基因的重组与转移
生物化学第十四章-基因重组和基因工程

第十四章基因重组和基因工程一、自然界的基因转移和重组:基因重组(gene recombination)是指DNA片段在细胞内、细胞间,甚至在不同物种之间进行交换,交换后的片段仍然具有复制和表达的功能。
1.接合作用:当细胞与细胞相互接触时,DNA分子即从一个细胞向另一个细胞转移,这种遗传物质的转移方式称为接合作用(conjugation)。
2.转化和转染:由外来DNA引起生物体遗传性状改变的过程称为转化(transformation)。
噬菌体常常可感染细菌并将其DNA注入细菌体内,也可引起细菌遗传性状的改变。
通过感染方式将外来DNA引入宿主细胞,并导致宿主细胞遗传性状改变的过程称为转染(transfection)。
转染是转化的一种特殊形式。
3.整合和转导:外来DNA侵入宿主细胞,并与宿主细胞DNA进行重组,成为宿主细胞DNA的一部分,这一过程称为整合。
整合在宿主细胞染色体DNA中的外来DNA,可以被切离出来,同时也可带走一部分的宿主DNA,这一过程称为转导(transduction)。
来源于宿主DNA的基因称为转导基因。
4.转座:转座又称为转位(transposition),是指DNA的片段或基因从基因组的一个位置转移到另一个位置的现象。
这些能够在基因组中自由游动的DNA片段包括插入序列和转座子两种类型。
⑴插入序列:典型的插入序列(insertion sequence,IS)是长750-1500bp的DNA片段,由两个分离的反向重复序列和一个转座酶基因。
当转座酶基因表达时,即可引起该序列的转座。
其转座方式主要有保守性转座和复制性转座。
⑵转座子:转座子(transposons)是可从一个染色体位点转移到另一个位点的分散的重复序列,含两个反向重复序列、一个转座酶基因和其他基因(如抗生素抗性基因)。
免疫球蛋白重链基因由一组可变区基因(VH)和一组恒定区基因(CH)构成,通过这些基因的选择性转座和重组,就可以转录表达出各种各样的免疫球蛋白重链,以对付不同的抗原。
基因转移与重组概述

染色体上越靠近F因子的先导区的基因,进入的机会就 越多,在F-中出现重组子的的时间就越早,频率也高。
Hfr ×F-杂交
3.F′×F-杂交——性导
Hfr菌株内的F因子因不正常切割而脱离染色体时,形成游 离的但携带一小段染色体基因的F因子,特称为F′因子。
3.性导——F′×F-杂交
初
生
F′
F′×F-与F+×F-的不同点:
F因子为附加体质粒,既可以脱离染色体在细 胞内独立存在,也可插入(整合)到染色体上
(三)接合
F因子的四种细胞形式(掌握)
①F-菌株(“雌性”菌株):不含F因子,无性菌毛,但可以 通过接合作用接收F因子而变成F+菌株。 ②F+菌株(“雄性”菌株):F因子独立存在,细胞表面有性
菌毛。 ③Hfr菌株:F因子插入到染色体DNA上,细胞表面有性 菌
溶源转变特点
1. 噬菌体不携带任何供体菌的基因; 2. 噬菌体是完整的,而不是缺陷的; 3. 噬菌体基因的整合到宿主染色体上导致宿 主获得新性状,未通过基因重组而形成的稳 定转导子; 4. 宿主获得新性状具有不稳定性。
(三)接合(conjugation)
通过细胞与细胞的直 接接触而产生的遗传信 息的转移和重组过程。
(一)转化
供体菌
DNA片段
受体菌
转化子(transformant):转化后的受体
感受态
来自Trp+细胞的DNA
色氨酸缺陷型 没有色氨酸野生型生长
在缺乏色氨 酸培养基上 有菌落产生 (野生型)
自然转化的必要条件
1、建立感受态的受体细胞 感受态细胞:具有摄取外源DNA能力的细胞。 自然感受态:细胞一定生长阶段的生理特性,受自 身的基因控制(感受态因子)。 人工感受态:通过人为诱导,使细胞具有摄取DNA 的能力,或将DNA导入细胞内。
何水林版基因工程第五章基因的转移与重组体的筛选和鉴定

带酶切位点的PCR产物 5’- GCAGAATTC
PCR产物 PCR产物
GGATCCGCG CCTAGGCGC BamH I位点
-3’
-5’
3’- CGTCTTAAG
EcoR I位点
EcoR I BamH I 5’AATTC 3’- G PCR产物 PCR产物 G -3’ CCTAG -5’
两头各有一个粘性末端!
4. DEAE-葡萄糖转染法 二乙氨乙基(DEAE)葡聚糖为多聚阳离子试剂,能 促进哺乳动物细胞摄入外源DNA。
葡聚糖
++ ++++++ ++ + + + 二乙氨乙基 + + (DEAE) ++ ++ ++++
++ ++++++ ++ + + + 二乙氨乙基 + + (DEAE) ++ ++ ++++ - - - -- - DNA - - --- -
4、在培养基中生长数小时之后,球形细胞复原并增殖。
操作步骤: 10ng 载体DNA 100L 感受态细胞 10-100L转化液 涂Amp+平板
(p140)
吸附DNA 冰浴30min
摄入DNA 42℃ 1~2min
37℃ 振荡培养1h
加入1mL LB培养基 (Amp-)
转化率:106-108/g DNA
(一)转化率的计算:
转化率 = 产生菌落的总数 / DNA的加入量
上海交通大学-环境微生物-微生物的基因重组

转导的遗传物质
供体菌染色体DNA 任何部位或质粒
完全转导或流产转导
噬菌体DNA及供体菌 DNA的特定部位
受体菌获得供体菌DNA 特定部位的遗传特性 转导频率较普遍转导增 加1000倍(10-4)
转导的后果
转导频率
受体菌的10-7
普遍性转导
转化过程
TRANSFORMATION direct uptake of biologically active DNA fragments
细菌转化
以反向遗传学 的角度来确定 未知基因的功 能。
基因变异使基 因功能的丧失, 应用于重组 DNA技术和细 胞内同源重组。
反向遗传学
反向遗传学是相对于经典遗传学而言的。 经典遗传学是从生物的性状、表型到遗传物质来研究 生命的发生与发展规律。 反向遗传学则是在获得生物体基因组全部序列的基础 上,通过对靶基因进行必要的加工和修饰,如定点突变、 基因插入/缺失、基因置换等,再按组成顺序构建含生物 体必需元件的修饰基因组,让其装配出具有生命活性的 个体,研究生物体基因组的结构与功能,以及这些修饰 可能对生物体的表型、性状有何种影响等方面的内容。
Genetic Recombination
一、原核微生物的基因重组
1. 转化 (Transformation)
2. 转导 (Transduction)
3. 接合 (Conjugation)
4. 原生质体融合 (Cytoplasmic fusion )
5. 溶源性转换 (Lysogenic conversion)
细菌的多重营养缺陷型杂交
实验
接合现象的发现和证实
第四章基因的转移与重组体的筛选和鉴定

第四章基因的转移与重组体的筛选和鉴定第一节转化基因片段在体外只是一段核酸分子,是化学物质,无法表现出遗传物质的生命活性。
只有当其存在于活细胞后,生命的特征才能充分展示出来。
在分子克隆实践中,在体外操作的核酸分子只有进入细胞以后才能达到克隆的目的。
一、重组DNA分子转入原核生物细胞1. 重组质粒DNA分子转化大肠杆菌转化(transformation)——重组质粒DNA分子通过与膜蛋白结合进入受体细胞,并在受体细胞内稳定维持和表达的过程。
转化不仅适合于大肠杆菌受体细胞,而且适合于枯草杆菌和蓝藻等其他原核生物以及酵母等低等真核生物受体细胞。
(1)CaCl2处理后的细菌转化或转染A、制备感受态细胞受体细胞的细菌,经一定浓度的冰冷的 CaCl2(50~100 mmol/L)溶液处理后变成。
所谓感受态细胞,处在感受态状态的菌体有摄取各种外源 DNA的能力。
转化:感受态的大肠杆菌细胞捕获和表达质粒载体DNA分子的生命过程;转染:感受态的大肠杆菌细胞捕获和表达噬菌体DNA分子的生命过程;好的感受态细胞,每微克的超螺旋质粒DNA可得5×107个转化体。
B、细胞转化(或转染)的具体操作过程:①将处于对数期的新鲜培养物于0℃4000转/分离心10分,回收细菌细胞;②将细胞用0℃的0.1mol/L CaCl2低渗溶液处理30分钟,离心回收细胞,再用适量0℃的0.1mol/L CaCl2重悬细胞,以诱导感受态产生。
③加入适量DNA,于42 ℃热处理混合物90秒,使DNA分子被细胞吸收;④将混合物快速转到冰浴中,冷却1~2分,加入适当的培养基,在37 ℃培养45分,使细胞复苏并表达质粒所携带的转化基因;⑤通过选择培养基上平板培养,选择转化体。
⑥如果用抗菌素筛选转化体,作为对照的受体菌应该在此培养基上不生长。
(2)电穿孔转化法基本原理是利用高压电脉冲作用,在大肠杆菌细胞膜上进行电穿孔(electroporation),形成可逆的瞬间通道,从而促进外源DNA的有效吸收。
高中生物 第六章基因重组与基因工程

第六章基因重组与基因工程教学大纲要求1.熟悉基因工程、基因文库、载体、限制性核酸内切酶、PCR等概念;2.掌握以质粒为载体进行DNA克隆的基本过程;3.了解重组DNA技术在医学上的应用。
教材内容精要一、自然界的基因转移和重组自然界不同物种或个体之间的基因转移和重组是经常发生的,它是基因变异和物种演变、进化的基础。
基因重组的方式有:接合作用、转化、转导、转座。
1.接合作用(Conjugation) 当细胞(细菌)与细胞(细菌)相互接触时,质粒DNA就可从一个细胞(细菌)转移到另一个细胞(细菌)。
2.转化与转导作用(1)转化作用(Transformation):由外源性DNA导入宿主细胞,并引起生物类型改变或使宿主细胞获得新的遗传表型的过程,称为转化作用。
(2)转导作用(Transduction):当病毒从被感染的(供体)细胞释放出来,再次感染另一(受体)细胞时,发生在供体细胞与受体细胞之间的DNA转移及基因重组称为转导作用。
3.转座(转位)(Transposition) 可移动的DNA序列包括插入序列和转座子。
故由插入序列和转座子介导的基因转移或重排称转座。
转座是指一个或一组基因从一个位置转到基因组的另一个位置。
可分为插入序列(insertionsequenceIS)转座和转座予(transposons)转座。
4.基因重组不同DNA分子间发生的共价连接称基因重组。
基因重组有两种类型:位点特异的重组(sitespecial recombmatlon)和同源重组(homologous recomblnation)。
二、重组DNA技术’1.重组DNA技术的相关概念(1)DNA克隆:克隆(Clone)就是来自同一个体的相同的集合。
DNA克隆(DNA clone):应用酶学方法在体外将目的基因与载体DNA结合成一具有自我复制能力的重组DNA分子,通过转化或转染宿主细胞、筛选出含有目的基因的转化子细胞,再进行扩增,提取获得大量同一DNA分子的过程。
细菌基因转移和基因重组

• F小环与主染色体大环之间发生一 次交换就可以插入到宿主染色体中。 • F因子整合到E.coli染色体上以后, 该菌株就成为高频重组株(High frequence recombination ),以Hfr 表示。
Mechanism of DNA transfer during conjugation in Gram-negative bacteria
细菌遗传重组的自然机制包括
细菌的接合(conjugation)
转化(transformation)
转导 (transduction) 性导(sexduction )
第一节 接合(Conjugation)
概念:
F+ conjugation
Hfr (high frequency recombinant) conjugation
U型管试验(见图) 说明:两个菌株间的直接接触是原养型 细菌出现的必要条件,这就排除了转化的 可能。 1952年,Hages通过实验证明,在结合过 程中,遗传物质的转移是单向的。 在结合过程中,到底是什么东西由雄体输 入了雌体呢?
• Gram-positive:
sticky surface molecules
• Gram-negative(阴性菌): (性菌毛)
sex pilus
F因子的特征
• 携带F因子的菌株称为供体菌或雄性,用F+表示。 没有F因子的菌体称为受体菌,又称雌性,用F-表 示。 • F因子是双链环状DNA,分子量大约是3.5×106, 是染色体外遗传物质,是质粒的一种,在分类学上 属于附加体(episome)。 • 它既能以自主状态存在于细胞质中,又能整合到细 菌的染色体内。
品猛烈搅拌以中断接合中的细菌,然后分析 受体菌的基因型,这是在大肠杆菌等细菌中 用来测定基因位置的一种方法。
生物进化中的基因重组与基因转移

生物进化中的基因重组与基因转移生物进化是指物种逐渐演化和适应环境的过程,其中基因重组与基因转移发挥着重要的作用。
基因重组是指在生物体内,染色体上的DNA序列发生重新组合的过程,而基因转移则是指基因从一种生物体转移到另一种生物体的过程。
这两个过程为生物进化中的遗传变异提供了重要的机制。
基因重组是生物进化中的常见现象,它是通过染色体的互换、交叉和重组来实现的。
在有性生殖的生物中,基因重组是通过配子形成的过程中发生的。
在这个过程中,父母个体的染色体对交换和重组,产生新的染色体组合,从而产生具有不同遗传信息的后代。
基因重组的发生使得后代个体具有更大的遗传多样性,为适应环境变化提供了基础。
例如,在自然选择的过程中,某一基因座上的有利等位基因可能会在基因重组过程中与其他基因进行重组,产生新的基因组合,并在后代中得到更好的传递。
与基因重组不同,基因转移是指基因从一种生物体转移到另一种生物体的过程。
这种过程可以是水平基因转移,即发生在不同个体之间,或是垂直基因转移,即发生在不同物种的后代之间。
水平基因转移通常通过质粒传递基因进行,其中质粒是一种小型DNA分子,可以在细菌、真菌和植物等生物体之间进行传递。
质粒中的基因可以通过细菌共享机制,被接收到其他细菌的染色体上,从而实现基因的转移。
对于垂直基因转移而言,它通常发生在不同物种的后代之间,具体机制包括共享祖先基因和基因转座等。
基因转移的发生可以使得物种之间的基因组发生改变,也为新的遗传特征的产生提供了机会。
基因重组与基因转移在生物进化中扮演着重要的角色,它们为生物从简单到复杂、从适应不同环境到新物种的形成提供了机制。
通过基因重组,新的基因组合产生了更多的遗传多样性,从而使物种更具生存优势。
而基因转移则进一步增加了遗传信息的交流和变异的机会,有助于形成新的遗传特征和促进物种的适应性进化。
然而,基因重组与基因转移也可能带来负面影响,例如在基因转移中出现的基因污染和抗生素耐药基因的传播问题。