TFTLCD显示基本知识详解

合集下载

tft lcd原理

tft lcd原理

tft lcd原理
TFT LCD(薄膜晶体管液晶显示器)是一种广泛用于平板电脑、智能手机、电视和计算机显示器等设备的平面显示技术。

下面是TFT LCD的基本原理:
1. 液晶材料:TFT LCD的基础是液晶材料。

液晶是一种介于液体和固体之间的有机分子,它在电场的作用下能够改变光的透过性。

液晶被封装在两块平板玻璃之间,这两块平板上有透明的电极。

2. 薄膜晶体管(TFT):TFT是薄膜晶体管的缩写,它是一种用于控制液晶像素的半导体器件。

每个像素都配备了一个TFT,用于控制电流的流动,从而精确地调节液晶分子的方向和透过性。

3. 像素结构:TFT LCD的屏幕由许多微小的像素组成。

每个像素由三个亮度可调的基本颜色(红、绿、蓝)的亮度调光器组成。

这三个颜色的不同亮度组合可呈现出各种颜色。

4. 背光源:TFT LCD需要一种背光源,以照亮屏幕上的像素。

常见的背光源包括冷阴极荧光灯(CCFL)和LED。

现代的LCD大多采用LED作为背光源,因为LED背光具有更低的功耗和更长的寿命。

5. 控制电路:TFT LCD屏幕上还有一套复杂的控制电路,用于接收来自计算机或其他设备的信号,并将其转化为适合液晶显示的信号。

6. 工作原理:当电流通过TFT时,TFT会控制液晶分子的排列,调节其透明度。

通过调整每个像素中红、绿、蓝三个亮度调光器的亮度,屏幕可以呈现出几百万种不同的颜色,形成图像。

总体来说,TFT LCD的原理是通过电流控制液晶分子的排列,从而调节光的透过性,最终呈现出清晰的图像。

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍

TFTLCD显示原理及驱动介绍TFTLCD是一种液晶显示技术,全称为Thin Film Transistor Liquid Crystal Display,即薄膜晶体管液晶显示器。

它是目前应用最广泛的显示器件之一,被广泛应用在电子产品中,如手机、平板电脑、电视等。

TFTLCD显示屏是由数百万个像素点组成的,每个像素点又包含红、绿、蓝三个亚像素。

这些像素点由一层薄膜晶体管(TFT)驱动。

薄膜晶体管是一种微型晶体管,位于每个像素点的背后,用来控制液晶材料的偏振状态。

当电流通过薄膜晶体管时,液晶分子会受到电场的影响,从而改变偏振方向,使光线在通过液晶层时发生偏转,从而改变像素点的亮度和颜色。

TFTLCD显示屏需要配备驱动电路,用来控制TFT晶体管的电流,以控制液晶分子的偏振状态。

驱动电路通常由一个控制器和一组电荷泵组成。

控制器负责接收来自外部的指令,通过电荷泵为晶体管提供适当的电流。

电荷泵可以产生高电压和低电压,从而控制液晶分子的偏振状态。

控制器通过一组驱动信号,将指令传递给TFT晶体管,控制像素点的亮度和颜色。

TFTLCD驱动器是用来控制TFTLCD显示屏的硬件设备,通常与控制器紧密连接。

驱动器主要负责将控制器发送的信号转换为液晶的电流输出,实现对像素点的亮度和颜色的控制。

驱动器还负责控制像素点之间的互动,以实现高质量的图像显示。

1.扫描电路:负责控制像素点的扫描和刷新。

扫描电路会按照指定的频率扫描整个屏幕,并刷新像素点的亮度和颜色。

2.数据存储器:用于存储显示数据。

数据存储器可以暂时保存控制器发送的图像数据,以便在适当的时候进行处理和显示。

3.灰度调节电路:用于调节像素点的亮度。

通过调节像素点的电流输出,可以实现不同的亮度效果。

4.像素点驱动电路:负责控制像素点的偏振状态。

像素点驱动电路会根据控制器发送的指令,改变液晶分子的偏振方向,从而改变像素点的亮度和颜色。

5.控制线路:用于传输控制信号。

控制线路通常由一组电线组成,将控制器发送的信号传输到驱动器中,以控制整个显示过程。

TFTLCD显示基本知识详解

TFTLCD显示基本知识详解

TFT LCD显示原理详解<什么是液晶>我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一):图(一)<TFT LCD显示原理>a:背景两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。

图(六)b:TFT LCD显示原理液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七)b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。

下层的偏光板与上层偏光板, 角度也是恰好差异90度。

所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。

效果如图(七)中前两个图所示。

b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。

c:TFT-LCD驱动电路。

为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。

在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。

已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。

由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。

上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。

TFT-LCD显示技术

TFT-LCD显示技术

详细描述
TFT-LCD显示屏的响应速度取决于液晶分子 的运动速度。为了提高响应速度,可以采用 新型液晶材料、优化驱动电路等方式。此外, 采用动态背光调节技术也可以在一定程度上 改善响应速度问题。
色彩表现力不足
总结词
相对于OLED等其他显示技术,TFT-LCD显 示技术在色彩表现力方面存在不足。
详细描述
视角限制
总结词
TFT-LCD显示技术的视角限制是其固有 缺点之一。
VS
详细描述
由于TFT-LCD显示屏的视角限制,从不同 角度观看时,色彩和亮度可能会发生变化 ,影响观看效果。为了解决这个问题,可 以采用广视角膜或者广视角技术,如IPS 、VA等,以扩大可视角度。
响应速度慢Байду номын сангаас
总结词
TFT-LCD显示技术的响应速度慢可能会影响 动态图像的显示效果。
厚度薄、体积小
厚度薄、体积小
轻便易携带
TFT-LCD显示器采用了薄型化和集成化的设 计,使得显示器在厚度和体积上都相对较小。 这种设计使得TFT-LCD显示器在空间受限的 环境中具有优势,如移动设备、便携式电脑 等。
由于TFT-LCD显示器体积小、重量轻,用户 可以轻松地将它携带到不同的地方。这种便 携性使得TFT-LCD显示器在移动办公、远程 会议等场景中具有广泛的应用价值。
功耗低
功耗低
TFT-LCD显示器采用了高效的背光调节技术 ,能够在不同亮度下保持较低的功耗。此外 ,TFT-LCD显示器还具有智能电源管理系统 ,可以根据实际需要自动调节背光亮度,进 一步降低功耗。
节能环保
低功耗的特性使得TFT-LCD显示器在节能环 保方面具有优势。用户在使用这种显示器时 可以节省能源,减少对环境的负担。这种环 保特性使得TFT-LCD显示器受到了许多用户

TFT-LCD工艺培训-液晶显示器概述

TFT-LCD工艺培训-液晶显示器概述

液晶材料
液晶材料是TFT-LCD的核 心组成部分,负责控制光 线透过和阻挡。
液晶材料具有电光效应, 即施加电压时能够改变其 光学特性,从而控制像素 的亮暗。
液晶材料类型多样,包括 扭曲向列型(TN)、超扭 曲向列型(STN)、薄膜 晶体管型(TFT)等,不同 类型的液晶材料具有不同 的性能和应用领域。
选用高品质的原材料
采用优质的液晶材料、导电玻 璃、背光模块等,从源头上保 证TFT-LCD的品质与可靠性。
优化生产工艺
通过改进制程参数、引入新工 艺等方法,减少生产过程中可 能出现的缺陷和不良品。
加强品质控制
建立完善的品质管理体系,对 生产过程中的关键环节进行严 格把控,确保产品的一致性和 稳定性。
04
TFT-LCD制造工艺流程
阵列制程
阵列制程是TFT-LCD制造工艺中的第 一道工序,主要任务是将玻璃基板上 的薄膜晶体管按照特定的矩阵模式进 行排列和制造。
阵列制程的工艺控制对TFT-LCD的性 能和品质有着重要影响,如像素电极 的导电性能、薄膜晶体管的开关速度 等。
阵列制程中,需要利用光刻、刻蚀、 薄膜沉积等工艺技术,在玻璃基板上 形成薄膜晶体管、像素电极、彩色滤 光片基板等结构。
LED背光源
LED背光源是TFT-LCD中用于 提供照明和增加亮度的组件。
它由多个LED灯珠组成,通过调 整LED灯珠的亮度,可以控制 TFT-LCD的整体亮度。
LED背光源的性能直接影响 TFT-LCD的亮度、功耗和寿命 等特性。
LED背光源的制造工艺和技术对 TFT-LCD的成本和性能具有重 要影响。
模组制程
模组制程是将成盒制程完成的显示模块与背光模块、驱动电路等其他组件进行组装和整合的 工艺过程。

TFT-LCD知识培训

TFT-LCD知识培训
除了基本的娱乐和办公功能外,平板电脑还被广泛应用于教育、医疗、商务等领域,成为了现代生活 中不可或缺的一部分。
04
TFT-LCD产业现状与趋 势
全球TFT-LCD产业现状
产业规模
全球TFT-LCD产业规模持续增长, 市场规模不断扩大。
技术发展
随着技术的不断进步,TFT-LCD产 品的分辨率、色彩表现、对比度等 性能指标不断提升。
总结词
技术突破,广泛应用
详细描述
第二代TFT-LCD技术在第一代的基础上取得了重大突破,提高了响应速度,改善了色彩表现和视角。 这一代技术开始广泛应用于手机、笔记本电脑等电子产品中,成为主流显示技术之一。
第三代TFT-LCD技术
总结词
高清晰度,高分辨率
详细描述
第三代TFT-LCD技术主要解决了高清晰度和高分辨率的问题 ,实现了更细腻的画面表现。这一代技术广泛应用于高清电 视、显示器等领域,满足了人们对高品质视觉体验的需求。
详细描述
目前,4K、8K等高分辨率TFT-LCD显示屏 已经逐渐普及,能够提供更加细腻、真实的 画面效果。同时,大尺寸化也是未来的发展 趋势,将有助于拓宽应用场景,如家庭影院、 高端电视等。
柔性显示
总结词
随着可穿戴设备和移动设备的兴起, 柔性显示技术成为TFT-LCD的重要发 展方向,将显示屏做成可弯曲、可折 叠的形态,为用户带来更多样化的使 用体验。
绿色环保成为行业发展趋势随着 Nhomakorabea保意识的提高,绿色环保成为TFT-LCD行业发展的趋势,推 动产业向更加环保和可持续的方向发展。
06
TFT-LCD的未来发展方 向
高分辨率、大尺寸化
总结词
随着消费者对视觉体验要求的提高,TFTLCD技术正朝着高分辨率、大尺寸化的方向 发展,以满足市场对更高清晰度、更大屏幕 的需求。

TFT-LCD显示原理介绍

TFT-LCD显示原理介绍

Polarizer
液晶分子可改變光的極化狀態
TFT 結構
S1
S2
S3
Sn-1 Sn
G1
G2 G3 TFT Source 線 Gate 線 液晶電容 儲存電容
Gm-1
Gm
圖像顯示器原理
dot
Pixel
每個像素均由三種 顏色紅(R) 綠(G) 藍(B) 的小光點 (dot)構成
電腦圖像顯示原理
•電腦顯示之圖像均是由一個個的像素(pixel)構成
Glass Red Green Blue Black Matrix (BM)
Polarizer
彩色濾光片的基本構造
ITO sputter B R G 黑色矩陣
Байду номын сангаас
註解:
TFT-LCD用無鹼玻璃
最基本的彩色濾光片其結構為玻璃基板(Glass substrate)上製作防反射 之黑色遮光層,即為BM層,再依序製作上具有透光性紅` 綠`藍三元色之彩色濾光 膜層(濾光層之形狀` 尺寸`色澤配列依不同用途之液晶顯示器而異),最後濺鍍上 透明導電膜(ITO).
TFT-LCD顯示原理介紹
產品管理處I部
主要内容
TFT LCD 簡介 TFT-LCD 面板介紹 TFT 控制原理
TFT LCD的相關知識
一、TFT LCD的優缺點: 1、優點:
體積 重量 耗電 15" LCD 416×377×175 mm 5.6 kg 25 W 15" CRT 365×368×394 mm 14.3 kg 75 W
TFT LCD 顯示器產品
Data Line 訊號線
Scan Line 掃描線
解析度(Resolution)

TFT-LCD基础知识

TFT-LCD基础知识

(1)液晶面板a.偏光片:分为上偏光片和下偏光片,上下两偏光片相互垂直。

其作用就像是栅栏一般,会阻隔掉与栅栏垂直的光波分量,只准许与栅栏平行的光波分量通过。

b.玻璃基板:分上玻璃基板和下玻璃基板,主要用于夹住液晶。

对于TFT-LCD ,下层玻璃长有薄膜晶体管(Thin film transistor ,TFT),上层玻璃则贴有彩色滤光膜。

c.彩色滤色膜:产生红、绿、蓝三种基色光。

d.电极:分为公共电极和像素电极。

信号电压就加在像素电极与公共电极之间。

e.液晶材料:小分子有机化合物。

f.定向层:又称取向膜,其作用是让液晶分子能够整齐排列。

屏分辨率术语详解1.亮度亮度表示电视机的发光强度。

用每单位面积的亮度cd/m²(每平方米坎德拉)表示。

观看电视时平均亮度:约是50~70cd/m²,电影院银幕平均亮度:约为30~45cd/m,室外看电视平均亮度:达到300cd/m²。

亮度太大,浪费能源,降低电视机的寿命,加快电视机的老化速度。

对平板显示屏来说,亮度够用就可以了。

2.对比度对比度是用最大亮度和最小亮度之比来表示,即:对比度越高,重显图像的层次可以越多,图像质量越高。

环境光在屏幕中的亮度越大,图像对比度越小。

3.灰度(灰阶)灰度:显示像素点的亮暗差别。

灰度级越多,图像层次越清楚逼真。

如:16位图像的像素灰度:有2的16次方即65536种灰度等级。

位数越高,图像明暗之间的过渡就越丰富,细节表现就更好。

3.4.3 响应速度响应速度:各像素点对激励电压反应的速度,即像素由暗转亮或由亮转暗所需要的时间。

对于液晶电视机来说,响应速度就是在液晶分子内施加电压,使液晶分子扭转或回复的时间,常说的25ms、16ms就是指的这个响应时间。

反应时间越短,则使用者在看动态画面时越不会有拖尾的感觉。

CRT电视机:1~3ms 液晶电视机:25ms~12msSMD电阻电容:用标记“R/C”表示电阻:一般用三位数字法表示:例:102表示10X102 欧电容:一般用三位数字法表示且标上耐压值:例:106 16v表示10X106 PF=10uf耐压值为16V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TFT LCD显示原理详解<什么是液晶>我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一):图(一)<TFT LCD显示原理>a:背景两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。

图(六)b:TFT LCD显示原理液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七)b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。

下层的偏光板与上层偏光板, 角度也是恰好差异90度。

所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。

效果如图(七)中前两个图所示。

b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。

c:TFT-LCD驱动电路。

为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。

在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。

已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。

由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。

上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。

最后,将驱动电路装配在TAB(自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。

d:TFT-LCD工作原理首先介绍显示原理。

液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。

当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。

当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。

又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。

通过液晶层的光,则被逐渐扭曲。

当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。

这样,光线通过下偏振片形成亮场。

加上电压以后,液晶在电场作用下取向,扭曲消失。

这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。

可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。

TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。

漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。

这就是TFT-LCD的简单工作原理c:常用的液晶结构c-1:所谓的NW(Normally white)NW指当我们对液晶面板不施加电压时, 我们所看到的面板是亮的画面, 所以才叫做normally white。

另外一种, 当对液晶面板不施加电压时, 面板无法透光, 看起来是黑色的, 就称之为NB(Normally black)c-2:为什么要有这两种结构?主要是为了不同的应用环境。

一般桌上型计算机或是笔记型计算机,大多为NW的配置,那是因为一般计算机软件的使用环境,你会发现整个屏幕大多是亮点, 也就是说计算机软件多为白底黑字的应用。

既然亮着的点占大多数, 使用NW当然比较方便,也因为NW的亮点不需要加电压, 平均起来也会比较省电。

反过来,NB的应用环境大多是属于显示屏为黑底的应用了。

<LCD单个像素点的结构图>a:lcd切面的结构:图(八)b:作用原理TFT_LCD(薄膜晶体管液晶显示器),液晶显示器需要电压控制来产生灰阶. TFT利用薄膜晶体管来产生电压,以控制液晶转向的显示器。

从图(八)的切面结构图来看,在上下两层玻璃间夹着液晶, 便会形成平行板电容器, 我们称之为CLC(capacitor of liquid crystal). 它的大小约为0.1pF, 但是实际应用上, 这个电容并无法将电压保持到下一次再更新画面数据的时候. 也就是说当TFT对这个电容充好电时, 它并无法将电压保持住, 直到下一次TFT再对此点充电的时候.(以一般60Hz的画面更新频率, 需要保持约16ms的时间.) 这样一来, 电压有了变化, 所显示的灰阶就会不正确. 因此一般在面板的设计上, 会再加一个储存电容CS(storage capacitor 大约为0.5pF), 以便让充好电的电压能保持到下一次更新画面的时候. 不过正确的来说, 长在玻璃上的TFT本身,只是一个使用晶体管制作的开关. 它主要的工作是决定LCD source driver上的电压是不是要充到这个点来. 至于这个点要充到多高的电压, 以便显示出怎样的灰阶. 都是由外面的LCD source driver来决定的.c:框胶与spacer:框胶与spacer两种结构成分. 其中框胶的用途,就是要让液晶面板中的上下两层玻璃, 能够紧密黏住, 并且提供面板中的液晶分子与外界的阻隔,所以框胶正如其名,是围绕于面板四周, 将液晶分子框限于面板之内. 而spacer主要是提供上下两层玻璃的支撑, 它必须均匀的分布在玻璃基板上, 不然一但分布不均造成部分spacer聚集在一起, 反而会阻碍光线通过, 也无法维持上下两片玻璃的适当间隙(gap), 会成电场分布不均的现象, 进而影响液晶的灰阶表现.<放大镜下的液晶>图(九)a:每个像素点的结构放大镜下面的液晶面板如图(九)中所显示的样子.每一份像素点由"红色","蓝色","绿色"三个子基色构成(这就是所谓的三原色. 也就是说利用这三种颜色)。

我们把RGB三种颜色,分成独立的三个点, 各自拥有不同的灰阶变化, 然后把邻近的三个RGB 显示的点,当作一个显示的基本单位,也就是pixel.那这一个pixel,就可以拥有不同的色彩变化了.(然后对于一个需要分辨率为1024*768的显示画面, 我们只要让这个平面显示器的组成有1024*768个pixel,)便可以正确的显示这一个画面.b:开口率液晶显示器中有一个很重要的参数就是亮度, 而决定亮度最重要的因素就是开口率。

开口率就是光线能透过的有效区域比例。

每一个RGB的点之间的黑色部分, 就叫做Black matrix.我们回过头来看图(九)就可以发现,black matrix主要是用来遮住不打算透光的部分.比如像是一些ITO的走线,或是Cr/Al的走线,或者是TFT的部分.这也就是为什么我们在图(九)中,每一个RGB的亮点看起来, 并不是矩形, 在其左上角也有一块被black matrix遮住的部分, 这一块黑色缺角的部份就是TFT的所在位置.<常见的滤光片排列>图(十)<像素>a:像素原理液晶面板上每个像素都分成红、绿、蓝三种颜色,RGB就是所谓的三原色,利用这三种颜色可以混合出各种不同的颜色,我们把RGB三种颜色分成独立的三个点,各自拥有不同的灰阶变化,然后把邻近的三个RGB显示的点当作一个显示的基本单元,就是像素,这个像素就可以拥有不同的色彩变化了。

b:颜色深度normal Color256 Color 8(R)*8(G)*4(B)=256 ColorHigh Color65536Coloe32(R)*64(G)*32(B)=65536 Color Full Color64(R)*64(G)*64(B)=262144 ColorTrue Color256(R)*256(G)*256(B)=16777216 Color<LCD内部电路>a:结构图图(十二)b:主要的驱动TFT工作的部分有以下几个1、source driver 源驱动,负责供电。

2、gate driver 栅驱动,负责打开关闭。

3、时序控制电路,负责控制gate driver4、灰度、gamma控制电路图(十三)a:整片面板的大致结构从图(十三)中我们可以看到整片面板的等效电路,其中每一个TFT与两个电容所并联(代表一个显示的点. 而一个基本的显示单元 pixel,则需要三个这样显示的点,分别来代表 RGB 三原色. 以一个1024*768分辨率的TFT_LCD来说,共需要1024*768*3个这样的点组合而成)b:显示步骤如图中gate driver 所送出的波形, 依序将每一行的 TFT 打开, 好让整排的source driver同时将一整行的显示点,充电到各自所需的电压,显示不同的灰阶.当这一行充好电时,gate driver便将电压关闭,然后下一行的gate driver便将电压打开,再由相同的一排source driver对下一行的显示点进行充放电.如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电.b-1:图示先开放第一行,其他关闭。

图(十四)接着关闭第一行,电压已经固定,固颜色也固定,然后开放第二类,其余关闭,以此类推。

图(十五)由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏.<背光源>图(十七)手机上用的TFT 类型的LCD 大部分是用 LED来作为光源的,现有高通手机上背光有三种方式:1、PWM 方式,根据输出方波的占空比来控制电流大小2、一线脉冲方式,根据输入方波的逻辑连控制输出电流大小3、dcs方式,有LCD反馈给背光控制芯片来控制输出电流大小一般手机上都会有个背光控制芯片来升压控制电流,以8x25上的背光芯片TPS61161为例(其他的背光芯片也类似)TPS61161的连接方式:CTRL 需要连接到平台上的GPIO或则 PMIC上的GPIO。

相关文档
最新文档