勾”函数【典例分析】.函数()41f x x x =++在区间1,22⎡⎤-⎢⎥⎣⎦上的最大值为()A .103B .152C .3D .4【答案】B【分析】利用换元法以及对勾函数的单调性求解即可.【详解】设1t x =+,则问题转化为求函数()41g t t t =+-在区间1,32⎡⎤⎢⎥⎣⎦上的最大值.根据对勾函数的性质,得函数()g t 在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,在区间[]2,3上单调递增,所以()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭.故选:B1.若函数()f x 的值域是132⎡⎤⎢⎥⎣⎦,,则函数()()()1F x f x f x =+的值域是()A .132⎡⎤⎢⎥⎣⎦B .1023⎡⎤⎢⎥⎣⎦,C .51023⎡⎤⎢⎥⎣⎦,D .556⎡⎤⎢⎥⎣⎦,【答案】B【分析】令()f x t =,1y t t =+,则132t ⎡⎤∈⎢⎥⎣⎦,,然后由对勾函数1y t t =+的单调性可求出函数的值域【详解】解:令()f x t =,1y t t =+,则132t ⎡⎤∈⎢⎥⎣⎦.当112t ⎡⎫∈⎪⎢⎣⎭时,1y t t =+单调递减,当[]13t ∈,时,1y t t=+单调递增,又当12t =时,52y =,当1t =时,2y =,当3t =时,103y =,所以函数()F x 的值域为1023⎡⎤⎢⎥⎣⎦,,故选:B .2.设0a >,函数100()f x x x=+在区间(0,]a 上的最小值为m 1,在区间[,)a +∞上的最小值为m 2,若122020m m =,则a 的值为()A .1B .2C .100D .1或100【答案】D【分析】f (x )为对勾函数,可以根据其图像知道其在(0,+∞)上的单调性,然后根据a 的范围分类讨论,求出12m m 、的值,代入122020m m =求解﹒【详解】()f x 为对钩函数,在(]010,上单调递减,在[)10∞,+上单调递增.当(]010a ∈,时,()()1210m f a m f =,=;当[)10a ∞∈,+时,()()1210m f m f a =,=.因此总有()()12102020f a f m m ==,即1001001010a a ⎛⎫⎛⎫ ⎪⎪⎝⎭⎝⎭++=2020,解得1a =或100a =.故选:D3..函数()()2404xf x x x x x =++>+的最小值为()A .2B .103C .174D .265【答案】C【解析】令4t x x =+,利用基本不等式求得4t ≥,构造函数()1g t t t=+,证明出函数()g t 在[)4,+∞上为增函数,由此可求得函数()f x 的最小值.【详解】令4t x x =+,则21144x x t x x==++,因为0x >,所以44t x x =+≥,又2414x y x t x x t =++=++,令()1g t t t=+,其中4t ≥,任取1t 、[)24,t ∈+∞且12t t >,即124t t >≥,则()()()()()121221121212121212111t t t t t t g t g t t t t t t t t t t t --⎛⎫⎛⎫--=+-+=-+= ⎪ ⎪⎝⎭⎝⎭,124t t >≥ ,120t t ∴->,121t t >,()()120g t g t ∴->,即()()12g t g t >,所以,函数()g t 在[)4,+∞上为增函数,因此,()()min 1174444f xg ==+=.故选:C.4..函数2y =)A .2B .52C .1D .不存在【答案】B【解析】()2t t =≥,原函数化简为1y t t=+,在[)2,+∞上也是增函数,可得当2t =,min 52y =.()2t t =≥, 函数1y t t=+在()1,+∞上是增函数,1y t t ∴=+在[)2,+∞上也是增函数.∴当2t =,2=,0x =时,min 52y =.故选:B .【题型六】5:“双刀”函数(双曲函数)【典例分析】已知函数4(),[,)af x x b x b x=++∈+∞,其中0,b a R >∈,记M 为()f x 的最小值,则当2M =时,a 的取值范围为()A .13a >B .13a <C .14a >D .14a <【答案】D【分析】根据a 讨论函数单调性,再根据单调性确定函数最值,最后根据最值确定a 的取值范围.【详解】①当0a ≤时,()f x 在[,)+∞b 上单调递增,所以min 4()()220a f x f b b b bb ==+=>∴=Q0a ≤满足题意;②当0a >时,()f x 在)+∞上单调递增,在上单调递减因此⑴当b ≤时,()f x 在[,)+∞b 上单调递增,所以2min 4()()2220180,a f x fb b b b a a b b ==+=-+=∴∆=-≥=Q ,()2221204243b b b a b b b b b ≤∴≤∴-≤>∴≥∴112≥ 1016a ⇒<≤或111601618161a a a a ⎧>⎪⇒<≤⎨⎪-≥-⎩或11101699a a <<∴<≤⑵当b >时,()f x在)+∞上单调递增,在[,b 上单调递减,所以min 11()202094f x f b b a ==+=<<∴>->∴<<Q ;综上,a 的取值范围为14a <故选:D 1.函数y =x -1x在[1,2]上的最大值为()A .0B .32C .2D .3【答案】B【分析】依题意,函数y =x -1x在[1,2]上是增函数即可求出最大值.【详解】解:函数y =x 在[1,2]上是增函数,函数y =-1x在[1,2]上是增函数,所以函数y =x -1x在[1,2]上是增函数.当x =2时,ymax =2-12=32.故选:B2..函数()12f x x x=-在区间[]1,2上的最小值是()A .72-B .72C .1D .-1【答案】A【分析】由题意结合函数的单调性可得函数()f x 在[]1,2上为减函数,即可得解.【详解】∵函数()f x 在[]1,2上为减函数,∴()()min 1722222f x f ==-⨯=-.故选:A.3.已知0x >,则92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭的最小值为A .B .48C .79316D .60【答案】B【解析】转化条件得29251535148x x x x x x ⎛⎫⎛⎫⎛⎫+-⋅++=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,根据函数单调性确定15x x -的取值范围后即可得解.【详解】由题意229252253035219x x x x x x x x ⎛⎫⎛⎫+-⋅++=++-+ ⎪ ⎪⎝⎭⎝⎭22151515249148x x x x x x ⎛⎫⎛⎫⎛⎫=-+-+=-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()15f x x x=-,0x >,由函数单调性可知()(),f x ∈-∞+∞,所以当151x x -=-时,92535x x x x ⎛⎫⎛⎫+-⋅++ ⎪ ⎪⎝⎭⎝⎭取最小值48.故选:B.【题型七】6:无理函数【典例分析】若()f x =()g x =0a >)的最大值相等,则a 的值为()A .1BC .2D .【答案】C【分析】由()f x 在[)2,+∞递增,可得()2f 为最小值,由()g x 在[),a +∞递增,可得()g a 取得最大值,解方程可得a 的值.【详解】()f x 在定义域[)2,+∞上是增函数,所以()f x 的最小值()22f =,又()g x=[),a +∞上是减函数,()g x 的最大值()g a =2, 2.a ==故选C .1.函数y =的值域为A .⎡⎣B .(C .(-∞D .)⎡+∞⎣【答案】A【解析】求出该函数的定义域,分析该函数的单调性,利用单调性即可求出该函数的值域.【详解】由题意可得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,则函数y =的定义域为[]1,1-,由于函数1y =[]1,1-上为增函数,函数2y =在区间[]1,1-上为减函数,所以,函数y =-在定义域[]1,1-上为增函数,当1x =-时,该函数取得最小值,即min y =;当1x =时,该函数取得最大值,即max y =.因此,函数y =-的值域为⎡⎣.故选:A.2.已知函数()f x x =()f x有()A .最小值1,无最大值B .最大值32,无最小值C .最小值32,无最大值D .无最大值,无最小值【答案】C【分析】先用换元法将()f x 变形为二次函数的形式,然后根据对称轴求解出二次函数的最值,则()f x 的最值情况可知.【详解】因为()f x x =+[)0,t =∈+∞,所以232t x +=,所以()()()[)()2231110,22t f x g t t t t +==+=++∈+∞,因为()g t 的对称轴为1t =-,所以()g t 在[)0,+∞上递增,所以()()min 302g t g ==,无最大值,所以()f x 的最小值为32,无最大值,故选:C.3.关于函数y =)A .既没有最大值也没有最小值BC D .既有最小值0【答案】B【分析】求出函数的定义域,然后把函数的解析式进行分子有理化,最后利用函数的单调性的性质判断函数的单调性,最后选出正确答案.【详解】函数y ={}1x x ≥.y ===函数y y ==1≥x 时,都是增函数且0y y =≥=≥,因此函数()y f x ===1≥x 时,是单调递减函数故函数有最大值,最大值为(1)f =函数没有最小值.故选:B 【题型八】7:max 与min 函数【典例分析】()()()()()()}{21,1,,max ,,f x x g x x x R M x f x g x =+=+∈=则函数()M x 的最小值是__________.【答案】0【分析】根据函数定义得出函数解析式,确定函数的单调性可得最小值.【详解】由2(1)1x x +>+得1x <-或0x >,2(1)1x x +<+得10x -<<,所以2(1),10(),1,10x x x M x x x ⎧+-=⎨+-≤≤⎩或所以()M x 在(,1)-∞-上递减,在(1,)-+∞上递增,min ()(1)0M x M =-=.故答案为:0.1.设{}2()min 2,16,816(0)x f x x x x x =--+≥,其中{}min ,,a b c 表示a ,b ,c 三个数中的最小值,则()f x 的最大值为A .6B .7C .8D .9【答案】D【分析】根据{}min ,,a b c 的意义,画出函数图象,观察最大值的位置,通过求函数值,解出最大值.【详解】画出22,16,816x y y x y x x ==-=-+的图象,观察图象可知,当2x ≤时,()2x f x =,当27x ≤≤时,2()816f x x x =-+,当7x >时,()16f x x =-,()f x 的最大值在7x =时取得为9,故选D.2.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为()A .-1B .0C .1D .4【答案】C【解析】根据定义求出()M x 的表达式,然后根据单调性确定最小值.【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==.故选:C .3.已知{}max ,,a b c 表示a ,b ,c 中的最大值,例如{}max 1,2,33=,若函数(){}2max 4,2,3f x x x x =-+-++,则()f x 的最小值为()A .2.5B .3C .4D .5【答案】B【分析】在同一平面直角坐标系中作出函数24y x =-+,2y x =-+,3y x =+的图象,根据函数的新定义可得()f x 的图象,由图象即可得最小值.【详解】如图:在同一平面直角坐标系中作出函数24y x =-+,2y x =-+,3y x =+的图象,因为(){}2max 4,2,3f x x x x =-+-++,所以()f x 的图象如图实线所示:由242(0)y x y x x ⎧=-+⎨=-+<⎩可得()1,3A -,由243(0)y x y x x ⎧=-+⎨=+>⎩可得1522B ⎫⎪⎪⎝⎭,由图知()f x 在(),1-∞-上单调递减,在()1,0-上单调递增,在512⎛- ⎝⎭上单调递减,在512⎫-+∞⎪⎪⎝⎭上单调递增,所以当1x =-时,()2143y =--+=,当512x -=时,35155322y ==-+,所以()f x 的最小值为3,故选:B.【题型九】8:“放大镜”函数【典例分析】定义域为R 的函数()f x 满足()()122f x f x -=,且当[)2,0x ∈-时,()22f x x x =--,则当[)2,4x ∈时,()f x 的最大值为()A .4B .2C .12D .14【答案】A【分析】利用已知等式,结合二次函数的性质进行求解即可.【详解】因为()()122f x f x -=,所以有:()()11222(4)(2)22f x f x f x f x --=-⇒-=-,因此有:11(4)()()4(4)22f x f x f x f x -=⋅⋅⇒=-,当[)2,4x ∈时,240x -≤-<,所以()224[(4)2(4)]4(3)4f x x x x =----=--+,因此当3x =时,该函数有最大值4,故选:A【提分秘籍】基本规律形如f (tx )=mf (x )等“似周期函数”或者“类周期函数”,俗称放大镜函数,要注意1.定义域为R 的函数()f x 满足(1)3()f x f x +=,且当(0,1]x ∈时,()4(1)f x x x =-,则当[2,1)x ∈--时,()f x 的最小值是()A .181-B .127-C .19-D .0【答案】C【分析】先求得()2f -,然后将()2,1x ∈--转化为()0,1x ∈来求得()f x 的解析式,由此求得()f x 的最小值.【详解】()10f =,()()()013000f f f +=⇒=,()()()()()1111221111003399f f f f f -=-+=-=-+==,()2,1x ∈--,()20,1x +∈,依题意()()113f x f x =+,且当(0,1]x ∈时,()4(1)f x x x =-,所以()()()111239f x f x f x =+=+()()4219x x =++,故当()()21322x -+-==-时,()f x 取得最小值41119229⎛⎫⎛⎫⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C2..定义域为R 的函数()f x 满足()()12f x f x +=,且当(0,1]x ∈时,()2f x x x =-,则当(]2,1x ∈--时,()f x 的最小值为()A .116-B .18-C .14-D .0【答案】A 【分析】根据()()12f x f x +=,结合当(0,1]x ∈时函数的解析式求出当(]2,1x ∈--的解析式,然后根据二次函数的性质进行求解即可.【详解】由()()112(2)2(1)()(2)4f x f x f x f x f x f x +=⇒+=+∴=+.当(]2,1x ∈--时,2211131()(2)[(2)(2)](444216f x f x x x x =+=+-+=+-,当32x =-时,函数的最小值为116-.故选:A3.已知定义在R 上的函数()y f x =满足()2(1)f x f x =+,且当(0,1]x ∈时,2()f x x x =-,则当(1,0]x ∈-时,函数()y f x =的最小值为().A .18-B .14-C .12-D .1-【答案】C【分析】求出函数在(1,0]-上的解析式,再由二次函数性质得最小值.【详解】∵(1,0]x ∈-时,1(0,1]x +∈.∴22()2(1)2(1)(1)2()f x f x x x x x ⎡⎤=+=⨯+-+=+⎣⎦,由二次函数的最值易知最小值为1122f ⎛⎫-=- ⎪⎝⎭,故选:C .【题型十】9:取整函数(高斯函数)【典例分析】世界公认的三大著名数学家为阿基米德、牛顿、高斯,其中享有“数学王子"美誉的高斯提出了取整函数[][],y x x =表示不超过x 的最大整数,例如][1.11, 1.12⎡⎤=-=-⎣⎦.已知()()()21,,32,1x f x x x ∞∞-⎡⎤=∈--⋃+⎢⎥+⎣⎦,则函数()f x 的值域为()A .{}0,1,2B .{}1,2,3C .{}2,3,4D .{}2,3【答案】B【分析】根据题意,设21()1x g x x -=+,将()g x 解析式变形,分析()g x 的取值范围,结合取整函数[]y x =的定义,分析可得答案.【详解】解:根据题意,设21()1x g x x -=+,则212(1)33()2111x x g x x x x -+-===-+++,在区间(,3)-∞-上,301x <+,且()g x 为增函数,则有72()2g x <<,在区间(2,)+∞上,301x >+,且()g x 为增函数,则有1()2g x <<,综合可得:()g x 的取值范围为1()2g x <<或72()2g x <<,又由21()[][()]1x f x g x x -==+,则()f x 的值域为{1,2,3}.故选:B .【变式训练】1.高斯是德国著名的数学家,近代数学奠基者之一,用他的名字命名了“高斯函数”.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[0.5]0=,[1.4]1=,已知函数()[]f x x x =-,则下列选项中,正确的是()A .()f x 区间[0,2]上的值域为[0,1)B .()f x 区间[0,2]上的值域为[0,1]C .()f x 区间[0,2]上的值域为(0,1]D .()f x 区间[0,2]上的值域为(0,1)【答案】A【分析】根据高斯函数的定义,可得函数()[]f x x x =-的图象,即可的解.【详解】由高斯函数的定义可得:当01x < 时,[]0x =,则[]x x x -=,当12x < 时,[]1x =,则[]1x x x -=-,当23x < 时,[]2x =,则[]2x x x -=-,当34x < 时,[]3x =,则[]3x x x -=-,易见该函数具有周期性,绘制函数图象如图所示,由图象可知,()f x 在[0,2]的值域也为[0,1).故选:A2.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数.例如:[]3π=,[]5,16-=-,已知函数()221xf x x =+,则函数()y f x ⎡⎤=⎣⎦的值域为()A .{}1,1-B .{}1,0-C .{}1,0D .{}1,0,1-【答案】D【分析】利用基本不等式可求得函数()f x 的值域,由此可求得函数()y f x ⎡⎤=⎣⎦的值域.【详解】当0x >时,()2220111x f x x x x <===++,当且仅当1x =时,等号成立;当0x <时,()()()222111x f x x x x ==-≥=-+-+-,当且仅当1x =-时,等号成立,此时()10f x -≤<;又因为()00f =,所以,函数()f x 的值域为[]1,1-,当()10f x -≤<时,()1f x ⎡⎤=-⎣⎦;当()01f x ≤<时,()0f x ⎡⎤=⎣⎦;当()1f x =时,()1f x =⎡⎤⎣⎦.综上所述,函数()y f x ⎡⎤=⎣⎦的值域为{}1,0,1-.故选:D.3.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 2.1]3-=-,[3.1]3=,已知函数2221()13x f x x =-+,则函数[()]y f x =的值域是()A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-【答案】D【分析】结合[]x 表示不超过x 的最大整数,利用函数的值域求法求解.【详解】解:()2222221221152()131331x x f x x x x +-=-=-=-+++,因为x ∈R ,所以211t x =+≥,21011x <≤+,则()15[)33f x ∈-,当1[,0)3x ∈-时,[()]1y f x ==-;当[0,1)x ∈时,[()]0y f x ==;当5[1,)3x ∈时,[()]1y f x ==;所以函数[()]y f x =的值域是{}1,0,1-,故答案为:D分阶培优练培优第一阶——基础过关练1.若()f x 是R 上的严格增函数,令()()13F x f x =++,则()F x 是R 上的()A .严格增函数B .严格减函数C .先是严格减函数后是严格增函数D .先是严格增函数后是严格减函数【答案】A【分析】由函数的单调性的定义判断可得选项.【详解】解:因为()f x 是R 上的严格增函数,所以由复合函数单调性法则可得,()+1f x 也是R 上的严格增函数,所以()()13F x f x =++是R 上的严格增函数.故选:A.2.函数2(1)1x y x x +=≠-在区间[2,5)上的最大值、最小值别是A .74,4B .无最大值,最小值7C .4,0D .最大值4,无最小值【答案】D【详解】试题分析:21331111x x y x x x +-+===+---,函数在区间[2,5)上是减函数,2x ∴=时函数取得最大值4,没有最小值3.若函数2(2)f x x x -=-,则()f x 在[0,1]上的最大值与最小值之和为()A .2-B .74-C .0D .14【答案】A【分析】首先利用换元法求出()f x 的解析式,再利用二次函数的性质求最值即可求解.【详解】令2x t -=,则2x t =-,所以22()(2)(2)32f t t t t t =---=-+-,所以2()32f x x x =-+-,开口向下,对称轴为()33212-=⨯-,所以()f x 在[0,1]上单调递增,()max (1)1320f x f ==-+-=,min ()(0)2f x f ==-,所以()f x 在[0,1]上的最大值与最小值之和为202-+=-,故选:A.4.函数()211x x f x x x -≤-⎧=⎨>-⎩的最小值是()A .1-B .0C .1D .2【答案】B【分析】分别讨论两段函数的单调性和最值,即可得到所求最小值.【详解】当1x >-时,()2f x x =的最小值为()00f =;当1x ≤-时,()f x x =-递减,可得()1f x ≥,综上可得函数()f x 的最小值为0.故选B .5.函数()41f x x x =++在1,22⎡⎤-⎢⎥⎣⎦上的值域为()A .153,2⎡⎤-⎢⎥⎣⎦B .[]3,4C .153,2⎡⎤⎢⎥⎣⎦D .154,2⎡⎤⎢⎥⎣⎦【答案】C【分析】设1x t +=,1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,得到函数的单调区间,计算函数值得到值域.【详解】设1x t +=,1x t =-,1,22x ⎡⎤∈-⎢⎥⎣⎦,则1,32t ⎡⎤∈⎢⎥⎣⎦,则()41g t t t =+-,根据双勾函数性质:函数在1,22⎡⎤⎢⎥⎣⎦上单调递减,在(]2,3上单调递增,()()max 1151015max ,3max ,2232g t g g ⎧⎫⎛⎫⎧⎫===⎨⎬⎨⎬ ⎪⎝⎭⎩⎭⎩⎭,()()min 23g t g ==,故函数值域为153,2⎡⎤⎢⎥⎣⎦.故选:C.6.已知函数()1f x x x=-在区间[]1,3上的最大值为()A .0B .3C .83D .4【答案】C【分析】根据基本初等函数的性质,得到函数()f x 在区间[]1,3单调递增,即可求解最大值,得到答案.【详解】由题意,根据初等函数的性质,可得函数()1f x x x=-在区间[]1,3单调递增,所以函数的最大值为()183333f =-=.故选C.7..3y x =+)A .5,2⎛⎫-∞ ⎪⎝⎭B .3,2⎛⎫+∞ ⎪⎝⎭C .3,2⎛⎫+∞ ⎪⎝⎭D .7,2⎛⎤-∞ ⎝⎦【答案】D【分析】先求得x 的范围,再由单调性求值域.【详解】解:因为3y x =+-120x -≥,12x ∴≤,即函数的定义域为1,2⎛⎤-∞ ⎥⎝⎦,又3y x =+1,2⎛⎤-∞ ⎥⎝⎦时单调递增,所以当12x =时,函数取得最大值为72,所以值域是7,2⎛⎤-∞ ⎥⎝⎦,故选:D.8.用{}min ,a b 表示a ,b 两个数中的最小值,设{}()min 2,4f x x x =---,则()f x 的最大值为A .-2B .-3C .-4D .-6【答案】B【详解】试题分析:由题意4,1(){2,1x x f x x x -<=--≥,所以max ()(1)3f x f ==-,故选B .9..函数()f x 满足()()24+=f x f x ,且x ∈R ,当[]0,2x ∈时,()2416f x x x =-+,则当[]4,2x ∈--时,()f x 的最大值为___________.【答案】1【分析】根据条件写出[]4,2x ∈--时()f x 的解析式后求解【详解】由题意得,(4)4(2)16()f x f x f x +=+=,若[]4,2x ∈--,则[]40,2x +∈,∴2216()(4)4(4)16416f x x x x x =+-++=++,即2213()1(2)164164x x f x x =++=++,∴[]4,2x ∈--上,当4x =-时()f x 的最大值为1.故答案为:110.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为A .y 10x ⎡⎤=⎢⎥⎣⎦B .3y 10x +⎡⎤=⎢⎥⎣⎦C .4y 10x +⎡⎤=⎢⎥⎣⎦D .5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B【详解】试题分析:根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +⎡⎤=⎢⎥⎣⎦,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .培优第二阶——能力提升练1.“函数()f x 在区间[1,2]上不是增函数”的一个充要条件是()A .存在(1,2)a ∈满足()(1)≤f a f B .存在(1,2)a ∈满足()(2)f a f ≥C .存在,[1,2]a b ∈且a b <满足()()f a f b =D .存在,[1,2]a b ∈且a b <满足()()f a f b ≥【答案】D【分析】由函数()f x 在区间[1,2]上不是增函数举例说明A ,B ,C 错误,由此确定正确选项.【详解】∵函数23()()2f x x =--在区间[1,2]上不是增函数,但对于任意的()1,2a ∈,()(1)f a f >,∴“存在(1,2)a ∈满足()(1)≤f a f ”不是“函数()f x 在区间[1,2]上不是增函数”的充要条件,选项A 错误,∵函数23()()2f x x =-在区间[1,2]上不是增函数,但对于任意的()1,2a ∈,()(2)f a f <,∴“存在(1,2)a ∈满足()(2)f a f ≥”不是“函数()f x 在区间[1,2]上不是增函数”的充要条件,选项B 错误,∵函数2()(2)f x x =-在区间[1,2]上不是增函数,任意的[],1,2a b ∈且a b <时()()f a f b >,∴“存在,[1,2]a b ∈且a b <满足()()f a f b =”不是“函数()f x 在区间[1,2]上不是增函数”的充要条件,选项C 错误,故选:D.2.若函数21y x =-的定义域是(,1)[2,5)-∞⋃,则其值域是()A .(2,)+∞B .1,[2,)2⎛⎫-∞⋃+∞ ⎪⎝⎭C .(,2]-∞D .1(,0)22⎛⎤-∞⋃ ⎥⎝⎦【答案】D【解析】根据函数的单调性,求函数的值域.【详解】 函数21y x =-在(),1-∞和[)2,5都是单调递函数,当1x <时,0y <,2x =时,2y =,5x =时,12y =,所以函数的值域是()1,0,22⎛⎤-∞ ⎥⎝⎦.故选:D3.已知函数2()48f x kx x =-+在[5,10]上单调递减,且()f x 在[5,10]上的最小值为32-,则实数k 的值为()A .45-B .0C .0或45-D .0或17【答案】B【解析】首先根据()f x 在[5,10]上的最小值为32-,利用单调性求得实数k 的值,然后验证函数在区间上是否单调递减即可.【详解】由函数2()48f x kx x =-+在[5,10]上单调递减可知,当10x =时,函数有最小值,即:10040832k -+=-,解得:0k =,当0k =时,()48f x x =-+,函数单调递减,满足题意.故选:B .4.已知f (x )=x ,g (x )=x 2-2x ,F (x )=(),()(),(),()(),g x f x g x f x f x g x ≥⎧⎨<⎩则F (x )的最值情况是()A .最大值为3,最小值为-1B .最小值为-1,无最大值C .最大值为3,无最小值D .既无最大值,又无最小值【答案】D【分析】易得F (x )为()f x 与()g x 中较小的函数值,故求解()f x 与()g x 的大小,分段讨论即可【详解】由f (x )≥g (x )得0≤x ≤3;由f (x )<g (x ),得x <0,或x >3,所以()2,02,03,3x x F x x x x x x <⎧⎪=-≤≤⎨⎪>⎩易得F (x )无最大值,无最小值.故选:D5.若01n <<且1mn =,则2m n +)A .)+∞B .[3,)+∞C .)+∞D .(3,)+∞【答案】D【解析】先利用已知条件构造函数()2(),01f m m m m+<<=,再求其值域即得结果.【详解】由01m n <<<且1mn =知,22m n m m +=+,故设()2(),01f m m m m+<<=,设1201m m <<<,则()1212121212222()()1f m f m m m m m m m m m ⎛⎫⎛⎫⎛⎫-=+-+=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,12120,01m m m m -<<<,即1222m m >,故()1212210m m m m ⎛⎫--> ⎪⎝⎭,即12()()f m f m >,函数2()f m m m =+在()0,1上单调递减,2(1)131f =+=,故函数的值域为(3,)+∞.故选:D.6.函数()12f x x x =-在区间12,2⎡⎤--⎢⎥⎣⎦上的最小值为()A .1B .72C .72-D .1-【答案】D【分析】判断出函数的单调性,再得到其在区间12,2⎡⎤--⎢⎥⎣⎦上的最小值.【详解】函数()12f x x x =-是单调递减函数,所以其在区间12,2⎡⎤--⎢⎣⎦上的最小值是在12x =-时得到,111211222f ⎛⎫⎛⎫-=-⨯-=- ⎪ ⎝⎭⎝⎭-故选D 项.7.函数()3f xx =+在区间[-1,1]上的最大值为()A.B .3+C .13-+D .4-【答案】B【分析】将函数中的根式部分换元为t ,转化为关于t 的一元二次函数在特定区间上的最大值问题,即可得解.【详解】因为53y x =-在[11]-,上是减函数,所以[]2,8y ∈t =,所以t ∈,253t x -=,所以()()222525g t t t tt t =+-=-+∈+.因为()g t在上单调递减,所以()max 253gg t ==-+=+所以()f x 在区间[11]-,上的最大值为3+,故选B.8.对于每个实数x ,设f (x )是y =4x +1,y =x +2和y =-2x +4这三个函数值中的最小值,则函数f (x )的最大值为()A .83B .3C .23D .12【答案】A【分析】先在同一直角坐标系中画出三条直线,再在不同区间上取靠下的函数图象,组成()f x 的图象,由图象即可看出函数的最大值,通过解直线方程即可得此最值【详解】由题意,可得函数()f x 的图象如图:由242y x y x =-+⎧⎨=+⎩得2(3A ,8)3()f x ∴的最大值为83故选:A .9.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为()A .52B .1C .0D .-1【答案】B【解析】首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++,()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦,()()()()2211122311444f x f x x x x ∴=-=-++=--+,[)1,2x ∈ ,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B10.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]0.51-=-,[]1.51=,已知函数()()2134142f x x x x =-+<<,则函数()y f x ⎡⎤=⎣⎦的值域为()A .13,22⎡⎫⎪⎢⎣⎭B .{}1,0,1-C .{}1,0,1,2-D .{}0,1,2【答案】B 【分析】根据二次函数的性质,化成顶点式,在已知定义域的情况下,根据顶点式,得到()f x 的值域,进而根据高斯函数的定义,即可求解.【详解】因为()()22111343222f x x x x =-+=--,()1,4x ∈,所以函数在()1,3上单调递减,在()3,4上单调递增,所以()()min 132f x f ==-,又()312f =,()40f =,所以()13,22f x ⎡⎫∈-⎪⎢⎣⎭,因为()y f x ⎡⎤=⎣⎦,所以{}1,0,1y ∈-;故选:B培优第三阶——培优拔尖练1.函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,那么()A .可能不存在单调区间B .()f x 是R 上的增函数C .不可能有单调区间D .一定有单调区间【答案】A【解析】根据题意,举出两个满足()12f x f x ⎛⎫<+ ⎪⎝⎭的例子,据此分析选项可得答案.【详解】根据题意,函数()f x 对于任意x ∈R ,恒有()12f x f x ⎛⎫<+ ⎪⎝⎭,则()f x 的解析式可以为:()2,1 1.51,0.510,00.5x f x x x ⎧⎪<≤⎪⎪=<≤⎨⎪<≤⎪⎪⎩,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,不是增函数,没有单调区间,也可以为()f x x =,满足()12f x f x ⎛⎫<+ ⎪⎝⎭,是增函数,其递增区间为R ,则()f x 可能存在单调区间,也可能不存在单调区间,则A 正确;BCD 错误;故选:A.2..已知x是正整数,则当函数y =x 的值为()A .16B .17C .18D .19【答案】C【分析】先由函数解析式,得到y =x >,再由函数单调性,可得xy =.【详解】因为y =当x >0y =<;当x <时0y =>;为使函数y =x >y =x >调递增,x 是正整数,所以当x的最小正整数时,函数y =<1718<<,所以18x =.故选:C.3.已知函数223x x x f =-+在区间],1t t +上是单调函数,则t 的取值范围是()A .[)1,+∞B .[]0,1C .(],0-∞D .(][),01,-∞+∞ 【答案】D【分析】求出二次函数图像的对称轴,由题意可得对称轴小于等于t ,或大于等于1t +,从而可求出t 的取值范围.【详解】()223x x x f =-+的图像的对称轴为1x =,因为函数()223x x x f =-+在区间[],1t t +上时单调函数,所以1t ≤或11t ≥+,得1t ≥或0t ≤,即t 的取值范围是(][),01,-∞+∞ ,故选:D4.已知()()252,2f x x g x x x =-=-,设函数(),()()()(),()()f x f xg x F x g x f x g x ≥⎧=⎨<⎩,则()F x 的最值情况是A .最大值为3,最小值525-B .最大值为525+,无最小值C .最小值525-,无最大值D .既无最大值,又无最小值【答案】C【分析】先讨论x 的正负号将()f x 的绝对值拿掉,再解不等式()()f x g x ≥,写出函数()F x 的解析式,根据解析式说明单调性,选出答案.【详解】1)当0x ≤时()52f x x =+,解()()f x g x ≥即2522x x x +≥-解得10x -≤≤,所以252,10()2,1x x F x x x x +-≤≤⎧=⎨-<-⎩2)当0x >时()52f x x =-,解()()f x g x ≥即2522x x x -≥-解得05x <≤,所以252,05()2,5x x F x x x x ⎧-<≤⎪=⎨->⎪⎩综上所述22,12,1052(),05522,5x x x x x F x x x x x x <-⎧-⎪-≤≤+⎪=⎨<≤-⎪⎪->⎩所以函数()F x 在(,1)-∞-上单调递减,在[1,0]-上单调递增,在5]单调递减,在(5,)+∞上单调递增.且(1)523F -=-=,(5)525F =-,(1)(5)F F ->所以函数()F x 最小值525-,无最大值5.已知函数()2212f x x x =+-+,则()f x 的最小值()A .12-B .1-C .0D .1【答案】A【分析】结合函数的单调性确定正确选项.【详解】对于函数()()132g x x x x=+-≥,任取122x x ≤<,()()()()12121212121211133x x x x g x g x x x x x x x ---=+---+=,其中12120,10x x x x -<->,所以()()12g x g x <,所以()g x 在[)2,+∞上递增.()221232f x x x =++-+,令22,2t x t =+≥,则13y t t=+-,由于13y t t =+-在[)2,+∞上递增,当2t =时有最小值为112322+-=-,所以()f x 的最小值为12-.故选:A6.函数f (x )=-x +1x 在12,3⎡⎤--⎢⎥⎣⎦上的最大值是()A .32B .-83C .-2D .2【答案】A。
高一函数(2):函数的单调性与最值

专题一 函数的单调性与最值题型一 确定函数的单调性1.确定函数单调性(区间)的三种常用方法(1)定义法:一般步骤:①任取x 1,x 2∈D ,且x 1<x 2;②作差f (x 1)-f (x 2);③变形(通常是因式分解和配方);④定号(即判断f (x 1)-f (x 2)的正负);⑤下结论(即指出函数f (x )在给定的区间D 上的单调性)..(2)图象法:如果f (x )是以图象形式给出的,或者f (x )的图象易作出,则可由图象的直观性确定它的单调性.(3)导数法:利用导数取值的正负确定函数的单调性. 2.熟记函数单调性的常用结论(1)对勾函数y =x +ax (a >0)的增区间为(-∞,-a ]和[a ,+∞),减区间为[-a ,0)和(0,a ].(2)在区间D 上,两个增函数的和仍是增函数,两个减函数的和仍是减函数. (3)函数f (g (x ))的单调性与函数y =f (u ),u =g (x )的单调性的关系是“同增异减”.(4)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点处取到.(5)开区间上的“单峰”函数一定存在最大(小)值.【例1】(2020·华南师范大学附属中学月考)函数f (x )=ln(x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞)D .(4,+∞)【解析】由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,则y =ln t 为增函数. 要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8在定义域内的单调递增区间. ∵函数t =x 2-2x -8在(-∞,-2)上单调递减,在(4,+∞)上单调递增, ∴函数f (x )的单调递增区间为(4,+∞).【例2】函数y =x 2+x -6的单调递增区间为________,单调递减区间为________. 【解析】令u =x 2+x -6,则y =x 2+x -6可以看作是由y =u 与u =x 2+x -6复合而成的函数. 令u =x 2+x -6≥0,得x ≤-3或x ≥2.易知u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数, 而y =u 在[0,+∞)上是增函数,所以y =x 2+x -6的单调递减区间为(-∞,-3],单调递增区间为[2,+∞). 【例3】判断并证明函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 【解法一】设-1<x 1<x 2<1,⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+-=111111)(x a x x a x f⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-+=-111111)()(2121x a x a x f x f =a (x 2-x 1)(x 1-1)(x 2-1), 由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0, 故当a >0时,f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上单调递增.【解法二】f ′(x )=a (x -1)-ax (x -1)2=-a(x -1)2,所以当a >0时,f ′(x )<0,当a <0时,f ′(x )>0, 即当a >0时,f (x )在(-1,1)上为单调递减函数, 当a <0时,f (x )在(-1,1)上为单调递增函数.题型二 求函数的最值(值域) 求函数的最值(值域)的常用方法(1)单调性法:若所给函数为单调函数,可根据函数的单调性求最值.(2)换元法:求形如y =ax +b +(cx +d )(ac ≠0)的函数的值域或最值,常用代数换元法、三角换元法结合题目条件将原函数转化为熟悉的函数,再利用函数的相关性质求解.(3)数形结合法:若函数解析式的几何意义较明显(如距离、斜率等)或函数图象易作出,可用数形结合法求函数的值域或最值(4)有界性法:利用代数式的有界性(如x 2≥0,x ≥0,2x >0,-1≤sin x ≤1等)确定函数的值域.(5)分离常数法:形如求y =cx +dax +b(ac ≠0)的函数的值域或最值常用分离常数法求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性和值域1.函数单调性的定义一般地,设函数f(x)的定义域为I:如果对于定义域I某个区间D上的任意两个自变量的值x,2x,当1x<2x时,都有f(1x)<f(2x),那么就说函数f(x)在区间D上是增函1数;如果对于定义域I某个区间D上的任意两个自变量的值x,2x,当1x<2x时,1都有f(x)>(2x),,那么就说函数f(x)在区间D上是减函数;1如果函数f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。
2.函数单调性的证明方法,通常用两种方法证明:①定义法②导数法(1)利用定义法证明函数单调性的一般步骤是:①取值②作差(有时也可作商)③变形④定号⑤作出结论判断.用定义法证明函数的单调性时,要比较f(x)与f(2x)的大小,最常1用的方法是作差(或作商)比较法。
(2)用导数法证明函数单调性的理论为:若函数y=f(x)在某区间可导,且满足'()f x<0,f x>0,则f(x)在该区间上单调递增;若满足'()则f(x)在该区间上单调递减。
3.函数单调性的应用:(1)比较(函数值)大小(2)求函数的值域或最值(3) 解、证不等式 (4)作函数的图象 (5)讨论方程根的分布。
4.判断函数单调性的方法:(1)常用方法有:定义法、导数法、图象法、特殊值法(主要用于解选择题)(2)利用有关于单调性的一些结论:①奇函数在其对称区间上单调性相同;②偶函数在其对称区间上单调相反;③在公共定义域:增函数f(x)+增函数g(x)是增函数;减函数f(x)+减函数g(x)是减函数;增函数f(x)-减函数g(x)是增函数;减函数f(x)-增函数g(x)是减函数.注意:f(x)为增函数,若a>0,则af(x)为增函数,若a<0,则af(x)为减函数.(3)互为反函数的两个函数具有相同的单调性(4)利用复合函数的“同增异减”原则,若f(x)与g(x)的单调性相同,则复合函数y=f[g(x)]是增函数;若f(x)与g(x)的单调性相反,则复合函数y=[g(x)]是减函数。
(简称同增异减)例如:①函数f(x)=log ()23x 1-在其定义域为增函数;②f(x)=函数log ()123x 1-在其定义域是减函数。
函数f(x)=log ()23x 2-在定义域∞)为增函数,在定义域(-∞, 是减函数 5.函数的值域和最值(1)函数的值域(见函数的概念一节) (2)函数的最值①函数最大值的定义:一般地,设函数y=f(x)的定义域为I ,若存在实数M 满足:<1>对任意的x ∈I ,都有f(x)≤M ;<2>存在0x ∈I ,使得f(0x )=M 。
那么,称M 是函数y=f(x)的最大值。
②函数最小值的定义:一般地,设函数y=f(x)的定义域为I ,若存在实数M 满足:<1>对任意的x ∈I ,都有f(x)≥M ;<2>存在0x ∈I ,使得f(0x )=M 。
那么,称M 是函数y=f(x)的最小值。
注意:①函数最大(小)值首先应该是某一个函数值,即存在0x ∈I ,使得f(0x )=M ;②函数最大(小)值应该所有函数值中最大(或最小)的,即对于任意的x ∈I ,都有f(x) ≤M(或f(x)≥M)。
6.求函数值域和最值的常用的方法 (1)配方法(适用于一元二次函数型) 例如,求下列函数的值域①y=-22x +5x+6 ②y=2x ﹣2x ﹣3 (0≤x ≤3)③y=﹣sin 2x ﹣3cosx+3( ①(-∞, 738] ②[-4,0] ③ [0,6] )(2)换元法:一元二次函数型或三角代换。
通过换元,将函数化为易求值域的函数形式(注意换元后变量的取值围,以保证变形是恒等的)。
例如,求下列函数的值域①②y=sinx+cosx+sinxcosx ③解:①设=t, 易知t ∈[0,+∞),且x=21t 2-, 则原函数可化为:y=21tt 2--=()21t 112-++其中t ∈[0,+∞),当x=0时,有最大值max y =12,即y ≤12. 故所求函数的值域为(-∞,12]②设sinx+cosx=t,t ∈则原函数可化为:y=t+2t 12-(其中t∈[-,])以下略③设x=2cost,t ∈[0,π],则原函数可化为:y=2(cost+sinxt)-2,(其中t ∈[0,π])以下略 ( ① (-∞,12] ② [21t 2-1,12③[-4,(3)利用函数单调性求值域 例如,求下列函数的值域 ①y=3x (1≤x ≤3)⑤y=2x +lnx (0<x ≤3) **⑥y=22x 1x 2x 2+-+ (0≤x ≤4) 解;①函数的定义域为[1,+∞),因为[1,+∞)上均为增函数,故原函数为[1,+∞)上的增函数.所以f(x)≥所以原函数的值域为∞) ②函数的定义域为[1,+∞)易知该函数在其定义域上为减函数,所以f(x)≤所以原函数的值域为③函数的定义域为(-∞,12],而g(x)=x 和h(x)=(-∞,12]上均为增函数,故原函数为(-∞,12]上的增函数.所以f(x)≤f(12)=12,所以原函数的值域为(-∞,12] ④ 函数在[1,3]上为增函数 所以函数的值域为[1,27] ⑤ 函数在(0,3]上为增函数,所以函数的值域为(-∞,9+ln3] ⑥设2x+1=t ,则t ∈[1,9],且x=t 12-,从而原函数或化为y=24t t 6t 13-+。
当t=0时,y=0,当t ≠0时,4y 13t 6t=+-可证得13t t+在]上是减函数,在,9]上是增函数。
故当t ∈[1,9]时,13t t+∈,14],进而可求得原函数的值域为[12(此题还有其他变换法求解)(4)利用基本不等式求值域(基本不等式:①若a,b ∈R,则22a b +≥2∣ab ∣≥2ab 。
②若a,b ∈R +,则a+b ≥两个不等式均为当a=b 时,等号成立。
) 例如:求下列函数的值域 ① y=x+1x (x>0) ② y=23xx 4+ (x ≥0) 解:①∵x>0,∴x+1x≥当且仅当x=1x时,即x=1时,等号成立.所以函数的值域为[2,+∞) ②当x=0时,y=0,当x>0时,y=34x x+,∵x>0, ∴x+4x≥=4,当且仅当x=2时,等号成立.所以函数的值域为y ∈[0,4]注意:用均值不等式:若a,b ∈R +,则a+b ≥“一正,二定,三等号成立”(5)利用导数求函数的值域。
(其实质上是利用函数的单调性求值域) 例如:求函数y=242x x -+2的值域解:'2y 8x 2x =-=2x(42x ﹣1),故原函数在区间(-1,-12),(-12,0) ,(0,12),(12,2)的单调性分别为:递减,递增,递减,递增。
进而可得原函数的值域为:[158,30]*(6)基本函数法:一些由基本函数复合而成的函数可利用基本函数的值域求得例如:求函数y=log ()22x 2x 3-++的值域解:函数的定义域为(-1,3),令u=2x 2x 3-++ x ∈(-1,3) 易求得:0<u ≤4因为函数y=log 2u 为增函数,所以原函数的值域为:(﹣∞,2] (此题还有其他解法)(7)分离常数法(常用来解决“分式型”函数的值域) 例如:求函数y=3x 1x 2+-的值域解:y=3x 1x 2+-=()3x 27x 2-+-=3+7x 2-∵7x 2-≠0,∴3+7x 2-≠3, ∴函数y=3x 1x 2+-=的值域为{y ∈R ∣y ≠3}(8)最值法:对于区间上的连续函数,利用求函数最大值和最小值来求函数的值域。
例如:求函数y=2sinx ﹣1的值域。
解:∵-1≤sinx ≤1 ∴-3≤2sinx ﹣1≤1 ∴所以原函数的值域为[-3,1](9)判别式法:实质是方程思想,通过对二次方程的实根的判别求值域的方法。
例如:求函数22x 1y x 2x 2+=-+的值域。
解:由22x 1y x 2x 2+=-+得y 2x ﹣2(y+1)x+2y ﹣1=0,由y=0得-2x-1=0,则x=-12,∴0是函数值域中的一个值.当y ≠0时,由△= [()]22y 1-+﹣4y(2y ﹣1)≥0得: ≤y ≤,故函数的值域为(10)图象法:如果函数的图象较易作出,则可根据图象直观地得出函数的值域(求某些分段函数的值域常用此法) 例如:求函数y=∣x-3∣-∣x+1∣的值域 ([-4,4])此外还有观察法等7.给定函数的值域或最值,求函数中参数的取值围例如:(1)设函数f(x)=2x ﹣2x+2a,当x ∈[-2,2]时,f(x)≤0恒成立,数a 的取值围。
解法一,分离系数法;由f(x)≤0,得2x ﹣2x+2a ≤0,即2a ≤-2x +2x ,设g(x)=-2x +2x=﹣()2x 1-+1, x ∈[-2,2]∵g(x)在[-2,2]的最小值为max ()g x =g(﹣2)=﹣8, ∴2a ≤﹣8, ∴ a ≤﹣4 所以实数a 的取值围为: (﹣∞,﹣4]解法二:f(x)= 2x ﹣2x+2a=()2x 1-+2a ﹣1, f(x)在x ∈[-2,2]上值域为[2a-1,2a+8], 要使f(x)≤0, x ∈[-2,2]恒成立,只须2a+8≤0,所以 a ≤-4, 所以实数a 的取值围为: (﹣∞,﹣4](2).设f(x)= 2x +ax+3,当x ∈[-2,2]时, f(x)≥0恒成立,数的取围。
( [﹣7,2])**(3).函数y=lg(2x +2x+m)的值是R ,则实数m 的取值围是_______ (﹣∞,1]8.利用函数的单调性求函数中参数的取值围例如:已知函数f(x)= 2x ﹣6ax+1在[2,+∞)上为增函数,则实数a 的取值围为_______解:f(x)= 2x ﹣6ax+1= ()2x 3a -+1﹣92a , 因为函数f(x)在[2,+∞)上为增函数,所以由3a ≤2,得 a ≤23所以实数a 的取值围(﹣∞,23]若函数y=f(x)在其定义D,恒有f(x)≥a 成立,数a 的取值围,就是求f(x)的最小值;若函数y=f(x)在其定义D,恒有f(x)≤a 成立,数a 的取值围,就是求f(x)的最大值。
9.例题例1 证明函数f(x)=x+ 4x在x ∈(0,2)上是减函数解;(定义法)设0<1x <2x <2, 则f(1x )-f(2x )=(114x x +)-(224x x +)=()()21124x x 1x x --∵0<1x <2x <2,∴()21x x ->0, 120x x 4<⋅<∴1241x x >⋅∴12410x x -<⋅ 从而函数f(x)在x ∈(0,2)上为减函数。