概率的基本性质教学设计
高中数学第五章概率教案

高中数学第五章概率教案教学目标:1. 了解概率的基本概念和定义,掌握概率计算的方法。
2. 能够在实际问题中运用概率知识解决问题。
3. 能够通过实验来验证概率的计算结果。
教学内容:1. 概率的基本概念和定义2. 概率计算的方法3. 事件的互斥与独立4. 事件的排列组合5. 概率的实际应用教学重点:1. 概率的基本概念和定义2. 概率计算的方法教学难点:1. 事件的互斥与独立2. 事件的排列组合教学准备:1. 教学课件2. 教学实验器材3. 习题集教学步骤:一、引入概率的概念(10分钟)通过一个简单的实例引导学生了解概率的概念,并引出概率的定义。
二、概率的计算方法(20分钟)1. 讲解概率计算的基本方法2. 给学生演示概率计算的步骤3. 练习相关计算题目三、事件的互斥与独立(15分钟)1. 解释事件互斥和独立的概念2. 给学生举例说明互斥和独立事件的计算方法四、事件的排列组合(20分钟)1. 介绍排列组合的概念2. 解释有放回、无放回抽样的排列组合计算方法五、概率的实际应用(15分钟)通过实际问题的练习,让学生运用概率知识解决问题,加深对概率的理解。
六、总结与展望(10分钟)对概率的学习进行总结,展望下一节课内容。
教学评估:1. 教师课堂表现评价2. 学生练习题表现评价3. 学生实验结果报告评价拓展延伸:1. 给学生布置概率实验项目,让学生通过实验来验证概率的计算结果。
2. 鼓励学生参加数学建模比赛,应用概率知识解决实际问题。
《概率的基本性质》教学设计

《概率的基本性质》教学设计一、说教材:1、教材的地位及作用:本节课是高中数学3(必修)第三章概率的第一节第三课时概率的基本性质,本节课主要是结合具体实例由浅入深地学习概率的一些基本性质,学生在前面已经学习了集合的表示方法(Venn图)和随机事件的概率,已具有一定的归纳、抽象的水平,这些都是学习本节内容的基础。
本节在教材中起着承上启下的作用。
一方面把所学的概率知识应用于实际生活,另一方面为今后学习概率其他知识做了理论上的准备。
2、教学目标:知识与技能:(1)理解事件之间的相互包含关系、相等关系,知道和事件、积事件的意义;(2)通过实例,理解互斥事件、对立事件的概念及实际意义;(3)掌握概率的几个基本性质并能简单应用。
过程与方法:类比集合,揭示事件的关系与运算,培养学生的类比与归纳的数学思想情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,在参与探究活动中,培养学生的合作精神.在观察发现中树立探索精神,在探索成功后体验学习乐趣。
3、教学重点与难点:重点:互斥事件、对立事件的概念及概率的加法公式的应用。
难点:准确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.4、课时安排:1课时二、说教法:根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分理解学生的学习现状,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和使用所学知识。
1) 立足基础知识和基本技能,掌握好典型例题,做到重点突出;2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。
三、说学法:引导学生用观察、类比、归纳、推导方式来实现预定教学目标。
创设、再现知识发生的情境,让每个学生都能动。
从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构,并培养学生学会观察、分析、归纳、等适合客观世界的思维方法,养成良好学习习惯和思维习惯。
《概率论》单元教学设计知识结构

《概率论》单元教学设计知识结构一、概率的基本概念1.随机试验与样本空间2.随机事件与事件的概率3.必然事件与不可能事件4.事件的运算与关系5.事件的独立性与相关性二、基本概率模型1.古典概型a.定义和性质b.多阶段古典概型c.应用实例2.几何概型a.定义和性质b.应用实例3.组合概型a.定义和性质b.应用实例三、条件概率与贝叶斯公式1.条件概率的定义与性质2.乘法定理与全概率定理3.贝叶斯公式4.应用实例四、随机变量及其分布1.随机变量的定义与性质2.离散随机变量与连续随机变量3.分布函数与概率密度函数4.数学期望与方差5.常见离散分布(如0-1分布、二项分布、几何分布等)6.常见连续分布(如均匀分布、正态分布等)7.应用实例五、多随机变量及其分布1.多随机变量的定义与性质2.联合分布与边缘分布3.条件分布与条件期望4.独立随机变量与相关性5.两个随机变量的特征数6.应用实例六、大数定律与中心极限定理1.大数定律的概念与几种形式2.中心极限定理的概念与几种形式3.应用实例七、统计与抽样分布1.统计的基本概念与性质2.抽样分布的基本概念与性质3.常见抽样分布(如t分布、卡方分布、F分布等)4.点估计与区间估计5.应用实例八、数理统计基本方法1.参数估计的方法与性质2.假设检验的方法与性质3.方差分析方法与性质4.相关分析与回归分析方法与性质5.应用实例九、随机过程1.随机过程的基本概念与性质2.马尔可夫过程与泊松过程3.应用实例以上为《概率论》单元教学设计的知识结构,可以根据实际教学需要进行适当的调整和扩展。
在教学中,可以通过讲解理论知识、举例分析以及实际问题的应用等方式,帮助学生理解和掌握概率论相关知识,培养学生的问题分析与解决能力,为他们将来的应用提供有力的支持。
九年级数学概率教案

数学教案:九年级概率教学目标:1.了解概率的概念并能够用自己的语言解释概率的意义;2.能够计算事件发生的概率;3.能够利用概率进行实际问题的解决。
教学重点:1.概率的概念;2.概率的计算方法;3.利用概率解决实际问题。
教学难点:1.概率计算方法的应用;2.实际问题的解决。
教学准备:1.教师准备投掷硬币、骰子等实物;2.准备一些有关概率的实际问题的素材;3.提前复习一下九年级概率相关的知识点,如事件的概念、计算概率的方法等。
教学过程:Step 1:导入新知教师可使用一些实物来引入概率的概念,比如投掷硬币、掷骰子等。
教师可以问学生在掷硬币时,出现正面和反面的概率是多少?掷骰子时出现一些数字的概率是多少?通过这个导入,让学生了解到概率与随机事件有关。
Step 2:引入概率的概念教师通过上述导入,引出概率的概念。
概率是指一些事件发生的可能性大小,在数学中用一个介于0和1之间的数字表示。
教师可以用数学符号来表示概率,如P(A),其中A表示一些事件。
Step 3:概率的计算方法3.1频率法:通过实验得到事件发生的频率,即事件发生的次数除以实验总数。
3.2几何概型法:对于随机试验的结果可以通过几何图形来表示,通过计算几何图形中其中一区域的面积来计算概率。
3.3等可能性原则:如果一个试验中所有可能的结果都是等可能发生的,那么事件A发生的概率等于事件A所包含的基本事件数与所有基本事件总数的比值。
Step 4:实际问题解决通过一些实际问题的解决来巩固学生对概率计算方法的应用。
Step 5:概率的应用学生通过学习概率的计算方法和解决实际问题后,了解到概率在现实生活中的应用,如信封问题、球桌问题、生日问题等。
教师可以引导学生思考更多的应用场景,并让学生自主分析和解决实际问题。
Step 6:小结对本节课的知识点进行小结和梳理。
教学延伸:通过让学生完成一些概率相关的练习题、实际问题的解决,巩固和拓展学生对概率的理解和应用能力。
“概率的基本性质”教学设计与反思

“概率的基本性质”教学设计与反思
刘志勇
【期刊名称】《中学教学参考》
【年(卷),期】2014(000)020
【摘要】一、教学设计思路 1.设计理念新课标指出:“教学中应强调对基本概念和基本思想的理解和掌握,对一些核心概念和基本思想要贯穿数学教学的始终,帮助学生逐步加深理解.”因此,本节课创设适当的问题情境,引发必要的认知冲突,通过对教材内容的再创造、再设计,构建一个反映数学内在发展逻辑、符合学生数学认知规律的概念体系,揭示概念的内涵和外延,突出概念的核心.
【总页数】3页(P4-5,6)
【作者】刘志勇
【作者单位】广东惠州市第一中学 516007
【正文语种】中文
【相关文献】
1.策略创新,让教学更具魅力——《平面的基本性质》的教学设计与反思
2.“用频率估计概率”教学设计和反思
3.《分数的基本性质》教学设计与反思
4.让学生的数学学习自然生成——“等式的基本性质”教学设计、实施和反思
5.“分数的基本性质”教学设计与反思
因版权原因,仅展示原文概要,查看原文内容请购买。
随机事件的概率和性质说课稿 教案 教学设计

随机事件的概率【教学目标】1.了解随机事件、必然事件、不可能事件的概念.2.正确理解事件A 出现的频率的意义;正确理解概率的概念,明确事件A 发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系. 3.事件的关系及运算、概率的加法公式. 【教法指导】本节重点是事件的关系及运算、概率的加法公式;难点是事件的关系及运算;本节知识的主要学习方法是 动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法. 【教学过程】 课本导读1.随机事件的含义(1)必然事件 在一定条件下,一定发生的事件;(2)不可能事件 在一定条件下,不可能发生的事件; (3)随机事件 在一定条件下,可能发生也可能不发生的事件. 2.频率与概率 (1)频率在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A)=nn A为事件A 出现的频率. (2)概率对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P(A),称为事件A 的概率,简称为A 的概率. 质疑探究1 概率与频率有什么关系?3.事件的包含关系.如果事件A 发生,则事件B 一定发生.则称事件B 包含事件A.例如 事件A ={投掷一个骰子投得向上点数为2},B ={投掷一个骰子投得向上点数为偶数},则事件B 包含事件A ,记作 A ⊆B . 4.相等事件.若B ⊆A 且A ⊆B ,那么事件A 与事件B 相等 5.并(和)事件.若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与B 的并事件(或称和事件),记作 A ∪B.6.交(积)事件.若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与B 的交事件(或称积事件),记作 A ∩B. 7.互斥事件.若A ∩B 为不可能事件,即A ∩B =∅,那么称事件A 与事件B 互斥. 8.对立事件.若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件. 例如 某同学在高考中数学考了150分,与这同学在高考中数学考得130分,这两个事件是互斥事件.9.互斥事件概率加法公式.当事件A 与B 互斥时,满足加法公式 P(A ∪B)=P(A)+P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )=P(A)+P(B)=1,于是有P (A )=1-P(B).例如 投掷骰子六点向上的概率为16,投得向上点数不为六点的概率为65.质疑探究2 互斥事件和对立事件有什么区别和联系?10.概率的几个基本性质(1)概率的取值范围 0≤P(A)≤1 . (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)互斥事件概率的加法公式①如果事件A 与事件B 互斥,则P(A ∪B)= P(A)+P(B) . ②若事件B 与事件A 互为对立事件,则P(A)=1-P(B). 类型 一 事件的分类1.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后从中随机抽出10张,恰好红桃、梅花、黑桃三种牌都抽到,这件事件为( )A.不可能事件B.随机事件C.必然事件D.以上均不对2.给出下列四个命题①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件;②当“x为某一实数时可使x2<0”是不可能事件;③“2016年的国庆节是晴天”是必然事件;④“从100个灯泡(有10个是次品)中取出5个,5个都是次品”是随机事件.其中正确命题的个数是()A.4B.3C.2D.1【答案】B【解析】“2016年的国庆节是晴天”是随机事件,故命题③错误,命题①②④正确.故选B.探究一1.必然事件具有什么特点?2.怎样才能断定一个事件为不可能事件?3.判断事件类型的关键是什么?通过本例题让学生理解1.必然事件指的是在给定条件下,某事件一定会发生或已知该事件发生的概率为1.2.如果在给定条件下,某事件一定不会发生或已知该事件发生的概率为0,则可断定这个事件为不可能事件.3.判断事件类型,关键看事件在一定条件下发生的可能性大小,如果在给定条件下事件发生的可能性为零,则该事件为不可能事件;若该事件肯定能发生,则为必然事件;若该事件在一定条件下,可能发生也可能不发生,则该事件为随机事件.变式训练1.在200件产品中,有192件一级品,8件二级品,则下列事件①在这200件产品中任意选出9件,全部是一级品;②在这200件产品中任意选出9件,全部是二级品;③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于100,其中 是必然事件, 是不可能事件, 是随机事件.2.已知α,β,γ是平面,a,b 是两条不重合的直线,下列说法正确的是( ) A.“若a ∥b,a ⊥α,则b ⊥α”是随机事件 B.“若a ∥b,a ⊂α,则b ∥α”是必然事件 C.“若α⊥γ,β⊥γ,则α⊥β”是必然事件 D.“若a ⊥α,a ∩b=P,则b ⊥α”是不可能事件题型二 随机事件的频率与概率1.从标有数字1,2,6的号签中,任意抽取两张,抽出后将上面数字相乘,在10次试验中,标有1的号签被抽中4次,那么结果“12”出现的频率为( )107.51.53.52.D C B A2.某企业生产的乒乓球被奥运会指定为乒乓球比赛专用球,有关部门对某批产品进行了抽样检测,检查结果如表所示抽取球数n 50 100 200 500 1000 2000 优等品数m 45921944709541902 优等品频率mn(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位)探究二、通过本例题让学生明白概率与频率的关系以及随机事件概率的求法1、利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率.2、频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率反映随机事件发生的可能性的大小,有时也用频率 作为随机事件概率的估计值. 变式训练1.在掷骰子游戏中,将一枚质地均匀的骰子共抛掷6次,则点数4( ) A.一定会出现B.出现的频率为61 C.出现的概率为61 D.出现的频率为322.如图所示,A 地到火车站共有两条路径L1和L2现随机抽取100位从A 地到达火车站的人进行调查, 调查结果如下所用时间(分钟) 10~20 20~30 30~40 40~50 50~60 选择L 1的人数 6 12 18 12 12 选择L 2的人数416164(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽量最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.类型三、事件间关系的判断1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.以上答案都不对解析“甲分得红牌”与“乙分得红牌”不会同时发生,但分得红牌的还可能是丙或丁,所以不是对立事件.故选C.2.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,判断下列每对事件是不是互斥事件,如果是,再判断它们是不是对立事件(1)“恰有1名男生”与“恰有2名男生”;(2)“至少有1名男生”与“全是男生”;(3)“至少有1名男生”与“全是女生”;(4)“至少有一名男生”与“至少有一名女生”.解析从3名男生和2名女生中任选2人有如下三种结果 2名男生,2名女生,1男1女.(1)“恰有1名男生”指1男1女,与“恰有2名男生”不能同时发生,它们是互斥事件;但是当选取的结果是2名女生时,该两事件都不发生,所以它们不是对立事件.(2)“至少1名男生”包括2名男生和1男1女两种结果,与事件“全是男生”可能同时发生,所以它们不是互斥事件.(3)“至少1名男生”与“全是女生”不可能同时发生,所以它们互斥,由于它们必有一个发生,所以它们是对立事件.(4)“至少有1名女生”包括1男1女与2名女生两种结果,当选出的是1男1女时,“至少有1名男生”与“至少有1名女生”同时发生,所以它们不是互斥事件.探究三、1.两个事件A,B是互斥事件,它们的概率有什么关系?能否通过概率关系判断两个互斥事件是否对立?如何判断?2.判断两个事件是互斥事件的关键是什么?探究提示1.P(A+B)=P(A)+P(B).可以利用概率关系判断互斥事件是否对立,如果两个互斥事件的概率和为1,则两事件对立,否则不对立.2.判断两个事件是否互斥主要看两事件能否同时发生,能同时发生不是互斥事件,不能同时发生是互斥事件.变式训练从装有两个红球和两个黑球的口袋内任取两个球,那么互斥而不对立的两个事件是( )A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰有一个黑球”与“恰有两个黑球”D.“至少有一个黑球”与“都是红球”2.从装有红球和绿球的口袋内任取2球(已知口袋中的红球、绿球数都大于2),那么互斥而不对立的两个事件是( )A.至少有一个是红球,至少有一个是绿球B.恰有一个红球,恰有两个绿球C.至少有一个红球,都是红球D.至少有一个红球,都是绿球类型四、概率加法公式的应用1.根据某医疗研究所的调查,某地区居民血型的分布为 O型50 ,A型15 ,B型30 ,AB型5 .现有一血液为A型的病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15B.20C.45D.652.某射手在一次射击训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中(1)射中10环或7环的概率;(2)不够7环的概率.【解析】(1)设“射中10环”为事件A,“射中7环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.“射中10环或7环”的事件为A∪B.故P(A∪B)=P(A)+P(B)=0.21+0.28=0.49.∴射中10环或7环的概率为0.49.(2)不够7环从正面考虑有以下几种情况射中6环,5环,4环,3环,2环,1环,0环,但由于这些概率都未知,故不能直接求解,可考虑从反面入手,不够7环的反面大于等于7环,即7环,8环,9环,10环,由于此两事件必有一个发生,另一个不发生,故是对立事件,可用对立事件的方法处理.设“不够7环”为事件E,则事件E为“射中7环或8环或9环或10环”,由(1)可知“射中7环”、“射中8环”等彼此是互斥事件,∴P(E)=0.21+0.23+0.25+0.28=0.97,从而P(E)=1-P(E)=1-0.97=0.03.∴不够7环的概率是0.03.3.经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下排队人数012345人及5人以上概率0.10.160.30.30.10.04求 (1)至多2人排队等候的概率是多少?(2)至少3人排队等候的概率是多少?探究四、通过本例题让学生理解应用概率加法公式的两个注意点以及利用概率的加法公式求概率的步骤.1.注意点 (1)应用概率加法公式的前提条件是事件互斥.(2)复杂事件要拆分成若干个互斥事件,化繁为简,通过公式求解.拆分时,要注意不重不漏.2.步骤 (1)确定各个事件是两两互斥的.(2)求出各个事件分别发生的概率.(3)利用公式求事件的概率.变式训练1.某射手射击一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是.2.一盒中装有各色球12个,其中5个红球、4个黑球、2个白球、1个绿球.从中随机取出1球,求(1)取出1球是红球或黑球的概率; (2)取出的1球是红球或黑球或白球的概率. 答案 (1) 34 (2) 1112解析 法一 (1)从12个球中任取1球,红球有5种取法,黑球有4种取法,得红球或黑球共有5+4=9种不同取法,任取1球有12种取法.∴任取1球得红球或黑球的概率为P 1=912=34.(2)从12个球中任取1球,红球有5种取法,黑球有4种取法,得白球有2种取法,从而得红球或黑球或白球的概率为5+4+212=1112. 法二 (利用互斥事件求概率)记事件A 1={}任取1球为红球,A 2={}任取1球为黑球,A 3={}任取1球为白球,A 4={}任取1球为绿球,则P (A 1)=512,P (A 2)=412,P (A 3)=212,P (A 4)=112. 根据题意知,事件A 1,A 2,A 3,A 4彼此互斥,由互斥事件概率公式,得 (1)取出1球为红球或黑球的概率为P (A 1∪A 2)=P (A 1)+P (A 2)=512+412=34.(2)取出1球为红球或黑球或白球的概率为P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=512+412+212=1112. 学3.在数学考试中,小明的成绩在90分以上的概率是0.18,在80~89分的概率是0.51,在70~79分的概率是0.15,在60~69分的概率是0.09,在60分以下的概率是0.07.试计算 (1)小明在数学考试中取得80分以上成绩的概率. (2)小明考试及格的概率(60分及格).4.某战士射击一次,问(1)若中靶的概率为0.95,则不中靶的概率为多少?(2)若命中10环的概率是0.27,命中9环的概率为0.21,命中8环的概率为0.24,则至少命中8环的概率为多少?不够9环的概率为多少?课堂小结1.随机事件、必然事件、不可能事件的概念.2.事件A出现的频率的意义;正确理解概率的概念,明确事件A发生的频率fn(A)与事件A 发生的概率P(A)的区别与联系.11。
初中数学概率试讲教案
初中数学概率试讲教案教学目标:1. 理解概率的基本概念,包括必然事件、不可能事件和随机事件。
2. 学会使用概率公式计算简单事件的概率。
3. 能够应用概率知识解决实际问题。
教学重点:1. 概率的基本概念。
2. 概率公式的应用。
教学难点:1. 理解必然事件、不可能事件和随机事件的概念。
2. 正确运用概率公式计算事件概率。
教学准备:1. 教学课件或黑板。
2. 概率问题实例。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生思考在日常生活中遇到的概率问题。
2. 引导学生讨论必然事件、不可能事件和随机事件的概念。
二、新课讲解(20分钟)1. 讲解必然事件、不可能事件和随机事件的定义和特点。
2. 讲解概率公式的含义和运用方法。
3. 通过实例讲解如何计算事件的概率。
三、课堂练习(15分钟)1. 提供几个简单的概率问题,让学生独立解决。
2. 分组讨论,互相交流解题思路和方法。
四、应用拓展(10分钟)1. 提供实际问题,让学生应用概率知识解决。
2. 引导学生思考概率知识在生活中的应用和意义。
五、总结(5分钟)1. 让学生自主总结概率的基本概念和计算方法。
2. 强调概率知识在实际生活中的重要性。
教学反思:本节课通过讲解概率的基本概念和公式,让学生了解必然事件、不可能事件和随机事件的特点。
通过课堂练习和应用拓展,让学生巩固概率计算的方法,并能够应用概率知识解决实际问题。
在教学过程中,要注意引导学生积极参与讨论,培养学生的思维能力和解决问题的能力。
同时,结合生活实例,让学生感受概率知识在实际生活中的应用和意义。
高中数学_概率的基本性质教学设计学情分析教材分析课后反思
《3.1.3概率的基本性质》教学设计一、创设情境,导入新课教师多媒体出示研究背景题目:在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件D4={出现的点数不小于4},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数}并提出问题:(1)事件D1本质是哪个事件?(2)事件D2本质是哪些事件?它与事件C4 、事件C5 、事件C6 之间什么关系呢?(3)事件D3 与事件D4若同时发生呢?它与哪个事件是同一事件?引导学生回忆交流,教师归类,从而自然引入本节内容:事件之间的基本关系。
二、自主探究,合作学习(学生自主学习,教师予以辅助解释说明,并根据学生的理解情况适时予以发问,帮助学生深入了解概念关系。
)知识点一事件的关系与运算1.事件的包含关系发生,则事件B 一定发生,这时称事件B包含事件A(或称事件A包含于事件B) 符号B⊇A(或A⊆B)图示注意事项①不可能事件记作∅,显然C⊇∅(C为任一事件);②事件A也包含于事件A,即A⊆A;③事件B包含事件A,其含义就是事件A 发生,事件B一定发生,而事件B发生,事件A不一定发生关系我们定义为事件的相等关系。
学生予以加深理解。
2.事件的相等关系定义一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等符号A=B 图示注意事项①两个相等事件总是同时发生或同时不发生;②所谓A=B,就是A,B是同一事件;③在验证两个事件是否相等时,常用到事件相等的定义3.定义若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)符号A∪B(或A+B)图示注意事项①A∪B=B∪A;②例如,在掷骰子试验中,事件C2,C4分别表示出现2点,4点这两个事件,则C2∪C4={出现2点或4点}这一块类比集合的关系,我们又该如何定义呢?学生踊跃发言,生生之间互相补充完善,最后多媒体展示准确定义事件的交。
《8.3概率的简单性质》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块下册
《概率的简单性质》教学设计方案(第一课时)一、教学目标1. 理解概率的基本概念,掌握概率的简单性质。
2. 能够运用概率的简单性质解决生活中的实际问题。
3. 培养学生对数学的兴趣,提高其逻辑思维能力。
二、教学重难点1. 教学重点:讲解概率的简单性质,通过实例引导学生理解并掌握该性质。
2. 教学难点:如何让学生理解概率在生活中的实际应用,以及如何运用概率的简单性质解决实际问题。
三、教学准备1. 准备教学用具:黑板、白板、笔、教学PPT等。
2. 搜集与概率的简单性质相关的实际生活案例,以便于学生理解。
3. 提前布置学生预习相关内容,使其对所学知识有初步了解。
4. 准备习题册,以便于学生练习和巩固所学知识。
四、教学过程:本节课是中职数学课程《概率的简单性质》教学设计方案(第一课时)的一部分,为了让学生更好地理解和掌握概率的概念和性质,以下是教学过程的设计:1. 导入新课:首先通过生活中的一些实例,如抽奖、掷骰子等,引出概率的概念,并引导学生思考概率的意义和作用。
设计提问:你们在生活中有没有遇到过抽奖活动?有没有掷过骰子?学生回答:有。
教师总结:概率就是描述某一事件发生的可能性大小,通过研究概率可以帮助我们更好地认识世界和预测未来。
2. 概念教学:在引导学生理解概率概念的基础上,进一步讲解概率的数学定义,包括基本事件、样本空间、事件等概念,并通过实例帮助学生加深理解。
设计提问:什么是基本事件?什么是样本空间?事件有哪些类型?学生回答:基本事件是随机试验中的基本单元;样本空间是所有基本事件的集合;事件包括确定事件和不确定事件。
教师总结:概率的数学定义需要从样本空间和事件出发,通过计算基本事件的概率来得到事件的概率。
3. 性质教学:讲解概率的性质,包括互斥事件的性质、对立事件的性质、可加性等,并通过实例帮助学生加深理解。
设计提问:什么是互斥事件?什么是对立事件?可加性是什么?学生回答:互斥事件是不能同时发生的事件;对立事件是不可能同时发生又互相排斥的事件;可加性是指多个事件的概率之和等于1。
《概率的基本性质》教学设计【高中数学人教A版必修2(新课标)】
《概率的基本性质》教学设计1.知识与技能(1)正确理解事件的包含、并事件、交事件、相等事件,以及互斥事件、对立事件的概念;(2)概率的几个基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P (A )≤1;2)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )= P (A )+ P (B )=1,于是有P (A )=1—P (B );(3)正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系。
2.过程与方法通过事件的关系、运算与集合的关系、运算进行类比学习,培养学生的类化与归纳的数学思想。
3.情感态度与价值观通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。
【教学重点】概率的加法公式及其应用,事件的关系与运算。
【教学难点】概率的加法公式及其应用,事件的关系与运算。
(一)新课导入全运会中某省派两名女乒乓球运动员参加单打比赛,她们夺取冠军的概率分别是0.5和0.6,则该省夺取该项冠军的概率是0.5+0.6吗?为什么?为解决这个问题,我们来学习概率的基本性质。
(二)新课讲授问题:在抛掷骰子试验中,我们用集合形式定义如下事件:C 1={出现1点},C 2={出现2点},C 3={出现3点},C 4={出现4点},C 5={出现5点},C 6={出现6点},D 1={出现的点数不大于1},D 2={出现的点数大于4},D 3={出现的点数小于6},E ={出现的点数小于7},F ={出现的点数大于6},G ={出现的点数为偶数},H ={出现的点数为奇数},等等。
思考1:上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?答:E 是必然事件;F 是不可能事件;其余是随机事件。
思考2:如果事件C 1发生,则一定有哪些事件发生?反之,成立吗?在集合中,集合C 1与这些集合之间的关系怎样描述?答:如果事件C 1发生,则一定发生的事件有D 1,D 3,E ,H ,反之,如果事件D 1,D 3,E ,H 分别成立,能推出事件C 1发生的只有D 1.所以从集合的观点看,事件C 1是事件D 3,E ,H 的子集,集合C 1与集合D 1相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率的基本性质》教学设计
蓟县第四中学于海存
一、说教材:
1、教材的地位及作用:
本节课是高中数学3(必修)第三章概率的第一节第三课时概率的基本性质,本节课主要是结合具体实例以螺旋上升的方式由浅入深地学习概率的一些基本性质,学生在前面已经学习了集合的表示方法(Venn图)和随机事件的概率,已具有一定的归纳、抽象的能力,这些都是学习本节内容的基础。
本节在教材中起着承上启下的作用。
一方面把所学的概率知识应用于实际生活,另一方面为今后学习概率其他知识做了理论上的准备。
2、教学目标:
知识与技能:(1)了解事件之间的相互包含关系、相等关系,知到和事件、积事件
的意义,
(2)通过实例,理解互斥事件、对立事件的概念及实际意义;
(3)掌握概率的几个基本性质并能简单应用。
过程与方法:类比集合,揭示事件的关系与运算,培养学生的类比与归纳的数学思想,情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴
趣,在参与探究活动中,培养学生的合作精神.在观察发现中树立探
索精神,在探索成功后体验学习乐趣。
3、教学重点与难点:
根据本节课内容即尚未学习排列组合,以及学生的心理特点和认知水平,制定如下教学重难点。
重点:互斥事件、对立事件的概念及概率的加法公式的应用。
难点:正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.
4、课时安排:1课时
二、说教法:
根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。
1) 立足基础知识和基本技能,掌握好典型例题,做到重点突出;
2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。
三、说学法:
引导学生用观察、类比、归纳、推导方式来实现预定教学目标。
创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。
从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。
达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。