八年级数学下册知识点与典型例题
人教数学八年级下册《勾股定理》典型例题分析.docx

初中数学试卷桑水出品《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
5、在直线l 上依次摆放着七个正方形(如图4所示)。
人教版数学八年级下册数学全册知识清单梳理+经典例题练习(含答案)

八年级数学下册 知识清单二次根式1.定义及存在意义的条件: 定义:形如)0(≥a a 的式子叫做二次根式;有意义的条件:a ≥0. 2.根式化简及根式运算: 最简二次根式应满足的条件:(1)被开方数不含分母或分母中不含二次根式; (2)被开方数中的因数或因式不能再开方。
同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式。
根式化简公式:a a =2,2)(a =a ;根式运算: 乘法公式:)0,0(≥≥⋅=⋅b a b a b a ;b a b a ⋅=2除法公式:)0,0(>≥=⇔=b a b a ba b a b a 分母有理化:把分母中的根号化去,叫做分母有理化。
分母有理化的方法与步骤:①先将分子、分母化成最简二次根式;②将分子、分母都乘以分母的有理化因式,使分母中不含根式; ③最后结果必须化成最简二次根式或有理式。
常见分母有理化公式:b a ba ba a a a --=+=1,1 二次根式加减运算的步骤: (一化,二找,三合并 ) (1)将每个二次根式化为最简二次根式。
(2)找出其中的同类二次根式。
(3)合并同类二次根式。
3.双重非负性:002==⇒=+y x y x 且;00==⇒=+y x y x 且;000==⇒=+y x y x 且【典型例题1】 1、使代数式有意义的自变量x 的取值范围是( )A.x ≥3B.x >3且x ≠4C.x ≥3且x ≠4D.x >3 2、若式子-+1有意义,则x 的取值范围是( )A.x ≥21 B.x ≤21 C.x =21 D.以上答案都不对【典型例题2】3、已知x 、y 为实数,且y=﹣+4.+=( )A.13B.1C.5D.6 4、下列式子中,属于最简二次根式的是( )A. B. C. D.5、下列根式中,最简二次根式是( ) A.B.C.D.6、下列根式中与不是同类二次根式的是( )A. B. C. D.【典型例题3】7、化简的结果为()A. B. C.D.8、把根号外的因式移到根号内,得()A. B. C. D.9、计算的结果估计在()A.6至7之间B.7至8之间C.8至9之间D.9至10之间10、若,则( )A.1-2aB.1C.-1D.以上答案都不对【典型例题4】11、已知,,则代数式的值是()A.9B.±3C.3D.512、若m=,则m5﹣2m4﹣2016m3=()A.2015B.2016C.2017D.0【典型例题5】13、已知:实数a,b 在数轴上的位置如图所示,化简:﹣|a﹣b|.14、若的整数部分是a,小数部分是b ,求的值.15、已知△ABC的三边长a,b,c均为整数,且a和b 满足试求△ABC的c边的长.勾股定理1.勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。
新人教版八年级数学下册反比例函数知识点归纳和典型例题

新人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图2 5.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y 轴,BC//x轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m 的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P 分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
八年级数学下册《梯形》(基础)知识点归纳及典型例题讲解

梯形(基础)知识点归纳及典型例题讲解【学习目标】1.理解梯形的有关概念,理解直角梯形和等腰梯形的概念.2.掌握等腰梯形的性质和判定.3.初步掌握研究梯形问题时添加辅助线的方法,使问题进行转化.4. 熟练运用所学的知识解决梯形问题.5. 掌握三角形,梯形的中位线定理.【要点梳理】知识点一、梯形的概念一组对边平行,另一组对边不平行的四边形叫梯形. 在梯形中,平行的两边叫做梯形的底,较短的底叫做上底,较长的底叫做下底,不平行的两边叫做梯形的腰,夹在两底之间的垂线段叫做梯形的高,一腰和底的夹角叫做底角.要点诠释:(1)定义需要满足三个条件:①四边形;②一组对边平行;③另一组对边不平行.(2)有一组对边平行的四边形有可能是平行四边形或梯形,关键在于另一组对边的位置或者数量关系的不同.梯形只有一组对边平行,而平行四边形两组对边都平行;平行四边形中平行的边必相等,梯形中平行的一组对边必不相等.(3)在识别梯形的两底时,不能仅由两底所处的位置决定,而是由两底的长度来决定梯形的上、下底.知识点二、等腰梯形的定义及性质1.定义:两腰相等的梯形叫等腰梯形.2.性质:(1)等腰梯形同一个底上的两个内角相等.(2)等腰梯形的两条对角线相等.要点诠释:(1)等腰梯形是特殊的梯形,它具有梯形的所有性质.(2)由等腰梯形的定义可知:等腰相等,两底平行.(3)等腰梯形同一底上的两个角相等,这是等腰梯形的重要性质,不仅是“下底角”相等,两个“上底角”也是相等的.知识点三、等腰梯形的判定1.用定义判定:两腰相等的梯形是等腰梯形.2.判定定理:(1)同一底边上两个内角相等的梯形是等腰梯形.(2)对角线相等的梯形是等腰梯形.知识点四、辅助线梯形问题常常是通过作辅助线转化为特殊的平行四边形及三角形问题加以研究,一些常用的辅助线做法是:知识点五、三角形、梯形的中位线联结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.联结梯形两腰中点的线段叫梯形的中位线.梯形的中位线定理:梯形的中位线平行于两底,并且等于两底和的一半.【典型例题】类型一、梯形的计算1、已知:如图,在梯形ABCD中,AD//BC,AB=DC=AD=2,BC=4.求∠B的度数及AC的长.【答案与解析】解:过A点作AE∥DC交BC于点E.∵ AD∥BC,∴四边形AECD是平行四边形.∴ AD=EC,AE=DC.∵ AB=DC=AD=2,BC=4,∴ AE=BE=EC=AB.可证△BAC是直角三角形,△ABE是等边三角形.∴∠BAC=90°,∠B=60°.在Rt△ABC中,2223=-=.AC BC AB∴ ∠B =60°,23=AC .【总结升华】平移一腰,把梯形分成一个平行四边形和三角形. 举一反三:【变式】如图所示,已知四边形ABCD 是梯形,AD ∥BC ,∠A =90°,BC =BD ,CE ⊥BD ,垂足为E . (1)求证:△ABD ≌△ECB ;(2)若∠DBC =50°,求∠DCE 的度数.【答案】证明:(1)∵ AD ∥BC , ∴ ∠ADB =∠EBC . 又∵ CE ⊥BD ,∠A =90°, ∴ ∠A =∠CEB . 在△ABD 和△ECB 中,A CEBADB EBC BD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ECB .(2)∵ ∠DBC =50°,BC =BD ,∴ ∠BCD =65°. 又∵ ∠BEC =90°,∴ ∠BCE =40°.∴∠DCE=∠BCD-∠BCE=25°.2、如图所示,等腰梯形ABCD中,AD∥BC,AB=CD,对角线AC⊥BD,AD=4,BC=10,求梯形的面积.【思路点拨】题目中有对角线互相垂直的条件,可通过平行移动对角线的方法,将两条对角线集中到一个直角三角形中,利用这个条件求出高.【答案与解析】解:如图所示,过D作DF∥AC交BC的延长线于F,作DE⊥BC于E,∴四边形ACFD为平行四边形,∴ DF=AC,CF =AD=4.∵ AC⊥BD,AC∥DF,∴ ∠BDF =∠BOC =90°. ∵ ABCD 是等腰梯形 ∴ AC =BD ,∴ BD =DF .∴ BF =BC +CF =14,∴ DE =12BF =7.∴ 1(410)7492ABCDS=+⨯=梯形. 【总结升华】作对角线的平行线(平移对角线),将上底平移与下底拼接在一起构造两底之和,把梯形转化成平行四边形是常见的辅助线方法. 类型二、梯形的证明3、如图,在平行四边形ABCD 中,∠BAD 、∠BCD 的平分线分别交BC 、AD 于点E 、F ,AE 、DC 的延长线交于点G ,试说明四边形AFCG 为等腰梯形.【思路点拨】先证明四边形AFCG为梯形,再通过证底角相等证明四边形AFCG为等腰梯形.【答案与解析】解:∵四边形ABCD为平行四边形,∴∠BAD=∠BCD,又AE、CF分别为∠BAD、∠BCD的平分线,∴∠1=∠2=∠4,又AD∥BC,∴∠1=∠3,∴∠2=∠3,∴CF∥AG,又AF不平行于CG,∴四边形AFCG为梯形;又∠G=∠BCD-∠3=∠2+∠4-∠3=∠1,∴四边形AFCG为等腰梯形(同一底上两个角相等).【总结升华】本题考查了平行四边形的性质,难度适中,解题关键是熟练掌握并灵活运用等腰梯形的判定方法.举一反三:【变式】如图,梯形ABCD中,AD∥BC,AB=DC,∠BAD、∠CDA的平分线AE、DF分别交直线BC于点E、F.求证:CE=BF.【答案】证明:在梯形ABCD中,AB=DC,∴∠ABC=∠DCB,∠BAD=∠CDA.∵AE、DF分别为∠BAD与∠CDA的平分线,∴∠BAE=12∠BAD,∠CDF=12∠CDA.∴∠BAE=∠CDF.∴△ABE≌△DCF.(ASA)∴BE=CF.∴BE-BC=CF-BC.即CE=BF.4、如图所示,在梯形ABCD中,AD ∥BC ,对角线AC =5,BD =12,两底AD 、BC 的和为13.(1)求证:AC ⊥BD ;(2)求梯形ABCD 的面积.【答案与解析】证明:(1)过D 作DE ∥AC 交BC 的延长线于E 点,又∵ AD ∥BC ,∴ 四边形ACED 为平行四边形.∴ DE =AC =5,CE =AD .在△BDE 中,BD =12,DE =5,BE =BC +CE =BC +AD =13,且22251213+=,即DE 2+BD 2=BE 2,∴ △BDE 为直角三角形,∴ ∠BDE =90°,则DE ⊥BD ,又DE ∥AC ,∴ AC ⊥BD .(2)111()222ABD CBD ABCD S S S BD OA BD OC BD OA OC =+=+=+g g △△梯形 115123022BD AC ==⨯⨯=g . 【总结升华】(1)对角线互相垂直的四边形的面积等于对角线长度乘积的一半.(2)通过辅助线将已知数据转化在同一个三角形内,然后由勾股定理的逆定理得到垂直关系,这是本题的关键.类型三、三角形、梯形的中位线5、如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A .线段EF 的长逐渐增大B .线段EF 的长逐渐变小C .线段EF 的长不变D .无法确定【答案】C ;【解析】连AR ,由E 、F 分别为PA ,PR 的中点知EF 为△PAR 的中位线, 则12EF AR ,而AR 长不变,故EF 大小不变.【总结升华】当条件中含有中点的时候,要将它与中位线联系起来,进行联想,必要时添加辅助线,构造中位线图形.6、在直角梯形ABCD 中(如图所示),已知AB∥DC,∠DAB=90°,∠ABC=60°,EF 为中位线,且BC =EF =4,那么AB =( )A .3B .5C .6D .8【答案】B;【解析】解:作CG⊥AB于G点,∵∠ABC=60°BC=EF=4,∴BG=2,设AB=x,则CD=x-2,∵EF为中位线,∴AB+CD=2EF,即x+x-2=8,解得x=5,【总结升华】此题综合运用了梯形的中位线定理、直角三角形的性质.在该图中,最关键的地方是正确的构造直角三角形.。
八年级下册数学知识点与题型

八年级下册数学总复习知识点与题型1、非负数的性质:几个非负数的和等于0,则每个非负数都等于0. ①、若与|x ﹣y ﹣3|互为相反数,则x+y 的值为② 已知实数x ,y 满足,则x -y 等于③、已知,则x +y = ______ .2、⎩⎨⎧≥≠0201开方数、二次根式的意义:被、分数的意义:分母①、使代数式有意义的x 的取值范围是②、使41x -有意义的x 的取值范围是 ③、x —2 +3—x 有意义,则x 取值范围是 。
④、如果a 是任意实数,下列各式中一定有意义的是( ) A 、 a B 、1a2 C 、3-a D 、-a 2⑤、如果分式有意义,那么x 的取值范围是 ______ .3、关于增根的问题:方法:⑴、先去分母;⑵、猜增根代入前式。
①、关于x 的分式方程7m3x 1x 1+=--有增根,则m 的值为________. ②、若分式方程-=2无解,则m 的值为③、若解分式方程441+=+-x m x x 的解为正数,则m 的取值范围是 ④、若关于x 的方程有增根,则增根可能是 ______ .10.若解分式方程441+=+-x mx x 产生增根,则_______.4、分式的值等于0的条件:分子=0且分母≠0.方法:可约分。
可列方程和不等式。
① 若分式211x x -+的值为0,则x 的值等于②、若分式33x x --的值为零,则x= .5、等腰三角形的习题:注意答案的多种性。
①、等腰三角形的两边长是3和5,它的周长是②、等腰三角形的一个内角是50°,则另外两个角的度数分别是 ③、等腰三角形的一个内角是80°,则它的顶角的度数是 ④、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为⑤、等腰三角形的一内角为80°,则一腰上的高与底边的夹角为 ______ . ⑥、等腰三角形的一边长等于4,一边长等于9,则它的周长是 ⑦、已知等腰三角形的两边a ,b ,满足532+-b a +(2a+3b-13)2=0,则此等腰三角形的周长为⑧、等腰三角形一腰上的高与底边的夹角为60°,则该等腰三角形的顶角的度数是 ______ .⑨、等腰三角形的一个外角等于100°,则与它不相邻的两个内角的度数分别为 ⑩、等腰△ABC 中,(1)若有一个内角为40°,则顶角等于 °; (2)若有一个外角为100°,则顶角等于 °;(3)若∠A =30°,则∠B = (11)在等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15或12两个部分,则该等腰三角形的底边长等于6、科学记数法:⑴。
最新浙教版初中数学八年级下册知识点及典型例题优秀名师资料

浙教版初中数学八年级下册知识点及典型例题浙教版八年级下册知识点及典型例题第一章二次根式1(二次根式:一般地~式子叫做二次根式.注意:,1,若这个条件不成立~a,(a,0)a,0则不是二次根式,,2,是一个重要的非负数~即, ?0. aaa a(a,0),222(重要公式:,1,,,2,a,a, ,注意使用(a),a(a,0),,a(a,0),2. a,(a)(a,0)3(积的算术平方根:~积的算术平方根等于积中各因式的算术ab,a,b(a,0,b,0) 平方根的积,注意:本章中的公式~对字母的取值范围一般都有要求. 4(二次根式的乘法法则: . a,b,ab(a,0,b,0)5(二次根式比较大小的方法:,1,利用近似值比大小,,2,把二次根式的系数移入二次根号内~然后比大小,,3,分别平方~然后比大小.aa,(a,0,b,0)6(商的算术平方根:~商的算术平方根等于被除式的算术平方根除bb以除式的算术平方根.7(二次根式的除法法则:aa,(a,0,b,0),1,, bb,2,, a,b,a,b(a,0,b,0),3,分母有理化:化去分母中的根号叫做分母有理化,具体方法是:分式的分子与分母同乘分母的有理化因式~使分母变为整式.8(常用分母有理化因式: ~~~a与aa,b与a,bma,nb与ma,nb它们也叫互为有理化因式.9(最简二次根式:,1,满足下列两个条件的二次根式~叫做最简二次根式~? 被开方数的因数是整数~因式是整式~? 被开方数中不含能开的尽的因数或因式, ,2,最简二次根式中~被开方数不能含有小数、分数~字母因式次数低于2~且不含分母, ,3,化简二次根式时~往往需要把被开方数先分解因数或分解因式, ,4,二次根式计算的最后结果必须化为最简二次根式.10(二次根式化简题的几种类型:,1,明显条件题,,2,隐含条件题,,3,讨论条件题. 11(同类二次根式:几个二次根式化成最简二次根式后~如果被开方数相同~这几个二次根式叫做同类二次根式.12(二次根式的混合运算:,1,二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算~以前学过的~在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用, ,2,二次根式的运算一般要先把二次根式进行适当化简~例如:化为同类二次根式才能合并,除法运算有时转化为分母有理化或约分更为简便,使用乘法公式等.第二章一元二次方程1. 认识一元二次方程:2axbxc,,,0abc,,概念:只含有一个未知数~并且可以化为 (为常数~)a,0的整式方程叫一元二次方程。
人教版八年级下册数学《数据的分析》知识点归纳与经典例题

八年级数学《数据的分析》知识点归纳与经典例题【课标要求】【知识梳理】1.理解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。
2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式'=+,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组x x a数据中有重复多次出现的数据,常选用加权平均数公式。
3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。
平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。
中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。
4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。
5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=1n[(x1-x )2+(x2-x )2+…+(xn-x )2]; 标准差=方差方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。
【能力训练】 一、填空题:1.甲、乙、丙三台包装机同时分装质量为400克的茶叶.从它们各自分装的茶叶中分别随机抽取了10盒,测得它们的实际质量的方差如下表所示:2.甲、乙、丙三台机床生产直径为60mm 的螺丝,为了检验产品质量,从三台机床生产的螺丝中各抽查了20个测量其直径,进行数据处理后,发现这三组数据的平均数都是60mm ,它们的方差依次为S2甲=0.162,S 乙=0.058,S2丙=0.149.根据以上提供的信息,你认为生产螺丝质量最好的是__ __机床。
八年级(初二)下册 数学 思维导图+重点知识梳理

思维导图+重点知识梳理二次根式加、减、乘、除运算二次根式性质最简二次根式2 = 0 a a a ≥()()()()==-⎧⎪⎨⎪⎩200<a a a a a a ≥ ⋅⋅ = 0 0 a b a b a b (≥, ≥)()00>,bba b a a ≥= 0 0a a ≥≥()【例题展示】 已知a ,b 为等腰三角形的两条边长,且a,b 满足 ,求此三角形的周长.3264b a a =-+-+解:由题意得∴a =3,∴b =4.当a 为腰长时,三角形的周长为3+3+4=10;当b 为腰长时,三角形的周长为4+4+3=11.30260a a -⎧⎨-⎩≥,≥,【例题展示】 化简:(1)16;2(2)(5)-;解:2164 4.==22(2)(5)5 5.-==210;-2(3.14).-π()22111101010=10.----2(3.14) 3.14= 3.14.---πππ ,而3.14<π,要注意a 的正负性.注意2a a =32327+63---();06(2)20163+312.2--()-63336=--+解:(1)原式33.=-(2)原式333=--3 2.=-【例题展示】计算:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.归纳勾股定理 直角三角形边长的数量关系 勾股定理的逆定理 直角三角形的判定 互逆定理勾股定理【例题展示】 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?AB AB A 'B '解:油罐的展开图如图,则AB '为梯子的最短距离.∵AA '=2×3×2=12, A 'B '=5,∴AB '=13. 即梯子最短需13米.【例题展示】 如图,南北方向PQ 以东为我国领海,以西为公海,晚上10时28分,我边防反偷渡巡逻101号艇在A 处发现其正西方向的C 处有一艘可疑船只正向我沿海靠近,便立即通知在PQ 上B 处巡逻的103号艇注意其动向,经检测,AC =10海里,BC =8海里,AB=6海里,若该船只的速度为12.8海里/时,则可疑船只最早何时进入我领海?东北P AB C Q D分析:根据勾股定理的逆定可得△ABC 是直角三角形,然后利用勾股定理的逆定理及直角三角形的面积公式可求PD ,然后再利用勾股定理便可求CD .解:∵AC =10,AB =6,BC =8,∴AC 2=AB 2+BC 2,即△ABC 是直角三角形.设PQ 与AC 相交于点D ,根据三角形面积公式有 BC·AB= AC·BD ,即6×8=10BD ,解得BD=在Rt △BCD 中,2222248 6.4().5CD BC BD ⎛⎫=-=-= ⎪⎝⎭海里又∵该船只的速度为12.8海里/时,6.4÷12.8=0.5(小时)=30(分钟),∴需要30分钟进入我领海,即最早晚上10时58分进入我领海.东北P A B C QD 24.512125种判定方法三个角是直角四条边相等一个角是直角或对角线相等一组邻边相等或对角线垂直一组邻边相等或对角线垂直一个角是直角或对角线相等一个角是直角且一组邻边相等平行四边形、矩形、菱形、正方形之间的关系平行四边形【例题展示】如图,已知O是平行四边形ABCD的对角线的交点,AC=24,BD=18,AB=16,求△OCD的周长及AD边的取值范围.解:由题意得OA=OC=12,OB=OD=9,CD=AB=16,∴△OCD的周长为12+9+16=37.在△ACD中,24-16<AD<24+16,∴8<AD<40;在△ABD中,18-16<AD<18+16,∴2<AD<34;在△AOD中,12-9<AD<12+9,∴3<AD<21.综上所述,AD的取值范围应是8<AD<21.【例题展示】 如图,点C是AB的中点,AD=CE,CD=BE.(1)求证:△ACD≌△CBE;(2)连接DE,求证:四边形CBED是平行四边形.证明:(1)∵点C是AB的中点,∴AC=BC.在△ADC与△CEB中,AD=CE , CD=BE , AC=BC ,∴△ADC≌△CEB(SSS),(2)∵△ADC≌△CEB,∴∠ACD=∠CBE,∴CD∥BE.又∵CD=BE,∴四边形CBED是平行四边形.【例题展示】 如图,在△ABC中,AB=AC,E为AB的中点,在AB的延长线上取一点D,使BD=AB,求证:CD=2CE.证明:取AC的中点F,连接BF.∵BD=AB,∴BF为△ADC的中位线,∴DC=2BF.∵E为AB的中点,AB=AC,∴BE=CF,∠ABC=∠ACB.F∵BC=CB,∴△EBC≌△FCB,∴CE=BF,∴CD=2CE .【例题展示】 如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,求证:四边形ADCE为矩形.证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,即∠DAC= ∠BAC.又∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE= ∠CAM,∴∠DAE=∠DAC+∠CAE = (∠BAC+∠CAM)=90°.又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.1 212 12【例题展示】 如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm.将△ABC沿射线BC方向平移10cm,得到△DEF,A,B,C的对应点分别是D,E,F,连接AD.求证:四边形ACFD是菱形.证明:由平移变换的性质得CF=AD=10cm,DF=AC.∵∠B=90°,AB=6cm,BC=8cm,∴AC=DF=AD=CF=10cm,∴四边形ACFD是菱形.()22226810cm. AC AB BC∴=+=+=某些运动变化 的现实问题 函数建立函数模型定义自变量取值范围 表示法 一次函数 y =kx +b (k ≠0)应用图象:一条直线性质:k >0,y 随x 的增大而增大 k <0,y 随x 的增大而减小数形结合一次函数与方程(组)、 不等式之间的关系一次函数【例题展示】小明所在学校与家距离为2千米,某天他放学后骑自行车回家,行驶了5分钟后,因故停留10分钟,继续骑了5分钟到家.如图,能大致描述他回家过程中离家的距离s(千米)与所用时间t(分)之间的关系图象D的是( )【例题展示】 已知直线l与直线y=-2x平行,且与y轴交于点(0,2),求直线l的解析式.解:设直线l为y=kx+b, ∵l与直线y=-2x平行,∴k= -2.又∵直线过点(0,2),∴2=-2×0+b,∴b=2,∴直线l的解析式为y=-2x+2.【例题展示】小明将父母给的零用钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内钱数y (元)与存钱月数 x (月)之间的关系如图所示,根据下图回答下列问题:(1)求出y 关于x 的函数解析式.(2)根据关系式计算,小明经过几个月才能存够200元?4080120y /元x /月12345o解: (1)设函数解析式为y =kx +b ,由图可知图象过(0,40),(4,120),∴这个函数的解析式为y =20x +40.(2)当y =200时,20x +40=200, 解得x =8,∴小明经过8个月才能存够200元.解得20,40,k b =⎧⎨=⎩∴{040,4120,k b k b ⨯+=+=4080120y /元x /月12345o数据的集中趋势数据的波动程度 方差用样本平均数估计总体平均数 用样本方差估计总体方差平均数 中位数 众 数 用样本估计总体数据的分析 数据收集—数据整理—数据描述—数据分析 【例题展示】 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x值及这组数据的中位数.解:∵10,10,x,8的中位数与平均数相等∴ (10+x)÷2= (10+10+x+8)÷4∴x=8(10+x)÷2=9∴这组数据的中位数是9.【例题展示】.五个数1,3,a,5,8的平均数是4,则a3 5.6=_____,这五个数的方差_____.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学下册知识点复习第十六章 分式考点一、分式定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零 题型一:考查分式的定义下列代数式中:y x yx y x y x ba b a y x x -++-+--1,,,21,22π,是分式的有:yx yx y x y x b a b a -++-+-1,,22 .题型二:考查分式有意义的条件: 当x 有何值时,下列分式有意义(1)44+-x x (2)232+x x(3)122-x(4)3||6--x x(5)xx 11-题型三:考查分式的值为0的条件:当x 取何值时,下列分式的值为0.(1)31+-x x(2)42||2--x x (3)653222----x x x x答(1) (2) (3) 题型四:考查分式的值为正、负的条件:(1)当x 为何值时,分式 为正; (2)当x 为何值时,分式 为负; (3)当x 为何值时,分式 为非负数.练习:(1)已知分式11-x +x 的值是零,那么x的值是( )A .-1B .0C .1D .±1(2)当x________时,分式11-x 没有意义. 考点二:分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
1.分式的基本性质:M B M A M B M A B A ÷÷=⨯⨯= 2.分式的变号法则:b ab a b a ba =--=+--=-- 题型一:化分数系数、小数系数为整数系数【例1】不改变分式的值,把分子、分母的系数化为整数.(1)y x yx 41313221+- (2)ba ba +-04.003.02.0题型二:分数的系数变号【例2】不改变分式的值,把下列分式的分子、分母的首项的符号变为正号.(1)y x y x --+- (2)ba a ---(3)ba---题型三:化简求值题【例3】已知:511=+yx ,求y xy x y xy x +++-2232的值.提示:整体代入,①xy y x 5=+,②转化出yx 11+. 【例4】已知:21=-x x ,求221xx +的值. 【例5】若0)32(|1|2=-++-x y x ,求yx 241-的值.考点三:分式的运算1.确定最简公分母的方法:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母因式取各分母所有字母的最高次幂.32+-x x 2)1(35-+-x x x-842.确定最大公因式的方法①最大公因式的系数取分子、分母系数的最大公约数;②取分子、分母相同的字母因式的最低次幂. 题型一:分式的混合运算 1、 计算24111a aa a++--的结果是________. 2、 计算)242(2222---•+a a a a a a . 3、 计算11x x x x -⎛⎫÷- ⎪⎝⎭. 题型二:化简求值题先化简后求值(1)已知:1-=x ,求分子)]121()144[(48122x x x x -÷-+--的值;(2)已知:432zy x ==,求22232zy x xz yz xy ++-+的值;题型三:求待定字母的值【1】若关于x 的分式方程3132--=-x mx 有增根,求m 的值.【2】若分式方程122-=-+x ax 的解是正数,求a 的取值范围.提示:032>-=ax 且2≠x ,2<∴a 且4-≠a .【3】若()()212143-+-=---x Bx A x x x ,试求A 、B 的值.题型四:指数幂运算(1)下列各式中计算正确的是.A 27133=- .B 55a a -=- .C ()23639a a --= .D 538a a a +=(2)0322007125.02)21(+⨯---注意:★分式的通分和约分:关键先是分解因式★分式的运算:分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减混合运算:运算顺序和以前一样。
能用运算率简算的可用运算率简算。
★任何一个不等于零的数的零次幂等于1,=1(a;正整数指数幂运算性质(请同学们自己复习)也可以推广到整数指数幂.特别是一个整数的-n 次幂等于它的n 次幂的倒数,na an1=- 考点四:分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤 :(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根. 增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么? (1)审(作题时不写出);(2)设;(3)列;(4)解;(5)验 (6)答.应用题有几种类型基本上有五种:(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题.(2)数字问题 在数字问题中要掌握十进制数的表示法.(3)工程问题 基本公式:工作量=工时×工效. (4)顺水逆水问题v 顺水=v 静水+v 水 v 逆水=v 静水-v 水. (5) 盈利问题基本公式:利润=(售价-进价)×件数利润率=%100⨯进价利润1、 解方程21133x x x-=---. 2、 某市今年1月1日起调整居民用水价格,每立方米水费上涨25%,小明家去年12月份的水费是18元,而今年5月份的水费是36元.已知小明家今年5月份的用水量比去年12月份多6立方米,求该市今年居民用水的价格.3、某一工程队,在工程招标时,接到甲乙工程队的投标书,每施工一天,需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书预算,可有三种施工方案: (1)甲队单独完成此项工程刚好如期完工。
(2)乙队单独完成此项工程要比规定工期多用5天。
(3)若甲、乙两队合作4天,剩下的工程由乙队独做也正好如期完工。
问哪一种施工方案最省工程款?4、一辆汽车开往距离出发地180千米的目的地,出发后第1小时内按原计划的速度行使,1小时后加速为原来速度的1.5倍,并比原计划提前40分到达目的地,求前1小时的平均行使速度。
考点五.科学记数法:把一个数表示成na 10⨯的形式(其中a ,n 是整数)的记数方法叫做科学记数法. 用科学记数法表示绝对值大于10的n 位整数时,其中10的指数是整数位数减1用科学记数法表示绝对值小于1的正小数时,其中10的负指数是第一个非0数字前面0的个数(包括小数点前面的一个0)第十七章 反比例函数 1.定义:形如y=k/x (k 为常数,k≠0)的函数称为反比例函数。
2.图像:反比例函数的图像属于双曲线。
3.性质:当k >0时双曲线的两支分别位于第一、第三象限,在每个象限内y 值随x 值的增大而减小; 当k <0时双曲线的两支分别位于第二、第四象限,在每个象限内y 值随x 值的增大而增大。
4.|k|的几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。
考点一:反比例函数定义1、反比例函数的判定:下列函数中,y 是x 的反比例函数的是 D A .3x y =B.11+=x yC.21y x =D.3y x=2、K 值确定:①已知点A (-1,5)在反比例函数(0)ky k x=≠的图象上,则该函数的解析式为(C ) A :1y x =B :25y x= C :5y x=- D :5y x =②反比例函数35y x=-中,比例系数k=③已知22(1)m y m x-=-是反比例函数,则m =-1.④已知y -2与x 成反比例,当x=3时,y=1,则y 与x 的函数关系式为 .⑤已知y=y 1+y 2,y 1与x+1成正比例,y 2与x+1成反比例,当x=0时y=-5,当x=2时,y=-7 (1)求y 与x 之间的函数关系式 (2)当x=-2时,求y 的值考点二:反比例函数图象与性质 (1)反比例函数y=2x的图象位于 A 、第一、二象限 B 、第一、三象限 C 、第二、三象限 D 、第二、四象限 (3)已知反比例函数y=xm 5-的图象的一支在第一象限。
(1)图象的另一支在哪个象限,常数m 的取值是什么?(2)在这个函数图象的某一支上任取点A(a,b)和B (a /,b /),如果b> b /,那么a 与a /有怎么样的大小关系?(4)、已知关于x 的函数)1(-=x k y 和xky -=(k ≠0),它们在同一坐标系内的图象大致是( )O xy O xy O xy O xy(5)已知反比例函数xy 1-=的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( )A. 21y y <B. 21y y >C.21y y =D 1y 与2y 之间的大小关系不能确定Ex:反比例函数图象上有三个点(x 1,y 1)(x 2,y 2)(x 3,y 3)其中x 1<x 2<0<x 3,试判定y 1,y 2,y 3与0的大小关系。
考点三:反比例函数综合 1、如图, 已知反比例函数y =xk的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.(1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P (4,1)是否在这个反比例函数的图象上,并说明理由.考点四:反比例函数应用:练习:1、如图是三个反比例函数在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为2、已知P 是反比例函数()0≠=k xky 图象上一点作PA 垂直Y 轴与A,若S △AOP =3,则这个反比例函数解析式为 3、若反比例函数xk y 3-=的图象位于第一、三象限内,正比例函数y=(2k-9)x 过二、四象限,则k 的整数值为 4、如图是一次函数y 1=kx+b 和反比例函数xmy =2在同一个坐标系下的图象,观察图象写出当y 1 >y 2 时x 的取值范围是⊥y(mg)xy-2 3 1 4题图xyy=k 3/x y=k 2/xy=k 1/x1题图第十八章 勾股定理 基本内容:1.勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么222c b a =+2.勾股定理逆定理:如果三角形三边长a,b,c 满足222c b a =+。