八年级数学-一次函数的应用典型例题(一)
一次函数的经典例题

一次函数的经典例题一次函数是数学中的基础概念之一,也是数学应用中常见的函数类型。
下面给出一些经典的一次函数例题,帮助读者更好地理解和掌握一次函数的相关概念和性质。
例题1:设直线L过点A(2,3)和B(5,7),求直线L的方程。
解析:根据直线上两点的坐标,我们可以先计算出直线的斜率k。
斜率的计算公式为k=(y2-y1)/(x2-x1)。
代入点A和B的坐标,得到斜率k=(7-3)/(5-2)=4/3。
接下来,我们可以使用点斜式的方程形式来求解,即y-y1=k(x-x1)。
代入点A的坐标和斜率,得到直线L的方程为y-3=(4/3)(x-2)。
例题2:已知直线L的方程为y=2x+1,求直线L与x轴和y轴的交点坐标。
解析:当直线与x轴相交时,y坐标为0;当直线与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入直线方程得到0=2x+1,解方程可得x=-1/2。
所以,直线L与x轴的交点坐标为(-1/2,0)。
接下来,令x=0,代入直线方程得到y=2(0)+1,解方程可得y=1。
所以,直线L与y 轴的交点坐标为(0,1)。
例题3:已知一次函数y=3x-2,求函数图像与x轴和y轴的交点坐标,并画出函数图像。
解析:当函数与x轴相交时,y坐标为0;当函数与y轴相交时,x坐标为0。
因此,我们可以分别令y=0和x=0,解方程求出交点坐标。
首先,令y=0,代入函数方程得到0=3x-2,解方程可得x=2/3。
所以,函数图像与x轴的交点坐标为(2/3,0)。
接下来,令x=0,代入函数方程得到y=3(0)-2,解方程可得y=-2。
所以,函数图像与y轴的交点坐标为(0,-2)。
为了更好地理解该一次函数的特性,我们可以绘制其函数图像。
根据函数的斜率和截距,我们可以确定函数图像的走势。
斜率为正数3表示函数是一个上升的直线,而截距-2表示函数与y轴的交点坐标为(0,-2)。
通过这些信息,我们可以在坐标系中画出该一次函数的图像。
初二数学《一次函数应用题》习题

一次函数应用题一次函数的应用是解决实际问题的又一种方法,是中考的命题热门,由于学生的社会经验较少,理解实际问题的能力有限,无论是利用方程解决实际题,还是利用函数解决实际问题,学生都感觉是个难点,因此必须认真对待.从历年的中考试题中的我们发现出题的形式有三类:一.识图解决实际问题;二. 建立解析式、解决实际问题;三.方案选择.因此我们就从这三个类型开始学习一次函数应用题(一)———识别图象,解决实际问题【例题】1.如图的折线表示一辆自行车离家的距离与时间的关系,骑车者9:00离开家,15:00回家,根据图象回答:(1)离家最远的距离是千米,对应的时间是. (2)第一次休息时,离家多远?答:(3)在11:00-12:00他骑车的路程是多少千米?答:(4)在9:00-10:00的平均速度是多少?答:(5)他在何时至何时停止前进并休息午餐?答:(6)他在停止前进后返回,骑了多少千米?答:(7)返回时的平均速度是多少?答:2.如图,l A l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。
(1)B出发时与A相距千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是小时。
(3)B出发后小时与A相遇。
(4)求出A行走的路程S与时间t的函数关系式。
【练习】1.某单位急需用车,但又不准备买车,他们准备和一个个体车主或一国营出租车公司中的一家签订月租合同,设汽车每月行驶x千米,应付给个体车主的月租费是y2元,应付给出租车公司的月租费是y1元,y1,y2分别与x之间的函数关系图象(两条射线)如图(1)观察图象,回答下列问:(1)每月行驶的路程在什么范围内时,租国营公司的车合算?(2)每月行驶的路程等于多少时,租两家的车费相同?(3)如果该单位估计每月的行程约为2300千米,那么这个单位租哪家的车合算?2.一农民带了若干自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答农民自带的零钱是元;降价前他每千克土豆的出售的价格是元;降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,那么他一共带了千克土豆。
一次函数的应用(知识点+例题)

1.(2013•鄂州)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).一次函数的应用知识点一:一次函数与坐标轴交点和面积问题1:交点问题一次函数b kx y +=的图象是经过(0,b )和(-kb,0)两点。
【典型例题】1.直线y=-x+2与x 轴的交点坐标是 ,与y 轴的交点坐标是 2.直线y=-x -1与x 轴的交点坐标是 ,与y 轴的交点坐标是 3.函数y=x+1与x 轴交点为( )A .(0,-1)B .(1,0)C .(0,1)D .(-1,0)4.直线y=-32x+3与x 轴、y 轴所围成的三角形的面积为( ) A .3 B .6 C .34 D .325.直线y=-2x-4交x 轴、y 轴于点A 、B ,O 为坐标原点,则S △AOB = 。
6.若直线y=3x+b 与两坐标轴所围成的三角形的面积是6个单位,则b 的值是 。
7.如图所示,已知直线y=kx-2经过M 点,求此直线与x 轴交点坐标和直线与两坐标轴围成三角形的面积.2:面积问题面积:一次函数y=kx+b 与x 、y 轴所交的两点与原点组成的三角形的面积为2b k(1):两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解。
(2):复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形)。
(3):往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高。
1. 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。
八年级一次函数解析式典型例题及答案

一次函数解析式典型题型一. 定义型(一次函数即X 和Y 的次数为1) 例1. 已知函数y m xm =-+-()3328是一次函数,求其解析式。
解:由一次函数定义知m m 28130-=-≠⎧⎨⎩∴=±≠⎧⎨⎩m m 33∴=-m 3,故一次函数的解析式为y x =-+33注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。
如本例中应保证m -≠30 二. 点斜型(已知斜率和经过的一点)例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。
解: 一次函数y kx =-3的图像过点(2,-1) ∴-=-123k ,即k =1故这个一次函数的解析式为y x =-3变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。
三. 两点型(已知图像经过的两点)已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为 解:设一次函数解析式为y kx b =+由题意得024=-+=⎧⎨⎩k b b ∴==⎧⎨⎩k b 24故这个一次函数的解析式为y x =+24 四. 图像型例4. 已知某个一次函数的图像如图所示,则该函数的解析式为y=-2x+2。
y2O 1 x解:设一次函数解析式为y kx b =+由图可知一次函数y kx b =+的图像过点(1,0)、(0,2)∴有020=+=+⎧⎨⎩k b b ∴=-=⎧⎨⎩k b 22故这个一次函数的解析式为y x =-+22 五. 斜截型(已知斜率k 和截距b )两直线平行,则k1=k2;两直线垂直,则k1=-1/k2例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。
当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2 又 直线y kx b =+在y 轴上的截距为2,∴=b 2 故直线的解析式为y x =-+22六. 平移型(向上/右平移则截距增加;向左平移则截距减小)例6. 把直线y x =+21向下平移2个单位得到的图像解析式为 y=2x-1。
八年级一次函数的应用

初 中 数 八 学 上
巩固练习 国家规定个人发表文章、出版图书获 ① 得稿费的纳税方法是:稿费不高于 800 元 ② 的不纳税;稿费高于 800 元但不高于 4 000 元的应缴纳超过 800 元的那一部分的 14% ③ 的税;稿费高于 4 000 元的应缴纳全部稿费 的 11% 的税. (1)当稿费收入高于 800元但不高于 为x元 4 000元时,写出应缴纳所得税 y(元)与稿费 收入 x(元)之间的函数关系式;小结:转化初 中 数 八 学 上
实际问题 解决 老师寄语:
数学问题 (一次函数)
数学来源于生活,生活中处处有数学, 让我们学会用数学的眼光看待生活.
初 中 数 八 学 上
试一试 说明:在现实生活中,两 个变量之间的数量关系并不完 全遵循同一个标准,在这样的 情况下,往往根据自变量不同 的取值范围,分别列出不同的 关系式. 解:①当 x 不超过 3 km时,y=7.0;
②当 x 超过 3 km时, x y=7.0 + 2.4 (x-3) 2.4 (x-3) 8.0 3
初 中 数 八 学 上
一辆汽车在普通公路上行驶 了 35 km 后驶入高速公路,然后 以 105 km/h 的速度匀速前进. 当车内里程表上显示本次出行已行驶了 175 km 、200 km 时,你能算出汽车在高速 公路上行驶了多长时间吗? 方法三 (函数的方法): 如果设行驶路程为 s (km),在高速公路 上的行驶时间为 t (h).你能写出 s 与 t 之间 的关系吗? s 105 t 35
初中数学八年级
上册
初 中 数 八 学 上
(苏科版)
第五章 第四节
一次函数的应用(1)
初 中 数 八 学 上
一辆汽车在普通公路上行驶 了 35 km 后驶入高速公路,然后 以 105 km/h 的速度匀速前进. 当车内里程表上显示本次出行已行驶了 175 km 、200 km 时,你能算出汽车在高速 公路上行驶了多长时间吗? 你有几种方法解决这个问题.
初二一次函数经典例题

初二一次函数经典例题经典数学题【例一】1、]A、,B、是正比例函数 C、当时,图象上的两点,下列判断中,正确的是D、当时,2、下列说法中,不正确的是[ ]A、在中,y与x成正比例B、在y=3x+2中,y与中,S与成正比例 x成正比例C、在xy=1时,y与成正比例D、在圆面积公式3、一次函数y=x+2的图象大致是[ ]A、B、C、D、4、函数中,自变量x的取值范围是[ ]A、x1B、x1C、xD、x-5、如图,射线OA、OB分别表示甲、乙两名运动员在自行车比赛中所行进路程s与时间t的函数关系,他们行进的速度关系是[ ]A、甲比乙快B、乙比甲快C、甲、乙速度相等D、不确定6、若一次函数y=(2-m)x-2的函数值y随x的增大而减小,则m的取值范围是[ ]A、m0B、m0C、m2D、m27、如图(1),在Rt△ABC中,ACB=90,D是斜边AB的中点,动点P从B点出发,沿BCA运动,设,点P运动的路程为x,若y与x之间的函数图象如图(2)所示,则△ABC的面积为[ ]A、4B、6C、12D、148、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校.在课堂上,李老师请学生画出自行车行进路程s(km)与行进时间t(小时)的函数图象的示意图,同学们画出的示意图如图所示,你认为正确的是 A、B、C、D、9、当a0时,函数,,y=-|a|x-1,中,y随x的增大而减小的函数有[ ]A、1个 B、2个 C、3个 D、4个10、某地地面气温是18℃,如果高度每升高1km,气温下降6℃,那么气温t(℃)与高度h(km)之间的函数关系式为[ ]A、t=18-6hB、t=-18+6hC、t=18-3hD、t=-18+3h11、如图,是一种古代计时器漏壶的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用x表示时间,y表示壶底到水面的高度,下面的图象适合表示一小段时间内y与x的函数关系的是(不考虑水量变化对压力的影响)[ ]A、B、C、D、12、若直线交于y轴的正半轴,则[ ]A、,n2B、,n2C、,n2D、,n=213、如图所示:边长分别为1和的两个正方形,其中一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内去掉小正方形后的面积为s,那么s与t的大致图象应为[ ]A、B、C、D、 14、已知点M(3,2)、N(1,-1),点P在y 轴上,且PM+PN最短,则点P的坐标是[ ] A、(0,)B、(0,0)C、(0,) D、(0,)15、在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x(分)变化的图象(全程)如图,根据图象判定下列结论不正确的是[ ] A、甲先到达终点 B、前30分钟,甲在乙的前面C、第48分钟时,两人第一次相遇 D、这次比赛的全程是28千米二、填空题16、正比例函数中,比例系数是_______________.17、已知C=2R,其中C是R的_________函数,比例系数是______.18、点19、在函数在函数的图象上,则a=___. 中,自变量x的取值范围是_________________________________.的值为0. 20、当x=______________________________时,函数21、函数中,当自变量x的值逐渐增大时,y的值随之逐渐______.和水泵抽水时间t(时)的函数关系用下面的图像表示,根据图像填写22、河道的剩水量下列各题:(1)水泵抽水前,河道内有_________的水,水泵最多能抽___________时;(2)水泵抽8时后,河道剩水量是________________;(3)河道剩水100时,水泵已抽水_______________时.23、根据图像,确定函数的解析式:(1)_______________,(2)____________.24、某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务. 小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是__________元,小张应得的工资总额是_________元,此时,小李种植水果________亩,小李应得的报酬是________元;(2)当1025、某校办工厂现在产值是15万元,如果每增加100元投资,一年可增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间的函数关系式为26、正比例函数的图像经过点A(-1,-4),过点A向x轴、y轴作垂线,垂足为M、N,则矩形AMON的面积为___.27、函数y=k(x-k)(k0)的图像不经过第________________象限.28、2,,20__)满足已知0(i=1,+=1968,使直线y=x+i(i=1,2,,20__)的图象经过一、二、四象限的概率是__________________.29、已知,,则图象经过点和点的一个函数的表达式是_____________.30、某电视台在某一天晚上黄金时段的3分钟内插播长为20秒和40秒的两种广告,20秒广告每次收费6000元,40秒广告每次收费10000元,若要求每种广告播放不少于2次,且电视台选择收益最大的播放方式,则在这一天黄金时段3分钟内插播广告的最大收益是____元.三、解答题31、已知函数y=(m+2)x-m.(1)当m取何值时,y随x的增大而增大(2)当m取何值时,y随x的增大而减小32、当自变量x的取值满足什么条件时,函数y=5x+17的值满足下列条件(1)y=0;(2)y=-7;(3)y=20.33、已知正比例函数的图象与一次函数的图象交于点P(3,-6).(1)求的值;(2)如果一次函数与x轴交于点A,求A 点的坐标.34、一根弹簧原长15cm,所挂物品不超过20kg时,每增加1kg,弹簧就伸长cm.求弹簧的长度y(cm)与所挂物品x(kg)之间的函数关系式.35、一列火车以90千米/时的速度匀速前进,求它的行驶路程s(单位:千米)随行驶时间t(单位:时)变化的函数关系式,画出函数图像.36、y满足关系2x-3y+1=0,①y是x的函数吗②x是y的函数吗已知两个变量x、试问:若是,写出y与x的关系式;说明理由.37、如图①是公交公司某条公交线路的收支差额y(即票价总收入减去运营成本)与乘客量x之间的函数图象.目前这条线路亏损,为了扭亏,有关部门举行提高票价的听证会乘客代表认为:公交公司应改善管理,降低运营成本,以此举实现扭亏.公交公司认为:运营成本难以下降,公司已尽力,应适当提高票价才能扭亏.根据这两种意见,可以把图①分别改画成图②和图③.(1)说明图①中点A、点B的实际意义.(2)你认为图②和图③两个图象中,反映乘客意见的是图_________,反映公司意见的是图_________.(3)如果公交公司采用适当提高票价,又减少成本的办法实现扭亏为赢,请你在图④中画出符合这种办法的y与x大致的函数图象.38、某城市居民用水实行阶梯收费,每户每月用水量如果未超过20吨,按每吨1.9元收费;每户每月用水量如果超过20吨,未超过的部分按每吨1.9元收费,超过的部分则按每吨2.8元收费.设某户每月用水量为x吨,应收水费为y元.(1)分别写出每月用水量未超过20吨和超过20吨时,y与x间的函数关系式;(2)若该城市某户5月份水费平均为每吨2.2元,求该户5月份用水多少吨39、已知.(1)写成y是x的函数的形式;(2)写成x是y的函数的形式.40、小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)变化的函数图象如图所示.(1)根据图象提供的数据,求比赛开始后,两人第一次相遇的时间;(2)根据图象提供的信息,请你设计一个问题,并给予解答.41、学校组织暑假夏令营,人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且旅费均为每人200元.人多可以优惠,甲旅行社表示可给每位旅客7.5折优惠;乙旅行社表示可免去一位游客的旅途费用,其余游客8折优惠.问学校选择哪一家旅行社最合算42、地表以下岩层的温度t(℃)随着所处的深度h(千米)的变化而变化.t与h之间在一定范围内近似地成一次函数关(2)系.(1)根据下表,求t(℃)与h(千米)之间的函数关系式;求当岩层温度达到1770℃时,岩层所处的深度为多少米43、汶川灾后重建工作受到全社会的广泛关注,全国各省对口支援四川省受灾市县.我省援建剑阁县,建筑物资先用火车源源不断的运往距离剑阁县180千米的汉中市火车站,再由汽车运往剑阁县.甲车在驶往剑阁县的途中突发故障,司机马上通报剑阁县总部并立即检查和维修.剑阁县总部在接到通知后第12分钟时,立即派出乙车前往接应.经过抢修,甲车在乙车出发第8分钟时修复并继续按原速行驶,两车在途中相遇.为了确保物资能准时运到,随行人员将物资全部转移到乙车上(装卸货物时间和乙车掉头时间忽略不计),乙车按原速原路返回,并按预计时间准时到达剑阁县.下图是甲、乙两车离剑阁县的距离y(千米)与时间x(小时)之间的函数图象.请结合图象信息解答下列问题:(1)请直接在坐标系中的( )内填上数据.(2)求直线CD的函数解析式,并写出自变量的取值范围.(3)求乙车的行驶速度.44、已知函数,在x=-3时,y=7,求当x=3时,y的值.45、E为CD边的中点,P为正方形ABCD如图,已知正方形ABCD的边长是1,边上的一个动点,动点P从A出发,沿运动,到达E点.若点P经过的路程为自变量x,△APE的面积为函数y,则当于多少.四、应用题46、露天一水池内有的水,蒸发掉(x30)的水后,池内尚余的水.写出y与x之时,x的值等间的函数关系式,并写出比例系数k.47、某水果批发市场规定,批发苹果不少于100kg时,批发价为每千克2.5元.小王携带现金3000元到这市场采购苹果,并以批发价买进.如果购买的苹果为xkg,小王付款后的剩余现金为y元,试写出y与x之间的函数关系式,并指出自变量x的取值范围.48、五一期间李老师组织学生去某风景区旅游,已知门票的收费标准是20人以内(含20人),每人20元,超过20人时,超过的部分每人10元.(1)写出应收门票费y(元)与参加旅游人数x(人)(x20)之间的函数关系式;(2)利用(1)中的关系式计算:李老师若带领51名学生(包括老师共52人)去旅游,购买门票需要花多少钱49、某单位急需汽车,但无力购买,单位领导想租一辆. 一国营汽车出租公司的出租条件为每百千米租费100元;一个体出租车司机的条件为每月付800元工资,另外每百千米付10元,问该单位租哪家的汽车合算50、国家推行节能减排,低碳经济政策后,某企业推出一种叫CNG的改烧汽油为天然气的装置,每辆车改装费为b元,据市场调查知:每辆车改装前、后的燃料费(含改装费)、(单位:元)与正常运营时x(单位:天)之间分别满足关系式:=ax、=b+50x,如图所示.(1)每辆车改装前每天的燃料费a=______试根据图象解决下列问题:元;每辆车的改装费b=____________元,正常营运_________天后,就可以从节省的燃料费中收回改装成本;(2)某出租车公司一次性改装了100辆出租车,因而,正常运营多少天后共节省燃料费40万元51、某移动通讯公司开设了两种通讯业务,全球通要缴月租费50元,另外每分钟通话费为0.4元;神州行不缴月租费,但每分钟通话费为0.6元.阿苗每月最多通话200分钟,请问他选择哪一种业务更合适.52、某工厂有甲、乙两条生产线先后投产,在乙生产线投产以前,甲生产线已生产了200吨成品;从乙生产线投产开始,甲、乙两条生产线每天生产20吨和30吨.(1)分别求出甲、乙两条生产线投产后,甲、乙的生产总量(吨)和(吨)与从乙开始投产以来所用时间x(天)之间的函数表达式,并指出到第几天结束时,甲、乙两条生产线的总产量相同;(2)在直角坐标系中,作出上述两个函数在第一象限内的图象,观察图象分别指出第15天和第25天结束时,哪条生产线的总产量高53、小刚上午7:30从家里出发步行上学,途经少年宫时走了1200步,用时10分钟,到达学校的时间是7:55.为了估测路程等有关数据,小刚特意在学校的田径跑道上,按上学的步行速度,走完100米用了150步.(1)小刚上学步行的平均速度是多少米/分小刚家和少年宫之间、少年宫和学校之间的路程分别是多少米(2)下午4:00,小刚从学校出发,以45米/分的速度行走,按上学时的原路回家,在未到少年宫300米处与同伴玩了半小时后,赶紧以110米/分的速度回家,中途没有再停留.问:①小刚到家的时间是下午几时②小刚回家过程中,离家的路程s(米)与时间t(分)之间的函数关系如图,请写出点B的坐标,并求出线段CD所在直线的函数解析式.经典数学题【例二】一、填空(每小题3分,共30分)(1)点(-3,a)在一次函数y=-2x-6图象上,则a= . (2)一次函数y=4-x与x轴的交点坐标是,与y(3)如果正比例函数的图象经过(2,4),(4)如图,直线L是一次函数y=kx+b的图象,则k= ,(5)函数y=4x-3中,y的值随x的值增大而(6)分别用x和y表示等腰三角形的顶角和底角的度数, y与x之间的函数解析式为 .(7)在某公用电话亭打电话时,需付电话费y(元)与通话时间 x(分钟)之间的函数关系用图象表示如图.小明打了2分钟需付费元;小莉打了8分钟需付费元.(8)一个一次函数的图象经过点(-1,2),且函数y 的值随自变量x 的增大而减少,请你写出一个符合上述条件的函数关系式: .二选择题(每小题3分,共15分)(1)下列函数中,y随x增大而增大的是( )(A) y=-2x B) y=-2x+1 (C) y=x-2 (D) y=2-2x (2)若yx23b是正比例函数,则b的值是 ( ) A. 0 B.223 C. D. 332(3)下列给出的四个点中,不在直线y=2x-3上的是 ( )A.(1, -1)B.(0, -3)C.(2, 1)D.(-1,5) (4)如图,OA、BA分别表示甲、乙两名学生运动的一次函数,图中S和t分别表示运动路程和时间,根据图象判断快者比慢者每秒快( )A. 1mB. 1.5mC. 2mD. 2.5m(5)已知直线y=kx+b(k0)与x轴、y轴都交于负半轴,则( )(A)k0,b0 (B)k0,b0 (C)k 0,b0, (D)k0,b0三解答题(共55分) 1、(本题8分)下表中,y是x 的一次函数,补全下表,写出函数表达式,并画出函数图象.2、(本题8分)画出直线y=-2x+2的图象,并根据图象回答:① 写出直线与x轴的交点,与y 轴的交点的坐标② 直线与坐标轴围成的三角形的面积是多少③ y随x 增大变化情况如何3、(本题9分)某市移动通讯公司开设了两种通讯业务:全球通先缴50元月租费,然后每通话1分钟,再付通话费0.4元;神州行不缴月租费,每通话1分钟付通话费0.6元;(这里均市内电话),若一个月通话x 分钟,两种通讯方式的费用分别为y1和y2元。
八年级数学:一次函数(应用题)练习(含解析)

C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.
初二一次函数经典例题

初二一次函数经典例题一、题目背景在初中数学中,学生常常遇到关于一次函数的问题。
一次函数是一种非常基础的函数类型,在数学中具有很重要的地位。
通过学习一次函数的性质和应用,可以为学生建立起一种较为系统的数学思维方式和解决问题的方法。
本文将给出一些初二一次函数的经典例题,以帮助学生更好地理解一次函数的概念和应用。
二、例题一题目:某种商品的价格与销量之间存在一种线性关系,已知当销量为0时,价格为100元;当销量为200时,价格为50元。
那么销量为350时,价格是多少元?解析:我们可以设商品的价格为P,销量为S。
根据题目中给出的信息,可以列出两个点的坐标:(0, 100)和(200, 50)。
由于这两个点在直线上,我们可以利用直线的斜率公式来求解。
首先,我们需要计算出直线的斜率k。
斜率可以通过两个点的纵坐标之差除以横坐标之差来计算。
在这个例子中,斜率k为:k = (50 - 100) / (200 - 0) = -50 / 200 = -1/4接下来,我们可以利用直线的斜截式方程来求解。
斜截式方程的一般形式为:y = kx + b,其中k为斜率,b为截距。
已知斜率k为-1/4,我们可以将一个已知点的坐标代入方程来求解截距b。
以(0, 100)代入方程:100 = (-1/4) * 0 + b,可以得到b = 100。
因此,直线的方程为:y = (-1/4)x + 100。
最后,我们可以代入销量为350的坐标x = 350,得到价格y = (-1/4) * 350 + 100 = 25。
所以销量为350时,价格为25元。
三、例题二题目:某家电商网站进行促销活动,设定了一次函数来计算用户购买商品的折扣。
已知当购买1件商品时,折扣为10%;当购买10件商品时,折扣为30%。
那么购买20件商品时,折扣是多少?解析:同样地,我们可以设折扣为D,购买商品的数量为N。
根据题目中给出的信息,可以列出两个点的坐标:(1, 0.1)和(10, 0.3)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学-一次函数的应用典型例题(一)
一次函数解析式的一般形式是y=kx+b(k≠0),利用这一关系式可以解决一些实际问题或几何题.现举例说明如下.
例1 某种储蓄的月利率是0.36%,今存入本金100元,求本息和(本金与利息的和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(1998年宁夏回族自治区中考题)
分析∵利息=本金×月利率×月数,
∴y=100+100×0.36%×x=100+0.36x.
当x=5时,y=100+0.36×5=101.8,即5个月后的本息和为101.8元.
例2 托运行李P千克(P为整数)的费用为C,已知托运第一个1千克需付2元,以后每增加1千克(不足1千克按1千克计)需增加费用5角,则计算托运行李费用C的公式是______,托运重量为28.4千克的行李需付______元.(1996年安徽省中考题)
分析由题意知C=2+0.5(P-1).(P为自然数)
根据题意,28.4千克应按29千克计算,则当P=29时,C=2+0.5(29-1)=16(元).
例3 如图,在直角梯形ABCD中,∠C=45°,上底AD=3,下底BC=5,P是CD上任意一点,若PC 用x表示,四边形ABPD的面积用y表示.
(2)当四边形ABPD的面积是梯形ABCD面积的一半时,求点P的位置.
分析 (1)过D,P分别作DE⊥BC,PF⊥BC,垂足为E,F.
∵∠C=45°,
∴DE=EC=BC-AD=5-3=2.
在Rt△PFC中,PC=x,
∠C=45°,
(2)当四边形ABPD的面积是梯形面积一半时,则
例4 A市和B市分别有某种库存机器12台和6台,现决定支援C村10台,D村8台,已知从A 市调运一台机器到C村和D村的运费分别是400元和800元,从B市调运一台机器到C村和D 村的运费分别是300元和500元.
(1)设B市运往C村机器x台,求总运费W关于x的函数关系式;
(2)若要求总运费不超过9000元,共有几种调运方案?
(3)求出总运费最低的调运方案,最低运费是多少元?
分析由已知条件填出下表:
(1)依题意得函数式:
W=300x+500(6-x)+400(10-x)+800[8-(6-x)]
=200x+8600.
∴x=0,1,2,共有3种调运方案.
(3)当x=0时,总运费最低,即从A市调10台给C村,调2台给D村,从B市调6台给D村,为总运费最低的调运方案,最低运费为8600元.。