6基因的重组与转移
微生物 10-4、5、6第十章 微生物的遗传变异和育种

工程菌的稳定性问题
由工程菌产生的珍稀药物如:胰岛素、干扰素、 人生长激素、乙肝表面抗原、人促红细胞生成 素、重组链激酶等都已先后供应市场,不仅保 证了这些药物的来源,而且使成本大大降低。 但工程菌在发酵生产和保存过程中表现出不稳 定性,具体表现为:质粒的丢失;重组质粒发 生DNA片断脱落;表达产物不稳定。 工程菌的稳定与否,与重组质粒本身的分子组 成、宿主细胞生理和遗传性以及环境条件等因 素有关。
性状稳定的菌种是微生物学工作最重要的基本要求,否 则生产或科研都无法正常进行。 影响微生物菌种稳定性的因素:a)变异;b)污染; c )死亡。
一、菌种的衰退与复壮
衰退:菌种出现或表现出负变性状
菌种衰退的原因: ①大量群体中的自发突变
自发突变
纯菌种
不纯菌种
传代增殖
衰退菌种
原始个体
突变个体 菌种衰退的原因: ②分离现象。 菌种衰退的原因: ③培养条件与传代。
准性杂交育种
第五节 分子育种(基因工程育种)
一、基因工程 定义:在基因水平上,改造遗传物质,从而使 物种发生变异,创建出具有某种稳定新性状的 生物新品系。
特点:可设计性、稳定性、远缘性、风险性
二、基因工程的基本操作 获得目的基因
选择基因载体
体外重组 外源基因导入 筛选和鉴定
应用
通过基因工程改变后的菌株被称为“工程菌”, 工程菌已逐渐应用于药物的微生物发酵生产中, 主要有以下几个方面:①增加生物合成基因量而 增加抗生素产量;②导入强启动子或抗性基因而 增加抗生素产量;③把两种不同的生物合成基因 在体外重组后再导入受体而产生杂交抗生素;④ 激活沉默基因,以其产生新的生物活性物质或提 高抗生素产量;⑤把异源基因克隆到宿主中表达, 以期彻底改变生产工艺。
分子生物学 6 DNA 损伤、修复和重组

吖啶橙、原黄素、吖黄素等吖啶类染料 嵌合到DNA碱基对之间 base addition /deletion / frameshift mutation
DNA损伤(DNA damage)
自发损伤: 脱氨基/ 脱嘌呤 外源损伤: 1. 氧化损伤 (需氧细胞) 活性氧:超氧化物,过氧化氢和羟自由基(· OH) 8-氧鸟嘌呤,2-氧腺嘌呤,5-甲酰尿嘧啶 2. 烷基化损伤 影响DNA复制和转录时的解旋 多数是间接诱变 3. 加成损伤 嘧啶二聚体 苯并芘(肝脏细胞色素P-450) 双环氧物-G 芳基化试剂 黄曲霉毒素B1(肝致癌剂)
DNA损伤、修复和重组
突变和突变发生
(mutation and mutagenesis) DNA损伤(DNA damage) DNA修复(DNA repair) 重组(recombination)
突变概念
突变(mutation) DNA分子碱基序列的可遗传改变 突变体(mutant) 与野生型(+)相对 突变剂(mutagen) 突变发生(mutagenesis) 自发突变(spontaneous mutation) 诱发突变(induced mutation)
突变类型 1. DNA碱基序列改变的多少 单点突变(point mutation) 碱基替换(base substitution) 转换(transition) A-T G-C 颠换(transversion)A-T T-A 碱基增加(base addition) 碱基删除(base deletion) 多点突变(multiple mutation)
BER
5' 3' UvrABC 3' 5' 3' 5' Pol I (或δ和ε) 5' 3' DNA glycosylase 5' 3' AP内切核酸酶 5' 3' 进一步酶切
第六章 重组DNA导入受体细胞

根据基因转移方法的特性,重组DNA导入受体细胞的 方法有以下几种: •转化:将重组质粒导入受体细菌细胞,使受体细菌遗传 性状发生改变的方法; •转染:将携带外源基因的病毒感染受体细胞的方法(磷 酸钙沉淀法与体外包装法); •微注射技术:将外源基因直接注射到真核细胞内的方法; •电转化法 •基因枪技术:又称微弹技术或高速离子轰击法; •脂质体介导法 •其他方法:快速冷冻法、碳化硅纤维介导法。
CaCl2使细菌发生休克后,立即进行转化(E.coli X1776
可长期冷藏,并保持其摄取DNA的能力)。 也可以采用Rb+、Mn2+、K+、二甲基亚砜、二流苏糖
醇(DTT)等制备感受态细胞。
CaCl2制备感受态细胞的一般过程:
•E.coli 接种于LB agar培养基,37℃培养一晚;
•挑选3-5个大菌落,接种于50ml LB培养基,37 ℃振摇培 养一晚后,在A550测定,要求细菌繁殖一定量(一般为对 数生长期);
以病毒(噬菌体)为载体,转染宿主细胞的方法主 要有磷酸钙沉淀法和体外包装转染法。 一、磷酸钙沉淀法
磷酸钙沉淀法(磷酸钙-DNA共沉淀法),它能把外 源基因与λ噬菌体DNA的重组子导入大肠杆菌和哺乳动物 细胞,但转染效率仍不如体外包装法。
细胞具有摄取磷酸钙沉淀的双链DNA(吞噬DNA-磷酸 钙复合颗粒)的能力,几乎所有的双链DNA都可以通过这 种方法导入细胞。
第六章重组dna导入受体细胞????????????外源基因与载体在体外连接成重组体dna分子后需要将其导入受体细胞进行扩增和筛选得到大量单一的重组体分子这就是外源基因的无性繁殖即
第六章 重组DNA导入受体细胞
内容提要
•克隆与导入方法 •转化 •转染 •共转化 •电转化 •基因枪法 •微注射技术 •脂质体导入法 •转化酵母菌 •植物细胞的基因转移方法 •哺乳动物细胞基因导入法 •反转录病毒载体的转染
遗传学6基因突变.pptx

第36页/共52页
3、复制后修复
发生在DNA复制失败, 产生缺口之后的修复 ,称为复制后修复。 由于所用的许多酶与 重组相同,过程也与 重组相似,也被称为 重组修复
显性突变表现的早而纯合的慢,隐性突变
表现的晚而纯合的快
第16页/共52页
三、体细胞突变和性细胞突变
突变可以发生在生物个体发育的任何时 期,即体细胞和性细胞都能发生突变 性细胞发生的突变可通过受精过程直接 传递给后代 体细胞则不能,要保留体细胞的突变, 需将它从母体上及时地分割下来加以无 性繁殖,或者设法让它产生性细胞,再 通过有性繁殖传递给后代,“芽变”
第12页/共52页
为什么有害的基因突变多?
为什么基因突变的有利或有害是相 对的?
第13页/共52页
五、基因突变的平行性
亲缘关系相近的物种因遗传基础 比较近似,往往发生相似的基因 突变。这种现象称为突变的平行 性
根据一个物种或属内具有的变异 类型,就能预见到近缘的其他物 种或属也同样存在相似的变异类 型
第一节 基因突变的概念与意义
一、基因突变的概念
基因突变:染色体上某一基因位点内部 发生了化学性质的变化,与原来基因 形成对性关系
例如,高秆基因D → 矮秆基因d
突变体(型):由于基因突变而表现突变 性状的细胞或个体
第2页/共52页
突变频率:突变体出现的频率 突变率:基因发生突变的频率 自发突变: 在自然条件下发生的突变
四、基因突变的有害性和有利性
大多数基因的突变,对生物
的生长和发育往往是有害的。
致死突变:导致个体死亡的突变 伴性致死:致死突变发生在性染色体上 中性突变:有些基因仅控制一些次要性
第六章遗传重组

第六章 遗传重组1.简述同源重组的Meselson-Radding模型根据Meselson-Radding模型,基因的重组以及转换与异源DNA链的形成有密切关系,具体过程分步论述如下:(1)Holliday中间体的形成:①切断:同源联会的两个DNA分子中任意的一个出现单链切口,切口可能由某些内切酶产生,也可能由使同源DNA接近并发生联会的蛋白质因子作用导致切口的产生。
②链置换:切口处形成的5'端局部解链,酶系统利用切口处的3'-OH合成新链,填补解链后形成的单链空缺。
原有的链被逐步排挤置换出来。
③单链侵入:由链置换产生的单链区段侵入到参与联会的另一条DNA分子因局部解链而产生的单链泡中。
局部解链可能是由于某种DNA结合蛋白的作用产生,也可能由DNA的呼吸作用产生。
④环状DNA单链切除:侵入的单链DNA与参与联会的另一条DNA分子中的互补链形成碱基配对,同时把与侵入单链的同源链置换出来,由此产生D形环状结构。
D形环状结构的单链区随后被5'→3'外切酶切除降解掉。
⑤链同化:D形环状结构切除中产生的3'-OH断头与侵入单链的5'-P在DNA连接酶的作用下共价连接,形成非对称性异源双链区。
异源双链区内往往含有错配碱基,这些错配碱基对面临着细胞内修复系统的修复作用,而修复的结果就有可能造成基因的转换。
⑥异构化:链同化进行过程中,DNA经过一定的扭曲旋转,形成Holliday中间体。
⑦分支迁移:两条DNA分子之间形成的交叉点可以沿 DNA移动,这一过程叫分支迁移。
迁移实际上是两条DNA分子之间交叉的同源单链互相置换的结果,迁移的方向可以朝向DNA 分子的任意一端。
分支迁移使两条DNA分子中都出现异源双链区,此时称之为对称性异源双链区。
异源双链区的修复时间和方式与基因转换的发生与否有密切关系。
Holliday中间体的形成(2)Holliday中间体的拆分及异源双链区的修复①Holliday中间体的拆分Holliday中间体的形成只完成了重组的一半,由它联系在一起的两条DNA分子必须经过拆分回复到彼此分开的双螺旋分子状态。
DNA重组技术

8
10
② 工具酶
DNA重组技术中对DNA的“精雕细刻”主要用酶作 为工具。分子生物学研究过程中发现的酶,许多 都用作工具,所以称在核酸及有关研究中像基本 工具一样不可缺少的酶类为工具酶。这类酶包括 限制性核酸内切酶、DNA聚合酶、DNA连接酶、末 端修饰酶、RNA聚合酶、逆转录酶等。
12
限制性核酸内切酶(restriction endonuclease)
23
PCR 的特点及应用: PCR操作简便、省时、灵敏度高、对原始材料的质和 量要求低。因此,广泛应用于许多领域。 1. 基因克隆及定量、扩增特异性片段用于探针、体外 获得突变体、提供大量DNA用于测序等; 2. 遗传病的产前诊断; 3. 致病病原体的检测; 4. 癌基因的检测和诊断; 5. DNA指纹、个体识别、亲子关系鉴别及法医物证; 6. 动、植物检疫; 7. 在转基因动植物中检查植入基因的存在。
限制性核酸内切酶是从细菌中分离提纯的核酸内切酶, 可以识别并切开核酸序列特定位点——分子手术刀; 是一类能识别双链DNA分子特异性核酸序列的DNA水解酶。 是体外剪切基因片段的重要工具,所以常常与核酸聚 合酶、连接酶以及末端修饰酶等一起称为工具酶; 限制性核酸内切酶不仅是DNA重组中重要的工具,而且 与电泳技术相结合还可以用于基因组酶切图谱的鉴定 以及法医鉴定等。 Arber、Smith和Nathans因为在发现限制性内切酶方面开 创性工作而共同获得了1978年的诺贝尔奖。 13
29
30
6 重组体的转化及鉴定
转化 转化过程是指将DNA重组体或质粒转到适宜的宿主细 胞中。通过这个过程,使目的基因片段得到大量扩 增、或产生需要的基因表达产物、或使宿主生物具 备所需的性状,同时目的基因还能在宿主细胞中稳 定遗传。 若需要让克隆的基因表达和产生大量编码蛋白,可对 转化的大肠杆菌进行扩大培养使目的基因大量表达 和积累。通过对表达产物分离纯化便可获得想要的 产品。
鸭瘟病毒北京株UL6和UL7基因的克隆及序列测定

鸭瘟病毒北京株UL6和UL7基因的克隆及序列测定郭霄峰;廖明;辛朝安【期刊名称】《畜牧兽医学报》【年(卷),期】2002(033)006【摘要】依据文献报道的鸭瘟病毒(DPV)的核苷酸序列,设计和合成了二对引物,分别为SP1和SP2,LP1和LP2.北京株鸭瘟病毒于鸭胚中增殖,差速离心和蔗糖密度梯度离心纯化,按酚-氯仿法抽提DNA.然后以DPV DNA为模板进行PCR,分别扩散增出与理论相符的421bp和1209bp的二个DNA片段,并将它们克隆于质粒pGEM-T Easy中.经酶切和质粒PCR,筛选含有目的基因的重组质粒.重组质粒以步移法从双方向测序,获1586bp的核苷酸序列.研究发现这1586bp的核苷酸序列与文献报道的UL6和UL7基因序列的同源性为99%,仅有一个碱基的差异.进一步作氨基酸分析,发现这个碱基所引起的变异为无意义突变(CCT→CCC).结果表明,鸭瘟病毒的UL6和UL7基因在不同的毒株中高度保守.【总页数】4页(P615-618)【作者】郭霄峰;廖明;辛朝安【作者单位】华南农业大学动物医学系,广州,510642;华南农业大学动物医学系,广州,510642;华南农业大学动物医学系,广州,510642【正文语种】中文【中图分类】S855.3【相关文献】1.鸭瘟病毒UL6基因的原核表达及多克隆抗体的制备 [J], 吴双;马丽丽;朱善元;陆辉2.鸭瘟病毒强、弱毒株TK基因的克隆与序列测定 [J], 谢秀兰;杨发龙;李阳友;岳华3.伪狂犬病病毒Ea株UL6基因的克隆、序列分析及表达 [J], 薛念波;肖少波;江云波;梅小伟;刘曼莉;赵骞;罗锐;陈焕春;方六荣4.传染性喉气管炎病毒北京E2株gC基因的克隆及其部分序列测定 [J], 吴红专; 陈义为5.猪瘟病毒(HCV)石门株部分p23和p14基因的克隆、序列测定及与其他HCV株的比较 [J], 李红卫;涂长春;吕宗吉;孙明;金扩世;余兴龙;殷震因版权原因,仅展示原文概要,查看原文内容请购买。
六种育种方式的操作流程及关键步骤原理

六种育种方式的操作流程及关键步骤原理育种是指通过选择和培育具有特定性状的植株或动物,以期获得更好的品种。
在育种中,有多种育种方式可以选择,每种方式都有其独特的操作流程和关键步骤原理。
下面将介绍六种常见的育种方式的操作流程和关键步骤原理。
1.选择育种选择育种是根据植株或动物本身的自然变异,选择具有优良性状的个体作为育种材料,并将其繁殖后代。
操作流程一般包括以下几个步骤:(1)选择优良性状:根据遗传性状特点和育种目标,选择具有优良性状的个体。
(2)个体筛选:通过对育种材料进行观察和测试,筛选出具有目标性状的个体。
(3)后代选择:选择所得后代中的最优个体,并进行进一步繁殖。
关键步骤原理:选择育种的关键在于选择合适的育种材料和筛选方法。
根据遗传学原理,良好的性状在后代中具有较高的遗传率,通过持续的选择和繁殖,可以逐步积累并固定这些优良性状,从而获得更好的品种。
2.杂交育种杂交育种是利用不同亲本之间的亲和性和互补性进行交配,以获得一代的杂种。
操作流程一般包括以下几个步骤:(1)亲本选择:选择具有较好性状的亲本,确保其具有不同的遗传基础。
(2)交配:将选定的亲本进行人工或自然授粉交配,获得杂交后代。
(3)杂种优胜劣汰:评价杂交后代的性状,并选择优秀的杂交种植株或幼苗,在后续繁殖中进行淘汰和筛选。
关键步骤原理:杂交育种通过将不同亲本的优点结合起来,实现杂种优势的发挥。
杂交后代表现出了杂种优势,表现在生长速度、产量、抗病性等方面。
通过选择杂交后代中具有较好性状的个体进行繁殖,可以逐步固定这些优良性状。
3.突变育种突变育种是利用植物或动物自然突变或诱发突变,筛选出具有新性状的突变体,将其进行繁殖和选育。
操作流程一般包括以下几个步骤:(1)突变体筛选:通过收集植物或动物种群,筛选出具有突变性状的个体。
(2)突变体鉴定:对筛选出的突变体进行性状鉴定,并与野生型或普通品种进行比较。
(3)后代选择和繁殖:选择突变体中具有良好性状的个体,并进行后代繁殖。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BamHI adapter
5‘p-GATCCCGG-OH3’ GGCC-p5’
② adapter的作用
用T4DNA连接酶连到DNA分子的两 端,直接成为人工粘性末端。
P-P
Blunt-ended DNA
5’p-GATCCCGG-OH3’ HO-GGCC-p5’
BamHI adapter
5‘p-GATCCCGGGGCC-
EcoRI位点
复性
3’
模板
5’- GCAGAATTC 互补序列 -3’
延伸
3’
模板
5’- GCAGAATTC 互补序列 PCR产物
-3’
模板
3’
3’
模板
引物2
5’
3-’ 互补序列 GCTAGCCGG -5’ BamH I 位点
复性
模板 3’- 互补序列 GCTAGCCGG -5’
延伸
互补序列 GCTAGCCGG -5’
ligase nick
二、齐平末端(blunt end)的连接
1. 直接连接
5’端与3’端并列靠近的时间太短,不容易 被连接酶连接。
T4DNA连接酶虽然能连接平末端,但 效率很低,只有粘性末端的1%。
5’ P-
-OH 3’ 5’ P-
3’ HO-
-P 5’ 3’ HO-
5’ P3’ HO-
-OH 3’ -P 5’ -OH 3’ -P 5’
-CCGG -GGCCCTAG-P5’
CCGG GGCCCTAG-P5’
接头自我连接
5‘p-GATCCCGGGGCC-
CCGGGATCCCGG-OH GGCCCTAGGGCC-P5’
③优点: 连上后就能用。
④缺点:
接头与接头会彼此以粘性末端接在一起, 影响与DNA片段的连接。
⑤防止自我连接
先用小牛肠碱性磷酸酶(CIP)处理接头, 水解掉其5’端的磷酸,防止自我连接。 (以后再用T4多核苷酸激酶加上磷酸。)
BamHI adapter 5’p-GATCCCGG-OH3’ HO-GGCC-p5’
Blunt-ended DNA
P-
-OH
HO-
-P
CIP处理
5’GATCCCGG-OH3’ HO-GGCC5’
T4 ligase
缺口
5‘GATCCCGGHO-GGCC
缺口
CCGG-OH -GGCCCTAG5’
虽然有缺口,但仍然能与DNA片断连接。
P-CCGG-OH HO-GGCCCTAG-P5’
5‘p-GATCCCGG-OH HO-GGCC-P
CIP处理
5’CCGG-OH HO-GGCCCTAG5’
5‘GATCCCGG-OH HO-GGCC5’
CCGGGATCCCGG-OH HO-GGCCCTAGGGCC5’
接头之间不能形成磷酸二酯键自我连接!
不能把 插入片 段再切 下来。
非酶切位点
(2)衔接物(linker)连接
① linker 用化学合成法合成的一段10-12bp的特定限 制性内切酶识别位点序列的平端双链。
EcoRI linker: GGAATTCC CCTTAAGG
② linker的作用 用T4 DNA连接酶连到平端DNA上,然 后再用酶切,形成一个人工粘性末端。
③优点: 1)可以用内切酶把插入片段切下来。 2)能给载体连接上Polylinker:
④缺点: 如果插入片段内部也有该酶位点,不能 切下完整的插入片段
(3)DNA接头 (adapter)连接法
1978年康内尔大学的吴瑞教授发明。 ① adapter
一头平末端、另一头粘性末端(某种酶 切位点序列)。
2. DNA插入的方向正确
(1)用双酶切
由于产生的粘性末端不同,只能以 固定方向连接。
EcoRI
BamHI EcoRI
BamHI
EcoRI
BamHI
3. 插入基因的开放阅读框(ORF)正确
(1)DNA定向插入
(2)起始密码
尤其当载体上有ATG起始密码的时 候,更要注意。
EcoRI
EcoRI
ATGGAATTC 载体
A
T
T
TA TA
四、DNA体外连接应注意的事项 1. 插入片断与载体的酶切位点互补
相同的粘性末端才能有效地连接。 尽量避免平端连接。 决不能进行非粘性末端连接。
(1)用相同的酶切
EcoRI
EcoRI
EcoRI
(2)用同尾酶切
BamHI、BclI、BglII、Sau3AI、XhoII 都产生GATC4个碱基的粘性末端。
ATGCGGAATTCT 插入片断
ATGGAATTC T 重组 但移码突变!
2. 人工加尾形成 “粘性末端”
(1)同聚加尾 法 1972年,斯坦福大学的P. Labban 和P. Kaiser提出。
①原理:
DNA末端转移酶能在没有模板的情况下 给DNA的3’-OH端加上脱氧核苷酸。
②加尾—碱基互补
分别给载体和插入片断加上互补的核苷酸。
③优点:
能把任何 片段连接 起来
④缺点:
2. 与T载体直接连接
(1)PCR产物两个3’端一般都有一个A
Taq DNA聚合酶的特性:在DNA双 链的3’端再加上一个多余的核苷酸 (优先加A)。
(2)T载体的两个3’端人为地各加一个T
利用Taq DNA聚合酶,当原料中只 有dTTP时,被迫在平端载体上添加 T!
PCR产物
载体
dNTP A
Taq DNA聚合酶 dTTP
带酶切位点的PCR产物
5’- GCAGAATTC PCR产物 CGATCGGCC-3’
3’- CGTCTTAAG PCR产物 GCTAGCCGG -5’
EcoRI位点
BamHI位点
EcoRI BamHI
5’- AATTC PCR产物 C -3’ 3’- G PCR产物 GCTAG -5’
两头各有一个粘性末端!
外源DNA 转化或转导
载体DNA 连接 重组分子
电穿孔或显微注射
原核细胞 受体细胞 真核细胞
扩增或表达
表达
第一节 DNA片段的体外连接
一、粘性末端的连接 DNA连接酶把相互靠近的5’端磷酸与 3’-OH连到一起。
1. 两段DNA的连接 依靠粘性末端
2. DNA片断与载体的连接 依靠粘性末端
三、PCR产物的连接
1. 在引物的5’端设计酶切位点 (1)设计原则
符合载体的多克隆位点; 避免与所扩增的DNA片断内部酶切位点重复。 (2)带酶切位点的引物的结构
3’端15~20bp与模板互补; 5’端6~10bp是某个内切酶的识别序列。 (5’端多余的3~5bp属保护碱基)
模板
3’
3’
模板
5’- GCAGAATTC 互补序列 -3’ 引物1