九年级数学下册第一周练习题(无答案)新人教版

合集下载

第二十六章——反比例函数综合复习卷(二)(无答案)九年级下册人教版数学

第二十六章——反比例函数综合复习卷(二)(无答案)九年级下册人教版数学

九年级下册人教版数学第二十六章——反比例函数综合复习卷二一、选择题:本题包括 1 0小题,每小题3 分,共30分。

1.某学校对教室采用药薰消毒法进行消毒.现测得不同时刻的与的数据如表:时间分钟含药量毫克则下列图象中,能表示与的函数关系的图象可能是()A.B.C.D.2.若双曲线在第二、四象限,那么关于x的方程的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.条件不足,无法判断3.如图,点A是反比例函数的图象上任意一点,轴交反比例函数的图象于点B,以为边作,其中C、D在x轴上,则为()A.2.5 B.3 C.5 D.64.如图,在平面直角坐标系中,直线与轴、轴分别相交于点、.,,将沿直线翻折,点的对应点恰好落双曲线(是常数,)的图像上,则的值为()A.B.C.D.5.下面结论正确的有()(1)如果保持圆的半径不变,圆的周长与圆周率成正比例.(2)如果平行四边形的面积一定,它的底和高成反比例关系.(3)小明从家到学校的时间与他行走的速度成反比例.(4)书的总页数一定,已看的页数与未看的页数成正比例关系.A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)6.如图,已知点A是函数与的图象在第一象限内的交点,点B在x轴负半轴上,且,则的面积为()A.2 B.C.2D.4 7.如图,在平面直角坐标系中,O是坐标原点,在△ABC中,AB⊥y轴于点B,点C是x轴上一点,点A在反比例函数的图像上,若△ABC的面积为2,则k=()A.-4 B.4 C.-2 D.2 8.在平面直角坐标系中,若反比例函数的图象在第一、三象限,则关于的一元二次方程有实数根,则所有满足条件的整数的值之和是()A.B.C.D.9.如图,矩形的中心为直角坐标系的原点O,各边分别与坐标轴平行,其中一边交x轴于点C,交反比例函数图象于点P.当点P是的中点时,求得图中阴影部分的面积为8,则该反比例函数的表达式是()A.B.C.D.10.正比例函数与反比例函数的图象交于点A,B,数学小组在探究时得到以下结论:①点A、B关于原点对称;②若点,则的解集是或;③k的值可以为;④当时,k的值是1.以上结论正确的是()A.①②B.①②④C.①②③D.①②③④二、非选择题:本题包括 6 小题,共 60分。

初中数学人教版九年级下册 28.1 锐角三角函数同步练习(共3课时,无答案)

初中数学人教版九年级下册 28.1 锐角三角函数同步练习(共3课时,无答案)

28.1 锐角三角函数第一课时一、填空题1. 如图所示, B、B'是∠MAN的AN 边上的任意两点, BC⊥AM于 C 点, B'C'⊥AM于 C'点,则△B'AC'∽ , 从而B ′C′BC =AB′()=()AC,又可得①B ′C′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A 确定时, 它的与的比是一个值;②AC ′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比也是一个值;③B ′C′AC′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比还是一个值.2. 如图所示, 在Rt△ABC中, ∠C=90°.①sinA=¯,sinB=¯;②cosA=¯,cosB=¯;③tanA=¯,tanB=¯.3. AE、CF是锐角△ABC的两条高, 如果 AE: CF=3: 2, 则 sinA: sinC 等于 .4. 在Rt△ABC中, ∠C=90°, 若a=3, b=4, 则c= ,sinA=____________,cosA=_______________,tanA=______________.sinB= , cosB= , tanB= .5. 在Rt△ABC中, ∠C=90°, 若∠B=30°, 则∠A= ,sinA= , tanA= , cosA= ,sinB= , cosB= , tanB= .6. 在Rt△ABC中, ∠C=90°, 若a=1, b=2, 则c= ,sinA= , cosA= , tanA= ,sinB= , cosB= , tanB= .二、选择题7.把Rt△ABC各边的长度都扩大3倍得Rt△A'B'C',那么锐角A,A'的余弦值的关系为( ).A. cosA=cosA'B. cosA=3cosA'C. 3cosA=cosA'D. 不能确定8. 如图3, 点A为∠B边上的任意一点, 作AC⊥BC于点C, CD⊥AB于点D, 下列用线段比表示cosα的值,错误的是 ( )A.BDBC B.BCABC.CDACD.ADAC9. 在△ABC中, ∠C=90°, ∠A, ∠B, ∠C的对边分别是a, b, c,则下列各项中正确的是 ( ).A. a=c·sinBB. a=c·cosBC. a=c·tanBD. 以上均不正确10. 在Rt△ABC中,∠C=90°, cosA=23,则 tanB 等于 ( ).A 35B.√53C.25√5D.√5211. ⊙O的半径为R, 若∠AOB=α, 则弦AB的长为 ( ).A.2Rsinα2 B. 2RsinαC.2Rcosα2D. Rsinα12. 如图,△ABC的顶点都是正方形网格中的格点, 则cos∠ABC等于 ( ).A.√5B.√55C.2√55D.3√510三、解答题13. 已知: 如图, Rt△ABC 中, ∠ACB=90°, CD⊥AB 于 D 点,AB=4, BC=3. 求: sin∠ACD、cos∠ACD、tan∠ACD.14. 已知: 如图, Rt△ABC中, ∠C=90°. D是AC边上一点, DE⊥AB 于E点. BC:AC=1:2.求: sin∠ADE、cos∠ADE、tan∠ADE .15. 如图, 在矩形纸片 ABCD 中, AB=6, BC=8. 把△BCD 沿对角线 BD折叠, 使点C 落在 C'处, BC'交 AD 于点 G; E、F 分别是 C'D和BD上的点, 线段EF交AD 于点H, 把△FDE沿E F折叠, 使点D落在 D'处, 点D'恰好与点 A 重合.(1) 求证: △ABG≌△C' DG; (2) 求 tan∠ABG的值;(3) 求EF的长.第二课时一、填空题1. sin30°= , sin60°= , sin60°= ;cos30°= , cos45°= , cos60°= ;tan30°= , tan45°= , tan60°= .2. 已知: α是锐角, cosα=12√2,tanα=¯.3. 已知∠A 是锐角, 且tanA=√3,则sin A2=¯.4. 已知: ∠α是锐角, sinα=cos36°, 则α的度数是 .5. 小明同学遇到了这样一道题:√3tan(a+20∘)=1,则锐角.α的度数应是 .6. 已知∠α为锐角, 若sinα=cos30°, tanα= ; 若tan70°·tanα=1, 则∠α= .二、选择题7. 当锐角A 的cosA>√22时, ∠A的值为( ).A 小于45°B 小于30°C 大于45°D 大于60°8.在△ABC中,∠A,∠B都是锐角,且sinA=12,cosB=√32,则此三角形形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定9. 在△ABC中, ∠C=90∘,sinA=√32,则cosB等于 ( ).A. 1B.√32C.√22D 1210. 在平面直角坐标系内 P 点的坐标(cos30°, tan45°), 则 P 点关于x轴对称点 P'的坐标为 ( ).A.(√32,1)B.(−1,√32)C.(√32,−1)D.(−√32,−1)11. 下列不等式成立的是 ( ).A.tan45°<sin60°<cos45°B. cos45° <sin45° <tan45°C. cos45° <tan60° <tan45°D.cos45°<sin60°<tan60°12. 若√3tan(α+10∘)=1,则锐角α的度数为( ).A. 20°B. 30°C. 40°D. 50°三、解答题13. 计算:(1)(−2)−1−|−√8|+(√2−1)0+4cos45∘(2)(√2+1)0−2−1−√2tan45∘+|1−√2|14. 我们定义:等腰三角形中底边与腰之比叫做顶角的正对( sad),在△ABC中,AB=AC ,顶角 A 的正对记作 sadA, 这时已知sinα=35(α为锐角) , 计算sadα的值.15. 如图,根据图中数据完成填空,再按要求答题:sin²A₁+sin²B₁=;sin²A₂+sin²B₂=;sin²A₃+sin²B₃=________.(1) 观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin²A+sin²B=.(2) 如图④, 在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.第三课时一、填空题1. 化简: √(tan30∘−1)2=¯.2. 计算: sin²30°+cos²30°=,sin²45°+cos²45°=sin²60°+cos²60°=.3. 化简: √1−2sinα⋅cosα(其中( 0°<α<90°)=.4. 已知: 如图, Rt△ABC中, ∠C=90°, 按要求填空:(1)∵sinA=ac,∴a=c·sinA,c= ;(2)∵cosA=bc,∴b= , c= ;(3)∵tanA=ab,∴a= , b= ;(4)∵sinB=√32,∴cosB=¯,tanB=¯;(5)∵cosB =35,∴sinB =¯,tanA =¯;(6) ∵tanB=3, ∴sin B = , sinA= .5. 如图, ⊙O 的半径OA=16cm, OC ⊥AB 于C 点, sin ∠AOC =34.则AB= . 6. 已知: 如图, △ABC 中, AB=9, BC=6, △ABC 的面积等于9, 则 sinB =.二、选择题7. 如图,梯子(长度不变) 跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是 ( ) A. sinA 的值越大, 梯子越陡 B. cosA 的值越大, 梯子越陡 C. tanA 的值越小, 梯子越陡 D. 陡缓程度与∠A 的函数值无关8. 如图,在等边△ABC 中, D 为BC 边上一点, E 为AC 边上一点, 且∠ADE=60°, BD=4, CE =43,则△ABC 的面积为( ) .A.8√3B. 15C.9√3D.12√39.如图,直径为10的⊙A 经过点 C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A 12 B 34 C.√32 D 4510. 如图, △ABC 和△CDE 均为等腰直角三角形, 点B, C, D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =BCCD ;②S △ABC+S △CDE ≧S △ACE;③BM ⊥DM; ④BM=DM, 正确结论的个数是 ( )A 、1个B 、2个C 、3个D 、4个11. 如图, △ABC中,BC=7,cosB=√22,sinC=35,则△ABC的面积是 ( )A. 12B. 12C. 14D. 2112. 已知: 如图, AB是⊙O的直径, 弦AD、BC相交于P点, 那么DCAB的值为( )A. sin∠APCB. cos∠APCC. tan∠APCD.1tan∠APC三、解答题13. 阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题: 在 Rt△ABC中,∠C=90°, ∠B=22.5°, 则t an22.5° =小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角 45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题. 于是小天尝试着在 CB 边上截取 CD=CA, 连接AD(如图2), 通过构造有特殊角(45°) 的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=.参考小天思考问题的方法,解决问题:如图3, 在等腰△ABC 中, AB=AC, ∠A=30°, 请借助△ABC, 构造出15°的角, 并求出该角的正切值.̂上的两点,∠AOD>∠AOC,求证:14. 已知: 如图, ∠AOB=90°, AO=OB, C、D是AB(1) 0<sin∠AOC<sin∠AOD<1;(2)1>cos∠AOC>cos∠AOD>0;(3) 锐角的正弦函数值随角度的增大而;(4) 锐角的余弦函数值随角度的增大而 .15.已知:如图,在△ABC中,. AB=AC,AD⊥BC于D, BE⊥AC于E,交AD于H点.在底边BCS HBC的值是保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积SABC′否随着变化?请说明你的理由.。

九年级数学下册周末练习1新人教版

九年级数学下册周末练习1新人教版

山东省胶南市隐珠中学九年级数学下册 周末练习1 新人教版(时刻:1 20分钟 满分:120分)一、选择题(每小题3分,共30分)1.将方程3x (x +2)-4x +6=6x 2+4化为一元二次方程的一样形式后,其二次项系数和一次系数别离为( )A.-3,-6 ,6 ,-6 ,-22.方程2x (x -3)=5(x -3)的根是( ) A. 52x = B.3 C. 1253,2x x == D. 125,32x x =-=- 3.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )<-1 >-1,且k ≠0C. k <1D. k <1,且k ≠04.若一元二次方程ax 2+bx +c =0(a ≠0)中的a +b +c =0,则该方程必有一根为( )C.-1D.±15.下列方程没有实数根的是( )(x 2+2)=3x (x 2-1)-x =0-x =100 -24x +16=06.若代数式x 2+8x +m 是一个完全平方式,则m 的值为( )B.-4 D.-167.三角形两边的长别离是8和6,第三边的长是一元二次方程x 2-16x +60=0的一个实数根,则该三角形的面积是( )或85 D. 858.为解决药价偏高给老百姓带来的求医难的问题,国家决定对某药品价钱持续两次降价,若设平均每次降价的百分率为x ,该药品的原价是m 元,降价后的价钱是y 元,则y 与x 之间的函数关系式是( )=2m (1-x ) B. y =2m (1+x ) C. y =m (1-x )2 D. y =m (1+x )2 9.关于x 的方程(m -3)x m 2-8m +17+6x -1=0是一元二次方程的条件是( )=2 =3 =5 =3或m =510.已知ac <0,则方程ax 2-bx +c =0的根的情形是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.只有一个实数根二、填空题(每小题3分,共24分)11.方程x 2-2x -3=0的根是 .+6x + =(x +3)2.13.已知方程mx 2-mx +2=0有两个相等的实数根,则m 的值为 .14.若x =1是一元二次方程x 2+x +c +=0的一个解,则c 2= .15.当x= 时,分式2231x x x +--的值为0. 16.要用一条长30 cm 的铁丝围成一个斜边长为13 cm 的直角三角形,则两直角边长别离为 .17.已知一元二次方程有一个根是2,那么那个方程能够是 .(填一个即可)18.若关于x 的一元二次方程x 2+(k +3)x +k =0的一个根是-2,则另一个根是 .三、解答题(第19~24小题各9分,第25小题12分,共66分)19.请用两种不同的方式解方程(x +3)(x +1)=2x +6.2.当m 为何值时,关于x 的一元二次方程21402x x m -+-=有两个相等的实数根?现在这两个实数根是多少?21.已知关于x 的一元二次方程x 2+(m -2)x -m -1=0,试说明不管m 取何值,那个方程总有两个不相等的实数根.22.已知a ,b ,c 均为实数,且2269410a a b c -++++-=(),求方程ax 2+bx +c =0的解.23.在高尔夫球竞赛中,某运动员打出的球在空中飞行的高度h (m)与打出后的飞行时刻t (s )之间的关系式是h =-t (t -7).(1)通过量少秒球飞行的高度为10 m ?(2)通过量少秒球双落到地面上?24.如图22-13所示,在长为10 cm ,宽为8 cm 的矩形的周围截四个全等的小正方形,使得留下的图形的面积是原矩形面积的80%,求所截去的小正方形的边长.25.某商店从厂家以每件21元的价钱构进一批商品,该商店能够自己定价,若每件商品售价为a 元,则可卖出(350-10a )件,但特价局限定每件商品加价不能超过进价的20%,商店打算要赚400元,需要卖出多少价商品?每件商品的售价为多少元?参考答案[提示:先化成一样形式为3x 2-2x -2=0.][提示:用因式分解法求解即可.][提示:k ≠0,(-2)2-4k (-1)>0,k >-1,且k ≠0.][提示:由已知可得a +b +c =0,而当x =1时,方程ax 2+bx +c =0可化为a +b +c =0,因此该方程必有一根是1.][提示:用根的判别式△=b 2-4ac 一一判定.][提示:m 等于8的一半的平方为16.][提示:由x 2-16x +60=0可知x =6,或x =10,因为三角形两边长为6和8,因此三角形的第三边的边长x 应知足三角形三边关系,即2<x <14,因此三角形的第三边长为6或10.当第三边长为10时,由勾股定理的逆定理可知62+82=102,即这是一个直角三角形,其面积为168242⨯⨯=;当x =6时,那个三角形是一个等腰三角形,则其底边上的高为262025-==28()2,现在那个三角形的面积是182258 5.2⨯⨯⨯=综上所述,那个三角形的面积为24或5.][提示:m 2-8m +17=2,且m -3≠0,∴m =5.][提示:△=(-b )2-4ac =b 2-4ac ,∵ac <0,∴△>0.] =3,x 2=-1[提示:由题意可知△=(-m )2-4·m ·2=0,且m ≠0,因此m =8.][提示:把x =1代入x 2+x +c =0,得c =-2,∴c 2=4.]15.-3[提示:x 2+2x -3=0,且x -1≠0.]cm 和12 cm[提示:设其中一条直角边长为x cm ,则另一直角边长为(17-x )cm ,由题意,得x 2+(17-x )2=132,解得x 1=5,x 2=12.]=4(答案不唯一)=1[提示:把x =-2代入x 2+(k +3)x +k =0,得4-2(k +3)+k =0,∴k =-2,∴方程为x 2+x -2=0,解得x 1=-2,x 2=1.]19.解法1:(因式分解法)(x +3)(x +1)-(2x +6)=0,∴(x +3)(x +1-2)=0,∴x +3=0或x -1=0,∴x 1=-3,x 2=1.解法2:去括号得x 2+4x +3=2x +6,x 2+2x -3=0,x 2+2x =3,∴x 2+2x +1=4. ∴(x +1)2=4,∴x +1=±2.∴x 1=-3,x 2=1.20.解:依题意得△=(-4)2-4 1164202m m ⎛⎫-=-+= ⎪⎝⎭,因此m =92,故当m =92时,此方程有两个相等的实数根,现在x 1=x 2=2.21.解:△=(m -2)2-4×1×(-m -1)=m 2-4m +4+4m +4=m 2+8,∵不管m 取什么值,m 2≥0,∴m 2+8>0,∴△m 2+8>0,∴不管m 取何实数,原方程总有两个不相等的实数根. 22.解:∵269a a -++ 4b ++2(1)0,c -= ∴2690,40,10.a a b c -+=+=-=∴a =3,b =-4,c =1.∴方程为3x 2-4x +1=0,b 2-4ac =(-4)2-4×3×1=4.∴4442,236x ±+==⨯∴x 1=1,x 2= 13. 23.解:(1)由题意可知10=-t (t -7),∴t 2-7t +10=0,∴t 1=2,t 2=5,∴通过2 s 或5 s 球飞行的高度为10 m.(2)当h =0时,-t (t -7)=0,∴t 1=0,t 2=7,∵t =0不符合题意,故舍去.∴t =7,即通过7 s 球双落到地面上.24.解:设截去小正方形的边长为x cm ,由题意,得10×8-4x 2=10×8×80%,解得x 1=2,x 2=-2(舍去).答:所截去的小正方形的边长为2 cm.25.提示:求出方程的解后,必然要查验所求得的解是不是符合要求,不符合要求的要舍去.解:设每件商品的售价为x 元,才能使商店赚400元,依题意,得(x -21)(350-10x )=400整理,得x 2-56x +775=0,解得x 1=25,x 2=31.又因为21×(1+20%)=,而x 1<,x 2>,因此x 2=31(舍去).当x =25时,4001002521=-(件). 答:该商品需要卖出100件商品,每件商品售价为25元才能使商店赚400元.。

【初中数学】人教版九年级下册课时作业 (练习题)

【初中数学】人教版九年级下册课时作业 (练习题)

人教版九年级下册课时作业(二十)[28.2.2 第1课时解直角三角形在实际中的一般应用](390)1.如图是某小区的一个健身器材示意图,已知BC=0.15m,AB=2.7m,∠BOD=70∘,求端点A到底面CD的距离(精确到0.1m).(参考数据:sin70∘≈0.94,cos70∘≈0.34,tan70∘≈2.75)2.如图,游客在点A处坐缆车出发,沿A—B—D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75∘,β=45∘,求DE的长.(参考数据:sin75∘≈0.97,cos75∘≈0.26,√2≈1.41)3.某广场的旗杆AB旁边有一个半圆的时钟模型,如图所示,时钟的9点和3点的刻度线刚好和地面重合,半圆的半径为2米,旗杆的底端A到钟面9点处刻度C的距离为5米.一天李华同学观察到阳光下旗杆顶端B的影子刚好投到钟面11点的刻度上,同时测得1米长的标杆的影长为1.6米.(1)计算时钟的时针从9点转到11点时的旋转角是多少度;(2)求旗杆AB的高度(结果精确到0.1米,参考数据:√2≈1.414,√3≈1.732).4.如图,若要在宽AD为20米的城南大道两边安装路灯,路灯的灯臂BC长2米,且与灯柱AB成120∘角,路灯采用圆锥形灯罩,灯罩的轴线CO与灯臂BC垂直,当灯罩的轴线CO通过公路路面的中心线时照明效果最好,此时,路灯的灯柱AB高应该设计为多少米(结果保留根号)?5.某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的连接点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF//BC,∠AEF=135∘,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计,参考数据:√2≈1.4)()A. B. C. D.6.在课题学习后,同学们为教室窗户设计一个遮阳篷,小明同学绘制的设计图如图所示,其中AB表示窗户,且AB=2.82米,△BCD表示直角遮阳篷,已知当地一年中午时的太阳光与水平线CD的最小夹角α为18∘,最大夹角β为66∘,根据以上数据,计算出遮阳篷中CD的长约是(结果精确到0.1米,参考数据:sin18∘≈0.31,tan18∘≈0.32,sin66∘≈0.91,tan66∘≈2.25)()A.1.2米B.1.5米C.1.9米D.2.5米7.如图,为测量河宽AB(假设河的两岸平行),在点C处测得∠ACB=30∘,在点D处测得∠ADB=60∘,且CD=60m,则河宽AB为m(结果保留根号).8.某电动车厂新开发的一种电动车如图所示,它的大灯A射出的光线AB,AC与地面MN所夹的锐角分别为8∘和10∘,大灯A与地面的距离为1m,则该车大灯照亮地面的宽度BC约是m.(不考虑其他因素,结果精确到0.1m,参考数据:sin8∘≈0.14,tan8∘≈0.14,sin10∘≈0.17,tan10∘≈0.18)9.如图,秋千链子的长度OA=3m,静止时秋千踏板处于A位置.此时踏板距离地面0.3m,秋千向两边摆动.当踏板处于A′位置时,摆角最大,即∠AOA′=50∘,则踏板在A′位置时,与地面的距离约为m.(sin50∘≈0.766,cos50∘≈0.643,结果精确到0.01m)10.如图,电线杆CD的高度为ℎ,两根拉线AC与BC互相垂直,∠CAB=α,则拉线BC 的长度为(A,D,B在同一条直线上)()A.ℎsinαB.ℎcosαC.ℎtanαD.ℎ·cosα11.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=1213,则小车上升的高度是()A.5米B.6米C.6.5米D.12米12.小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.11−sinα米 B.11+sinα米 C.11−cosα米 D.11+cosα米参考答案1.【答案】:解:过点A作AE⊥CD于点E,过点B作BF⊥AE于点F,如图所示.∵OD⊥CD,∠BOD=70∘,∴AE//OD,∴∠A=∠BOD=70∘.在Rt△ABF中,AB=2.7m,∴AF=AB·cosA·2.7×cos70∘≈2.7×0.34=0.918(m),∴AE=AF+BC≈0.918+0.15=1.068≈1.1(m).答:端点A到底面CD的距离约是1.1m.【解析】:过点A作AE⊥CD于点E,过点B作BF⊥AE于点F,构造Rt△ABF,运用解直角三角形的知识求出AF,进而求出AE得出结果.2.【答案】:解:在Rt△ABC中,∵cosα=BC,AB∴BC=AB·cosα≈600×0.26=156(m);在Rt△BDF中,∵sinβ=DF,BD∴DF=BD·sinβ=600×√2=300√2≈300×1.41=423(m).2又EF=BC,∴DE=DF+EF≈423+156=579(m).【解析】:分别在Rt△ABC和Rt△BDF中,运用解直角三角形的知识求得BC和DF的近似值,再根据线段的和差求DE.3(1)【答案】解:时钟的时针从9点转到11点转过2个大格,则旋转角的度数为2×30∘=60∘.(2)【答案】如图,过点D作DE⊥AC于点E,DF⊥AB于点F,设半圆圆心为O,连接OD.∵点D在11点的刻度上,∴∠COD=60∘,∴DE=OD·sin60∘=2×√32=√3(米),OE=OD·cos60∘=2×12=1(米),∴CE=2−1=1(米),∴DF=AE=5+1=6(米).∵同时测得1米长的标杆的影长为1.6米,∴DFBF =1.61,∴BF=61.6=154(米),∴AB=BF+DE=154+√3≈5.5(米).答:旗杆AB的高度约为5.5米.4.【答案】:如图,延长OC,AB交于点P.∵∠ABC=120∘,∴∠PBC=60∘.∵∠OCB=∠A=90∘,∴∠P=30∘.∵AD=20米,∴OA=12AD=10米.∵BC=2米,∴在Rt△CPB中,PC=BC·tan60∘=2√3米,PB=2BC=4米.∵∠P=∠P,∠PCB=∠A,∴△PCB∽△PAO,∴PCPA =BCOA,∴PA=PC·OABC =2√3×102=10√3(米),∴AB=PA−PB=(10√3−4)米.答:路灯的灯柱AB高应该设计为(10√3−4)米.【解析】:如图,延长OC,AB交于点P.∵∠ABC=120∘,∴∠PBC=60∘.∵∠OCB=∠A=90∘,∴∠P=30∘.∵AD=20米,∴OA=12AD=10米.∵BC=2米,∴在Rt△CPB中,PC=BC·tan60∘=2√3米,PB=2BC=4米.∵∠P=∠P,∠PCB=∠A,∴△PCB∽△PAO,∴PCPA =BCOA,∴PA=PC·OABC =2√3×102=10√3(米),∴AB=PA−PB=(10√3−4)米.答:路灯的灯柱AB高应该设计为(10√3−4)米.5.【答案】:B【解析】:如图,过点A作BC的平行线AG,过点E作EH⊥AG于点H,则∠EHG=∠HEF=90∘.∵∠AEF=135∘,∴∠AEH=∠AEF−∠HEF=45∘,∠EAH=45∘.在△EAH中,∠EHA=90∘,∠EAH=45∘,AE=1.3米,≈1.3×0.7=0.91(米).∴EH=AE·sin∠EAH=1.3×√22∵AB=1.3米,∴AB+EH≈1.3+0.91=2.21≈2.2(米).6.【答案】:B【解析】:设CD的长为x米,在Rt△BCD中,∠BDC=α=18∘.∵tan∠BDC=BC,CD∴BC=CD·tan∠BDC≈0.32x.在Rt△ACD中,∠ADC=β=66∘.∵tan∠ADC=AC,CD∴AC=CD·tan∠ADC≈2.25x.∵AB=AC−BC,∴2.82≈2.25x−0.32x,解得x≈1.5.7.【答案】:30√3【解析】:∵∠ACB=30∘,∠ADB=60∘,∴∠CAD=30∘,∴AD=CD=60m.在Rt△ABD中,AB=AD·sin∠ADB=60×√3=30√3(m).28.【答案】:1.6【解析】:过点A作AD⊥MN于点D,如图所示.由题意可得,AD=1m,∠ABD=8∘,∠ACD=10∘,∠ADC=∠ADB=90∘,∴BD=ADtan8∘≈10.14≈7.14(m),CD=ADtan10∘≈10.18≈5.56(m),∴BC=BD−CD=7.14−5.56≈1.6(m)9.【答案】:1.37【解析】:如图,过点A′作A′D⊥OA于点D,A′C垂直地面于点C,延长OA交地面于点B,则四边形BCA′D为矩形,∴A′C=DB.∵∠AOA′=50∘,且OA=OA′=3m,∴在Rt△OA′D中,OD=OA′·cos∠AOA′≈3×0.643≈1.929(m).又∵AB=0.3m,∴OB=OA+AB=3.3m,∴A′C=DB=OB−OD≈3.3−1.929≈1.37(m)10.【答案】:B【解析】:根据同角的余角相等,得∠CAD=∠BCD,由cos∠BCD=CDBC,知BC=CDcos∠BCD =ℎcosα.故选B11.【答案】:A【解析】:小车水平行驶的距离为13×cosα=12(米),由勾股定理得其上升的高度为√132−122=5(米)12.【答案】:A【解析】:设PA=PB=PB′=x,在Rt△PCB′中,sinα=PC,PB′=sinα,∴x−1x∴x−1=xsinα,∴(1−sinα)x=1,.∴x=11−sinα故选A。

人教版九年级数学下册28 应用举例 同步练习(无答案)

人教版九年级数学下册28 应用举例 同步练习(无答案)

28.2.2应用举例姓名:得分:日期:一、选择题(本大题共 7 小题)1、如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P 的距离为()A.40√2海里B.40√3海里C.80海里D.40√6海里2、如图,在斜坡EF上有一信号发射塔CD,某兴趣小组想要测量发射塔CD的高度,于是在水平地面用仪器测得塔顶D的仰角为31°,已知仪器AB高为2m,斜坡EF的坡度为i=3:4,塔底距离坡底的距离CE=10m,最后测得塔高为12m,A、B、C、D、E在同一平面内,则仪器到坡底距离AE约为()米(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.6)A.18.6B.18.7C.22.0D.24.03、如图,在一笔直的沿湖道路l上有A,B两个游船码头,观光岛屿C在码头A北偏东60°的方向,在码头B北偏西45°的方向,AC=8 km.游客小张准备从观光岛屿C乘船沿CA回到码头A或沿CB回到码头B,设开往码头A,B的游船速度分别为v1,v2,若他回到A,B所用时间等于( )相等,则v1v2A.12B.√3 C.√2 D.√224、如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=√34AB2C.点C是△ABD的外心D.sin2A+cos2D=15、图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(54√3+10)cmB.(54√2+10)cmC.64 cmD.54cm6、如图,一个坡角为15∘的看台横截面上有旗杆 CD ,在这横截面上进行测量得到以下数据:在点 A 和点 B 处测得旗杆顶端的仰角分别为60∘和30∘,点 A 离地面高度为1米,且测得点 A 到点 B 的距离为8√6米,则旗杆的高度为( )A.23米B.24米C.25米D.26米7、如图,地面上点A和点B方间有一堵墙MN(墙的厚度忽略不计),在墙左侧的小明想测量墙角点M到点B的距离.于是他从点A出发沿着坡度为i=1:0.75的斜坡AC走10米到点C,再沿水平方向走4米到点D,最后向上爬6米到达瞭望塔DE的顶端点E,测得点B的俯角为40°,已知AM=8米,则BM大约为()米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)A.8.6B.10.7C.15.4D.16.7二、填空题(本大题共 6 小题)8、如图,往竖直放置的在A处山短软管连接的粗细均匀细管组成的“U形装置中注入一定量的水,水面高度为9cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB中水柱的长度为______cm.9、如图所示,小亮家在点O处,其所在学校的校园为矩形ABCD,东西长AD=1000米,南北长AB=600米.学校的南正门在AD的中点E处,B为学校的西北角门.小亮从家到学校可以走马路,路线O→M→E(∠M=90°);也可以走沿河观光路,路线O→B.小亮在D处测得O位于北偏东30°,在B处测得O位于北偏东60°小亮从家到学校的两条路线中,长路线比短路线多______米.(结果保留根号)10、如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.则该电线杆PQ的高度是______(结果可保留根号)11、永定塔是北京园博园的标志性建筑,其外观为辽金风格的八角九层木塔,游客可登至塔顶,俯瞰园博园全貌.如图,在A处测得∠CAD=30°,在B处测得∠CBD=45°,并测得AB=52米,那么永定塔的高CD约是______米.(√2≈1.4,√3≈1.7,结果保留整数)12、如图,已知∠MAN=30°,点B在边AM上,且AB=4√3,点P从点A出发沿射线AN方向运动,在边AN上取点C(点C在点P右侧),连结BP,BC.设PC=m,当△BPC成为等腰三角形的个数恰好有3个时,m的值为______.13、某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.三、解答题(本大题共 6 小题)14、某地下车库出口处安装了“两段式栏杆”,如图1所示,点A是栏杆转动的支点,点E是栏杆;两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图2所示的位置,其示意图如图3所示(栏杆宽度忽略不计,EF长度远大于车辆宽度),其中AB⊥BC,EF∥BC,∠AEF=143°,AB=AE=1.2米,该地下车库出口的车辆限高标志牌设置如图4是否合理?请通过计算说明理由.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)15、如图1,研究发现,科学使用电脑时,望向荧光屏幕画面的“视线角”α约为20°,而当手指接触键盘时,肘部形成的“手肘角”β约为100°.图2是其侧面简化示意图,其中视线AB水平,且与屏幕BC垂直.(1)若屏幕上下宽BC=20cm,科学使用电脑时,求眼睛与屏幕的最短距离AB的长;(2)若肩膀到水平地面的距离DG=100cm,上臂DE=30cm,下臂EF水平放置在键盘上,其到地面的距离FH=72cm.请判断此时β是否符合科学要求的100°?(参考数据:sin69°≈1415,cos21°≈1415,tan20°≈411,tan43°≈1415,所有结果精确到个位)16、某学生为测量一棵大树AH及其树叶部分AB的高度,将测角仪放在F处测得大树顶端A 的仰角为30°,放在G处测得大树顶端A的仰角为60°,树叶部分下端B的仰角为45°,已知点F、G与大树底部H共线,点F、G相距15米,测角仪高度为1.5米.求该树的高度AH和树叶部分的高度AB.17、夏季多雨,在山坡CD处出现了滑坡,为了测量山体滑坡的坡面长度CD,探测队在距离坡底C点120√3米处的E点用热气球进行数据监测,当热气球垂直升腾到B点时观察滑坡的终端C点,俯视角为60°,当热气球继续垂直升腾90米到达A点,此时探测到滑坡的始端D点,俯视角为45°,若滑坡的山体坡角∠DCH为30°,求山体滑坡的坡面长度CD的长.(计算保留根号)18、如图,一扇窗户垂直打开,即O M⊥OP,AC是长度不变的滑动支架,其中一端固定在窗户的点A处,另一端C在OP上滑动,将窗户OM按图示方向向内旋转37°到达ON位置,此时,点A、C的对应位置分别是点B、D.测量出∠ODB为28°,点D到点O的距离为30cm.(1)求B点到OP的距离;(2)求滑动支架的长.(结果精确到0.1)(数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53,sin 53°≈0.8,cos53°≈0.6,tan53°≈1.33)19、如图,海上有一灯塔P,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A点处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有暗礁的危险?。

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)(2)

最新人教版初中数学九年级数学下册第一单元《反比例函数》测试(含答案解析)(2)

一、选择题1.如图,过反比例函数()0ky x x=>的图象上一点A 作AB x ⊥轴于点B ,连接AO ,若2AOB S =△,则k 的值为( )A .2B .3C .4D .52.已知反比例函数13y x=-,下列结论中不正确的是( ) A .图象必经过点11,3⎛⎫- ⎪⎝⎭B .y 随x 的增大而增大C .图象在第二、四象限内D .若1x >,则103y -<< 3.已知点()11,x y 、()22,x y 、()33,x y 在双曲线5y x=上,当1230x x x <<<时,1y 、2y 、3y 的大小关系是( )A .123y y y <<B .312y y y <<C .132y y y <<D .231y y y <<4.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .5.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A.3 B.4 C.5 D.66.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;④若点(m,n)在反比例函数y=2x的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④7.在同一直角坐标系中,反比例函数y=abx与一次函数y=ax+b的图象可能是()A.B.C.D.8.已知反比例函数y=21kx+的图上象有三个点(2,1y), (3, 2y),(1-, 3y),则1y,2y,3y的大小关系是()A.1y>2y>3y B.2y>1y>3y C.3y>1y>2y D.3y>2y>1y 9.如图,矩形OABC的顶点A、C分别在x轴、y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转600得到线段OP,连接AP,反比例函数y=kx过P、B两点,则k的值为()A .23B .233C .43D .4310.如图,直线y =x +2与y 轴交于点A ,与直线y =﹣3x +10交于点B ,P 是线段AB 的中点,已知反比例函数y =kx的图象经过点P ,则k 的值为( )A .1B .3C .6D .811.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <. 12.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数ky x=(k <0)的图象上的两点,若x 1<0<x 2,则下列结论正确的是( ) A .y 1<0<y 2B .y 2<0<y 1C .y 1<y 2<0D .y 2<y 1<0二、填空题13.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.14.如图,平面直角坐标系中,矩形ABCD 的顶点B 在x 轴负半轴上,边CD 与x 轴交于点E ,连接AE ,//AE y 轴,反比例函数()0ky x x=>的图象经过点A ,及AD 边上一点F ,4AF FD =,若,2DA DE OB ==,则k 的值为________.15.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.16.如图,A 、B 两点在双曲线()30y x x=>,分别经过A 、B 两点向坐标轴作垂线段,已知1S =阴影,则12S S +=______.17.如图,已知双曲线()0ky x x=>经过矩形OABC 边BC 的中点E ,与AB 交于点F ,且四边形OEBF 的面积为3,则k=________.18.调查显示,某商场一款运动鞋的售价是销量的反比例函数(调查获得的部分数据如下表). 售价x (元/双) 200 240 250 400销售量y (双)30 252415价应定为_______元.19.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____. 20.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数my x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x的取值范围;(3)若点P在y轴上,且使四边形OMDP的面积与四边形OMNC的面积相等,求点P 的坐标.22.已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点,直线AB与y轴交于点C.(1)求反比例函数和一次函数的关系式;(2)求△AOC的面积;(3)求不等式kx+b<mx的解集(直接写出答案).23.如图,已知一次函数y=x+b的图像与反比例函数kyx(x<0)的图像相交于点A(-1,2)和点B,点P在y轴上.(1)求b和k的值;(2)当PA+PB 的值最小时,点P 的坐标为______; (3)当x+b <kx时,请直接写出x 的取值范围. 24.如图,已知A (−4,2),B (n ,−4)是一次函数y kx b =+的图象与反比例函数my x=的图像的两个交点. (1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求不等式0mkx b x+->的解集(请直接写出答案).25.如图,已知一次函数1332y x =-与反比例函数2ky x =的图象相交于点A (4,n )和M(m ,﹣6),与x 轴相交于点B . (1)求m ,n 的值;(2)观察图象,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为 ,若y 1﹣y 2<0时自变量x 的取值范围为 ;(3)若P 点为x 轴上一点, Q 点为平面直角坐标系中的一点,以点A 、B 、P 、Q 为顶点的四边形为菱形,求Q 点的坐标.26.如图在平面直角坐标系xOy 中,函数14(0)y x x=>的图象与一次函数2y kx k =-的图象的交点为(,2)A m . (1)求一次函数的解析式;(2)设一次函数y kx k =-的图象与y 轴交于点B ,若点P 是x 轴上一点,且满足PAB ∆的面积是6,求点P 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据点A 在反比例函数图象上结合反比例函数系数k 的几何意义,即可得出关于k 的含绝对值符号的一元一次方程,解方程求出k 值,再结合反比例函数在第一象限内有图象即可确定k 值. 【详解】解:∵点A 在反比例函数ky x=的图象上,且AB x ⊥轴于点B , ∴设点A 坐标为(,)x y ,即||k xy =,∵点A 在第一象限,x y ∴、都是正数,1122AOBSOB AB xy ∴=⋅=, 2AOBS=,4k xy ∴==.故选:C . 【点睛】本题考查了反比例函数的性质以及反比例函数系数k 的几何意义,解题的关键是找出关于k 的含绝对值符号的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数系数k 的几何意义找出关于k 的含绝对值符号的一元一次方程是关键.2.B解析:B 【分析】根据反比例函数图象上点的坐标特点:横纵坐标之积=k ,可以判断出A 的正误;根据反比例函数的性质:k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大可判断出B 、C 、D 的正误. 【详解】A 选项:将1x =-代入得13y =故过11,3⎛⎫-- ⎪⎝⎭,故A 正确;B 选项:103k =-<,故在每个象限内y 随x 的增大而增大,故B 错误; C 选项:103k =-<,故图象过二、四象限,故C 正确; D 选项:若1x >,则103y -<<,故D 正确. 故选:B . 【点睛】此题主要考查了反比例函数的性质,以及反比例函数图象上点的坐标特点,关键是熟练掌握反比例函数的性质:(1)反比例函数y =kx(k≠0)的图象是双曲线;(2)当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;(3)当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.3.C解析:C 【分析】根据反比例函数图象的性质可得双曲线5y x=在一、三象限,且在每个象限内,y 随x 的增大而减小,即可求解. 【详解】 解:双曲线5y x=在一三象限,且在每个象限内,y 随x 的增大而减小, ∵1230x x x <<<, ∴132y y y <<, 故选:C . 【点睛】本题考查反比例函数图象与性质,掌握反比例函数图象与性质是解题的关键.4.B解析:B 【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可. 【详解】解:当a>0时,y=|a|x+a=ax+a的图象在第一、二、三象限,ayx=的图象在第一、三象限,此时选项B正确;当a<0时,y=|a|x+a=﹣ax+a的图象在第一、三、四象限,ayx=的图象在第二、四象限,此时没有正确选项;故选:B.【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.5.D解析:D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3x,故BO=x+ 3x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+ 3x)2﹣x2﹣29x=6.故答案为:D.【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键. 6.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m ⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m==, ∴x 2=2x 1, ∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.7.D解析:D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】∵一次函数图象应该过第一、二、四象限,∴a<0,b>0,∴ab<0,∴反比例函数的图象经过二、四象限,故A选项错误,∵一次函数图象应该过第一、三、四象限,∴a>0,b<0,∴ab<0,∴反比例函数的图象经过二、四象限,故B选项错误;∵一次函数图象应该过第一、二、三象限,∴a>0,b>0,∴ab>0,∴反比例函数的图象经过一、三象限,故C选项错误;∵一次函数图象经过第二、三、四象限,∴a<0,b<0,∴ab>0,∴反比例函数的图象经经过一、三象限,故D选项正确;故选:D.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.A解析:A【分析】先判断出k2+1是正数,再根据反比例函数图象的性质,比例系数k>0时,函数图象位于第一三象限,在每一个象限内y随x的增大而减小判断出y1、y2、y3的大小关系,然后即可选取答案.【详解】解:∵k2≥0,∴k2+1≥1,是正数,∴反比例函数y=21kx的图象位于第一三象限,且在每一个象限内y随x的增大而减小,∵(2,y1),(3,y2),(﹣1,y3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.9.D解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x,2 x )代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k),把点P=12kk , ∴k=2 k 12⨯k=2122k ⨯, ∵k 0≠,∴k=3,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.10.B解析:B【分析】先求出直线y =x +2与坐标轴的交点A 坐标,再由两条直线解析式构成方程组,解方程组求得B 点坐标,进而求得中点P 的坐标,问题就迎刃而解了.【详解】解:直线y =x +2中,令x =0,得y =2,∴A (0,2),解2310y x y x =+⎧⎨=-+⎩得24x y =⎧⎨=⎩, ∴B (2,4),∵P 是线段AB 的中点,∴P (1,3),把(1,3)P 代入k y x=中,得3k =, 故选:B .【点睛】本题主要考查了两条直线的相交问题,反比例函数图象上点的坐标特征,待定系数法.本题的关键是求出P 点坐标. 11.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键. 12.B解析:B【分析】首先根据系数判定函数的图象在二、四象限,再根据x 1<0<x 2,可比较出y 1、y 2的大小,进而得到答案.【详解】 解:由反比例函数k y x=(k <0),可知函数的图象在二、四象限, ∵x 1<0<x 2,∴A (x 1,y 1)在第二象限,y 1>0,B (x 2,y 2)在第四象限,y 2<0,∴y 2<0<y 1,故选:B .【点睛】此题主要考查了反比例函数图象上的点的坐标特征,熟练掌握是解题的关键.二、填空题13.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD =|k|=16,则求出k 得到反比例函数的解析式为y =16x,再利用A 点的横坐标为2可计算出A 点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S △ACD .【详解】解:∵BE ⊥x 轴于E ,BD ⊥y 轴于D ,∴S 矩形BEOD =|k |=16,而0k >,∴k =16, ∴反比例函数的解析式为y =16x , ∵AC ⊥y 轴,AC =2,∴A 点的横坐标为2,当x =2时,y =16÷2=8,∴CD =OC ﹣OD =8﹣2=6,∴S △ACD =12×2×6=6. 故答案为6.【点睛】本题考查了反比例函数比例系数k 的几何意义:在反比例函数图象y =k x中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|. 14.【分析】根据矩形的性质已知条件可得均为等腰直角三角形进而根据点在坐标系中的位置设并过点作于再根据点与点之间的相对位置反比例函数的解析式用含表示出然后利用反比例函数的解析式得到关于的方程解方程即可得解 解析:15【分析】根据矩形的性质、已知条件可得ADE 、ABE △、BCE 均为等腰直角三角形,进而根据点在坐标系中的位置设(),0E x ,并过D 点作DHAE ⊥于H ,再根据点与点之间的相对位置、反比例函数的解析式用含x 、k 表示出,k A x x ⎛⎫ ⎪⎝⎭、7436,55x x F ++⎛⎫ ⎪⎝⎭,然后利用反比例函数的解析式得到关于k 的方程,解方程即可得解.【详解】∵AD AE =,90ADE ∠=︒∴ADE 为等腰直角三角形∴45DAE ∠=︒ ∴9045BAE DAE ∠=︒-∠=︒∴ABE △为等腰直角三角形∴45ABE ∠=︒∴45CBE ∠=︒∴BCE 为等腰直角三角形设(),0E x ,则,k A x x ⎛⎫ ⎪⎝⎭,过D 点作DH AE ⊥于H ,如图:∴()1112222DH AE BE x ===+ ∴()132222x DH OE x x ++=++= ∴322,22x x D ++⎛⎫ ⎪⎝⎭ ∵4AF FD =∴点F 的横坐标为32217422415x x x +++-⋅=+、纵坐标为2213622145x x x ++++⋅=+ ∴7436,55x x F ++⎛⎫ ⎪⎝⎭∵,k A x x⎛⎫ ⎪⎝⎭ ∴2k AE x x ==+ ∴()2k x x =+∴()7436255x x k x x ++=⋅=⋅+∴()()()7436252x x x x ++=+∴3x =或2x =-(不合题意舍去)∴()()233215k x x =+=⨯+=.【点睛】本题考查了反比例函数、矩形的性质、等腰直角三角形的判定和性质等,能够表示出点F 坐标是解题的关键.15.【分析】过点B 作BH ⊥OC 于H 构造出矩形利用矩形的性质进而求解出CDEF 的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B 作BH ⊥OC 于H ∵A (04)B (24)∴OA =4AB =2AB ∥OC ∴ 解析:2360【分析】过点B 作BH ⊥OC 于H ,构造出矩形,利用矩形的性质,进而求解出C 、D 、E 、F 的坐标,最终分别计算出S 1,S 2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8,由842033yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,解得24xy=⎧⎨=⎩或383xy=⎧⎪⎨=⎪⎩,∴D(3,83),∴直线OD的解析式为89y x=,∵OE=EC,∴E(52,0),∴直线BE的解析式为y=﹣8x+20,由82089y xy x=-+⎧⎪⎨=⎪⎩,解得942xy⎧=⎪⎨⎪=⎩,∴F(94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.16.4【分析】根据反比例函数系数k的几何意义求出S1+S阴影和S2+S阴影求出答案【详解】解:∵AB两点在双曲线上∴S1+S阴影=3S2+S阴影=3∴S1+S2=6-2=4故答案为:4【点睛】本题考查的解析:4【分析】根据反比例函数系数k 的几何意义,求出S 1+S 阴影和S 2+S 阴影,求出答案.【详解】解:∵A 、B 两点在双曲线3y x=上, ∴S 1+S 阴影=3,S 2+S 阴影=3,∴S 1+S 2=6-2=4,故答案为:4.【点睛】本题考查的是反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|. 17.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.18.300【分析】先利用待定系数法求出再根据利润(售价进价)销量建立方程然后解方程即可得【详解】由题意设将代入得:解得则设要使该款运动鞋每天的销售利润达到元其售价应定为元则整理得:解得经检验是所列方程的 解析:300【分析】 先利用待定系数法求出6000y x=,再根据“利润=(售价-进价)⨯销量”建立方程,然后解方程即可得.【详解】 由题意,设k y x=, 将(200,30)代入得:30200k =,解得6000k =, 则6000y x=, 设要使该款运动鞋每天的销售利润达到2400元,其售价应定为a 元,则()60001802400a a-⋅=, 整理得:()51802a a -=,解得300a =,经检验,300a =是所列方程的解,故答案为:300.【点睛】本题考查了利用待定系数法求反比例函数的解析式、分式方程的应用,正确求出售价与销量之间的反比例函数关系式是解题关键.19.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.20.【分析】过点A 作AH ⊥x 轴于点H 交BD 于点F 则四边形ACOH 和四边形ACDF 均为矩形根据S 矩形BEOD=16可得k 的值即可得到矩形ACOH 和矩形ACDF 的面积进而求出S △ACD 【详解】解:过点A 作A解析:6【分析】过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形,根据S 矩形BEOD =16,可得k 的值,即可得到矩形ACOH 和矩形ACDF 的面积,进而求出S △ACD .【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数()0k y x x=>经过点A ∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8 ∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.三、解答题21.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D (-3,2),M (-1,0)把D (-3,2)代入反比例函数m y x =中,23m =-,解得m=-6 把D (-3,2),M (-1,0)代入一次函数y kx b =+中320k b k b -+=⎧⎨-+=⎩,解得11k b =-⎧⎨=-⎩∴反比例函数的解析式为6y x=-,一次函数的解析式为1y x =-- (2)联立方程组61y x y x ⎧=-⎪⎨⎪=--⎩,解得1132x y =-⎧⎨=⎩,222-3x y =⎧⎨=⎩ ∴使一次函数值大于反比例函数值的x 的取值范围为x <-3或0<x <2(3)连接MN ,DP ,OD由题意可得N (-2,3) ∴119()(12)3222OMNC S OM NC OC =+=+⨯=四边形 1131231222OMD OPD OMDP S S S y y =+=⨯⨯+⨯=+△△四边形 由题意,391=22y +,解得7=3y ∴P 点坐标为703⎛⎫ ⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.22.(1)反比例函数关系式:4y=x;一次函数关系式:y=2x+2;(2)2;(3)x<-2或0<x<1.【分析】(1)由B点在反比例函数y=mx图象上,可求出m,再由A,B点在一次函数图象上,由待定系数法求出函数解析式;(2)由(1)可得A,C两点的坐标,从而求出△AOC的面积;(3)由图象观察函数y=mx的图象在一次函数y=kx+b图象的上方,即可求出对应的x的范围.【详解】(1)∵B(1,4)在反比例函数y=mx的图象上,∴m=4,又∵A(n,−2)在反比例函数y=mx的图象上,∴n=−2,又∵A(−2,−2),B(1,4)是一次函数y=kx+b图象上的点,∴可得224k bk b-+=-⎧⎨+=⎩,解得k=2,b=2,∴反比例函数关系式为4yx=;一次函数关系式:y=2x+2;(2)如图,过点A作AE⊥CE,由(1)可得A(−2,−2),C(0,2),∴AE=2,CO=2, ∴1122222AOC S CO AE =⨯=⨯⨯=. (3)由图象知:当0<x<1和x<−2时函数 y=m x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b<m x的解集为:0<x<1或x<−2. 【点睛】 本题考查一次函数与反比例函数的综合运用,灵活运用一次函数和反比例函数的图象、性质及解析式是解题关键.23.(1)b=3,k=-2;(2)5()3P 0,;(3)x<-2或-1<x<0 【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A 、B 的坐标,再根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y =mx +n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论;(3)根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y =x +b 的图象与反比例函数k y x=(x <0)的图象交于点A (−1,2),把A (−1,2)代入两个解析式得:2=(−1)+b ,2=−k ,解得:b =3,k =−2;(2)作点A 关于y 轴的对称点A′,连接A′B 交y 轴于点P ,此时点P 即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B 的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.24.(1)8yx=-;2y x=--;(2)C(-2,0);6;(3)0<x<2或x<-4.【分析】(1)根据A(-4,2)在反比例函数myx=的图象上求出m的值,根据题意求出n的值,再运用待定系数法求出一次函数的解析式;(2)求出y=-x-2与x 轴的交点C 的坐标,根据△AOB 的面积=△AOC 的面积+△COB 的面积求出△AOB 的面积;(3)观察图象得到答案.【详解】(1)∵A (-4,2)在m y x =上, ∴m=-8.∴反比例函数的解析式为8y x =-. ∵B (n ,﹣4)在8y x=-上, ∴n=2. ∴B (2,-4). ∵y=kx+b 经过A (﹣4,2),B (2,﹣4),4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩ ∴一次函数的解析式为2y x =--.(2)∵C 是直线AB 与x 轴的交点,∴当y=0时,x=-2.∴点C (-2,0).∴OC=2.∴S △AOB =S △ACO +S △BCO =112224622⨯⨯+⨯⨯= (3)不等式0m kx b x +-<的解集为0<x <2或x <-4. 【点睛】本题考查的是一次函数与反比例函数的交点和待定系数法的运用,灵活运用待定系数法是解题的关键,注意数形结合思想的正确运用.25.(1)m =-2,n=3 ;(2)x ≤﹣2或x >0;0<x <4或x <﹣2; (3)点Q 的坐标为(4,3)或(43)或(34,3)或(4,﹣3) 【分析】(1)把点A 、B 的坐标代入直线的解析式求解即可;(2)满足条件y 2≥﹣6且y 2≠0时的x 的取值范围即为反比例函数2k y x=在直线y =﹣6与x 轴之间的图象与第一象限内的图象对应的x 的范围,满足y 1﹣y 2<0时自变量x 的取值范围即为反比例函数比直线高的图象部分对应的x 的取值范围,据此解答即可;(3)先求出点B 的坐标,再分三种情况:①AB 、BP 为菱形的边,如图1;②AB 为菱形的对角线,如图2;③AB 为边、BP 为对角线,如图3;分别利用菱形的性质和勾股定理求解即可.【详解】解:(1)把点A (4,n )和M (m , ﹣6)代入一次函数1332y x =-, 得:34332n =⨯-=,3632m -=-, ∴2m =-,3n =;(2)对2k y x=,当y 2≥﹣6且y 2≠0时,自变量x 的取值范围为x ≤﹣2或x >0; 若y 1﹣y 2<0即y 1<y 2时自变量x 的取值范围为0<x <4或x <﹣2; (3)对1332y x =-,可得点B 的坐标为(2,0), ①若AB 、BP 为菱形的边,则()()22423013AB =-+-=,若点P 在点B 右侧,如图1,则BP=AQ=AB=13,所以点Q 的坐标为(413+,3);若点P 在点B 左侧,同理可得点Q 的坐标为(413-,3);②若AB 为菱形的对角线,如图2,设点Q 坐标为(n ,3),则BQ=AQ=4-n , 过点Q 作QF ⊥x 轴于点F ,则BF=2-n ,QF=3,在Rt △BQF 中,根据勾股定理,得()()222324n n +-=-,解得34n =, ∴点Q 的坐标为(34,3);③若AB 为边、BP 为对角线,如图3,由菱形的性质知:点Q 、A 关于x 轴对称,∴点Q 的坐标为(4,﹣3);综上,点Q 的坐标为(413,3)或(413+,3)或(34,3)或(4,﹣3). 【点睛】 本题主要考查了一次函数与反比例函数的图象与性质、菱形的性质以及勾股定理等知识,属于常考题型,熟练掌握相关知识、灵活应用数形结合的思想是解题的关键.26.(1)22y x =-;(2)(4,0),(2,0)-.【分析】(1)将点A 的坐标代入反比例函数解析式中即可求出m ,然后将点A 的坐标代入一次函数解析式中即可求出结论;(2)将三角形以x 轴为分界线,分为两个三角形,先求出点C 和点B 的坐标,再把两个三角形的面积相加即可求出CP 的长,从而求出结论.【详解】(1)根据题意,将点(,2)A m 代入4y x=, 得:42m=, 解得:2m =,即点(2,2)A , 将点(2,2)A 代入y kx k =-,得:22k k =-,解得:2k =,∴一次函数的解析式为22y x =-;(2)如图,。

九年级数学下学期第一周检测试题 试题

九年级数学下学期第一周检测试题 试题

1 x y =2xOP y 2第6题yy 1=x"上街实验初级中学2021届九年级下学期第一周检测试题〔无答案〕"制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日1.以下运算正确的选项是〔 〕 A .(3xy 2) 2=6xy 4B .2x-2=14x2 C .(-x ) 7÷(-x ) 2=-x 5 D .(6xy 2) 2÷3 xy =2 2.据旅游局统计,今年“五·一〞小长假期间,我旅游场走势良好,假期旅游总收入到达8.55亿元,用科学记数法可以表示为〔 〕 ×106×107C ×108×1094.如图,l ∥m ,∠1=115°,∠2=95°,那么∠3=〔 〕 A .120° B .130° C .140° D .150° 5.△ABC 在平面直角坐标系中的位置如下图,将△ABC 先向下平移5个单位,再向左平移2个单位,那么平移后C 点的坐标是〔 〕 A .〔5,-2〕 B .〔1,-2〕 C .〔2,-1〕 D .〔2,-2〕6.如图,过点Q 〔0,3.5〕的一次函数的图象与正比例函数y =2x 的图象相交于点P ,能表示这个一次函 数图象的方程是〔〕A .3x -2y +3.5=0B .3x -2y -3.5=0C .3x -2y +7=0D .3x +2y -7=07.函数y 1=x (x ≥0),y 2=4x(x >0)的图象如下图,以下结论:B '第12题A C BC '① 两函数图象的交点坐标为A 〔2,2〕; ② 当x >2时,y 2>y 1;③ 直线x =1分别与两函数图象交于B 、C 两点,那么线段BC 的长为3; ④ 当x 逐渐增大时,y 1的值随着x 的增大而增大,y 2的值随着x 的增大而减小. 那么其中正确的选项是〔〕A .只有①②B .只有①③C .只有②④D .只有①③④ 8.在函数21x y x +=-中,自变量x 的取值范围是 9.化简:27-12+43=______________. 10.分解因式:4x 2-25=______________.11.一个材质均匀的正方体的六个面上分别标有字母 A 、B 、C ,其展开图如下图随机抛掷此正方体, A 面朝上的概率是______________.12.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =60°,AB =6, Rt A C B ''可以看作是由Rt △ABC 绕点A 逆时针方向旋转60°得到的, 那么线段C B '的长为_________________.13.先化简:〔﹣x+1〕÷,然后从﹣1≤x≤2中选一个适宜的整数作为x 的值代入求值.15.某中学方案从荣威公司购置A,B 两种型号的小黑板,经洽谈,购置一块A 型小黑板比购置一块B 型小黑板多用20元,且购置5块A 型小黑板和4块B 型小黑板一共需820元,求: (1)购置一块A 型小黑板,一块B 型小黑板各需多少元?(2)根据这所中学的实际情况,需从荣威公司购置A,B 两种小黑板一共60块,要求购置A,B 两种型号小黑板的总费用不超过5240元,并且购置A 型小黑板的数量应大于购置A,B 两种型号小黑板总数量的 ,请你通过计算,求出该中学从荣威公司购置A,B 两种型号的小黑板有哪几种方案?制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日13。

数学基础训练九年级全一册人教版答案

数学基础训练九年级全一册人教版答案

数学基础训练九年级全一册人教版答案第一单元数与代数
1.1 有理数的基本概念
1.有理数的含义和性质
–符号
–乘除法规则
2.有理数的比较和运算
–比较大小
–四则运算
3.实际问题解决
–买卖问题
–比例问题
1.2 代数式与代数方程
1.代数式的加减
2.代数方程的解法
3.实际问题解决
第二单元几何初步
2.1 直角三角形
1.直角三角形的性质
2.直角三角形的基本定理
3.直角三角形的运用
4.直角三角形的实际问题
2.2 圆
1.圆的基本概念
2.圆心角与圆周角
3.圆的面积计算
第三单元数据统计
3.1 统计与概率
1.统计的基本概念
2.统计图的绘制与解读
3.概率的计算
4.实际问题解决
3.2 算法初步
1.算法的基本概念
2.算法的四则运算应用
3.实际问题解决
第四单元数学综合应用
4.1 综合应用题
1.带入方程解题
2.运用图形知识解题
3.实际问题应用
答案解析
•第一单元答案
•第二单元答案
•第三单元答案
•第四单元答案
以上是九年级全一册人教版数学基础训练书的答案解析。

希望能对学习有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

省东莞石龙九年级数学下册 第一周练习题 新人教版
一、选择题:
1、抛物线()6122
+-=x y 的顶点坐标为() A 、(-12,6)B 、(12,-6)C 、(12,6)D 、(-12,-6)
2、把二次函数23x y =的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为()
A 、()1232+-=x y
B 、()1232-+=x y
C 、()1232--=x y
D 、()1232
++=x y 3.在同一直角坐标系中,一次函数y ax c =+和二次函数2y ax c =+的图象大致为( )
4、在 1 : 1 000 000 地图上, A , B 两点之间的距离是5cm , 则 A , B 两地的实际距离是( )
A . 5 千米
B . 50 千米
C . 500 千米
D . 5000 千米
5、下列四组条件中,能识别△ABC 与△ DEF 相似的是 ( )
A 、000075,45,55,45=∠=∠=∠=∠F D
B A
B 、AB =5,B
C =4,045=∠A ,DE =5,EF =4,045=∠D
C 、AB =6,BC =5,040=∠B ,DE =12,EF =10,040=∠E
D 、AB =BC ,045=∠A ,D
E =E
F ,045=∠E
6、如图,□ABCD 中,EF AB ,DE :EA =2:3,EF =4,则CD 的长为()
A 、316
B 、8
C 、10
D 、16 二、填空题:
7、已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .
8、如图,要测量池塘两端A 、B 的距离,可先取一个可以直接到达A 和B 的点C ,
连结AC 并延长到D ,使CA CD 21=,连结BC 并延长到E ,使CB CE 2
1=, 连结ED ,如果量出DE 的长为25米,那么池塘宽AB 为 米.
9、旗杆的影长为6米,相同时刻身高170cm 的人的影长为85cm ,那么旗杆的高是___
米。

10.抛物线2245=++y x x 的开口向__,顶点坐标是___,对称轴是___。

11.抛物线294y x px =-+与x 轴只有一个公共点,则p 的值是
12.已知函数22(3)4y x =-+-,当函数值y 随x 的增大而减小时,x 的取值范围是
三、解答题:
13 、如图,△ABC 中,DE BC ,AD =2,AE =3,BD =4 ,求 AC 的长.
x y O A x y O B x y O C x y O D
14、已知:四边形 ABCD 内接于⊙O ,连结AC 和BD 交于点 E ,且 AC 平分∠BAD .
求证:△ABC ∽△BCE .
15、如图△ABC 内接于⊙O ,AD 是 BC 边上的高,AE 是⊙O 的直径,
求证:AE AD AC AB ⋅=⋅
16、在平原上,一门迫击炮发射的一发炮弹的高度y(cm)与飞行时间x(s)的关系满足:x x y 105
12+-
= (1)经过多长时间,炮弹到达它的最高点?最高点的高度是多少?
(2)经过多长时间,炮弹落到地上爆炸?
17、已知抛物线822--=x x y ,(1)求出该抛物线与x 轴的两个交点;(2)若该抛物线与x 轴的两个交点分别为点A 、B (A 在B 的左边且它的顶点为P ,求△ABP 的面积。

18、如图,等边△ABC ,点D 、E 分别在BC 、AC 上,BD =CE ,AD 与 BE 相交于点 F 。

(1)试说明△ABD ≌BCE
(2)△EAF 与△EBA 相似吗?说说你的理由;
(3)求证:DF AD BD ⋅=2
19、如图,AB 是⊙O的直径,C是⊙O上一点, CD⊥AB 于 D ,且AB=8 , DB = 2 .
( l)求证:△ABC∽△CBD ( 2)求图中阴影部分的面积(结果保留 )
20、如图,在△ABC中,AB =8cm , BC=16cm,点P从点A开始沿AB边向点B以2cm/s 的速度移动,点Q从点 B 开始沿BC边向点C以4cm/s的速度移动,如果P、Q 同时出发,经过几秒钟后以点P、B、O为顶点的三角形与△ABC 相似?
21.某旅行社去外地旅游,30人起组团,每人单价800元,旅行社对超过30人的团给予优惠,即旅行团每增加一人,每
人的单价就降低10元.你帮助算一下,当一个旅行团的人数是多少时,旅行社可以获得最大营业额?
、如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方A、B距地面高都是 2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子C处,求绳子的最低点距地面的距离为多少米?
A B
C。

相关文档
最新文档