苏教版八年级下册数学含答案

合集下载

苏教版八年级下附参考答案解析

苏教版八年级下附参考答案解析

八年级数学试题一、选择题(8小题,每小题3分,共24分)1.已知b a >,则下列不等式不一定正确的是( )A .3232->-b aB .b a -<-32C .0133>+-b aD .22b a > 2.不等式组⎩⎨⎧≥->+125523x x 的解集在数轴上表示正确的是( )3.分式方程xx x -=--23252的解是( ) A .2-=x B .2=x C .1=x D .1=x 或2=x4. 如图,在□ABCD 中,点E 为AD 的中点,连接BE 交AC 于点F ,则AF :CF=( ) A .1:2 B .1:3 C .2:3 D .2:5(第4题图) (第6题图) (第7题图)5.等腰梯形的两条对角线互相垂直,中位线长为8cm,则它的高为( )A.4cm C.8cm 6.若一个梯形的中位线长为15,一条对角线把中位线分成两条线段, 这两条线段的比是3:2,则梯形的上、下底长分别是( )A.3,4.5B.6,9C.12,18D.2,37. 等腰三角形底边长为7,一腰上的中线把其周长分成两部分的差为3,则腰长是( ) A 、4 B 、10 C 、4或10 D 、以上答案都不对8.如图,在正五边形ABCDE 中,对角线AD 、AC 与EB 分别相交于点M 、N .下列命题:①四边形EDCN 是菱形;②四边形MNCD 是等腰梯形;③△AEN 与△EDM 全等;④△AEM 与△CBN 相似;⑤点M 是线段AD 、BE 、NE 的黄金分割点,其中假命题有( ) A .0个 B .1个 C .2个 D .4个NMDCBAN M E D CBA(第8题图) (第13题图) (第17题图)二、填空题(10小题,每小题3分,共30分)9.等腰三角形的底角为15º,腰长为10㎝,则它的面积是 。

10. 如图,在等腰梯形ABCD 中,AB ∥C D ,对角线AC 平分∠BAD ,∠B =60°, CD=2㎝。

苏科版八年级下册第二学期数学期末试卷及答案全

苏科版八年级下册第二学期数学期末试卷及答案全

苏科版八年级下册第二学期数学期末试卷及答案全一、解答题1.某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)此次共调查了名学生,扇型统计图中“艺术鉴赏”部分的圆心角是度.(2)请把这个条形统计图补充完整.(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.2.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?3.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB、CD上的点,且BE=DF,连接EF 交BD于O.(1)求证:EO=FO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AE的长.4.如图,在▱ABCD中,BE=DF.求证:AE=CF.5.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制了如下尚不完整的统计图表:调查结果统计表 组别A BCD E分组(元) 030x ≤< 3060x ≤<频数调查结果频数分布直方图 调查结果扇形统计图请根据以上图表,解答下列问题:(1)填空:这次调查的样本容量是 ,a = ,m = ; (2)补全频数分布直方图;(3)求扇形统计图中扇形B 的圆心角度数; (4)该校共有1000人,请估计每月零花钱的数额x 在3090x ≤<范围的人数. 6.在Rt △ABC 中,∠BAC=90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F ,连接CF . (1)求证:AF=BD .(2)求证:四边形ADCF 是菱形.7.在Rt △AEB 中,∠AEB =90°,以斜边AB 为边向Rt △AEB 形外作正方形ABCD ,若正方形ABCD 的对角线交于点O (如图1).(1)求证:EO 平分∠AEB ;(2)猜想线段OE 与EB 、EA 之间的数量关系为 (直接写出结果,不要写出证明过程);(3)过点C 作CF ⊥EB 于F ,过点D 作DH ⊥EA 于H ,CF 和DH 的反向延长线交于点G (如图2),求证:四边形EFGH 为正方形.8.如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.(1)求证:AE CF =;(2)求证:四边形AECF 是平行四边形 9.在矩形纸片ABCD 中,AB=6,BC=8.(1)将矩形纸片沿BD 折叠,点A 落在点E 处(如图①),设DE 与BC 相交于点F ,求BF 的长;(2)将矩形纸片折叠,使点B 与点D 重合(如图②),求折痕GH 的长.10.如图,在ABC 中,∠BAC =90°,DE 是ABC 的中位线,AF 是ABC 的中线.求证DE =AF .证法1:∵DE 是ABC 的中位线, ∴DE = .∵AF 是ABC 的中线,∠BAC =90°, ∴AF = , ∴DE =AF .请把证法1补充完整,连接EF ,DF ,试用不同的方法证明DE =AF 证法2:11.如图,∠MON =90°,正方形ABCD 的顶点A 、B 分别在OM 、ON 上,AB =13,OB =5,E 为AC 上一点,且∠EBC =∠CBN ,直线DE 与ON 交于点F . (1)求证BE =DE ;(2)判断DF 与ON 的位置关系,并说明理由; (3)△BEF 的周长为 .12.某商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克.问第一次购进这种商品多少千克?13.如图,在▱ABCD 中,BC =6cm ,点E 从点D 出发沿DA 边运动到点A ,点F 从点B 出发沿BC 边向点C 运动,点E 的运动速度为2cm /s ,点F 的运动速度为lcm /s ,它们同时出发,设运动的时间为t 秒,当t 为何值时,EF ∥AB .14.如图,点P 为ABC ∆的BC 边的中点,分别以AB 、AC 为斜边作Rt ABD ∆和Rt ACE ∆,且BAD CAE α∠=∠=,DPE β∠=.(1)求证:PD PE =.(2)探究:α与β的数量关系,并证明你的结论.15.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3P m ⎛ ⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、解答题1.解:(1)200,144.(2)见解析;(3)120名 【分析】(1)根据阅读写作的人数和所占的百分比,即可求出学生总数,再用艺术鉴赏的人数除以总人数乘以360°,即可得出 “艺术鉴赏”部分的圆心角.(2)用总学生数减去“艺术鉴赏”,“科技制作”,“阅读写作”,得出“数学思维”的人数,从而补全统计图.(3)用“科技制作”所占的百分比乘以总人数8000,即可得出答案. 【详解】解:(1)学生总数:50÷25%=200(名)“艺术鉴赏”部分的圆心角:80200×360°=144° 故答案为:200,144.(2)数学思维的人数是:200-80-30-50=40(名), 补图如下:(3)根据题意得:800×30200=120(名), 答:其中有120名学生选修“科技制作”项目. 2.(1)见解析(2)成立 【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质. 3.(1)见解析;(2)AE =3. 【分析】(1)由平行四边形的性质和AAS 证明△OBE ≌△ODF ,得出对应边相等即可; (2)先证出AE=GE ,再证明DG=DO ,得出OF=FG=1,即可得出结果. 【详解】(1)∵四边形ABCD 是平行四边形, ∴DC ∥AB , ∴∠OBE =∠ODF . 在△OBE 与△ODF 中,OBE ODF BOE DOF BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△ODF (AAS ). ∴EO =FO ;(2)∵EF ⊥AB ,AB ∥DC , ∴∠GEA =∠GFD =90°. ∵∠A =45°, ∴∠G =∠A =45°. ∴AE =GE , ∵BD ⊥AD ,∴∠ADB =∠GDO =90°. ∴∠GOD =∠G =45°. ∴DG =DO , ∴OF =FG =1,由(1)可知,OE =OF =1, ∴GE =OE +OF +FG =3, ∴AE =3. 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题(1)的关键. 4.证明见解析. 【解析】试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论. 试题解析:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∴∠ADE=∠CBF , ∵BE=DF ,∴DE=BF ,在△ADE 和△CBF 中,{AD CBADE CBF DE BF=∠=∠=, ∴△ADE ≌△CBF (SAS ), ∴AE=CF .考点:平行四边形的性质;全等三角形的判定与性质.5.(1)50,16,8;(2)补全图形见解析;(3)扇形统计图中扇形B 的圆心角度数为115.2°;(4)每月零花钱的数额x 在30≤x <90范围的人数大约为720人. 【解析】分析:(1)根据C 组的频数是20,对应的百分比是40%,据此求得调查的总人数,然后求得a 的值,m 的值;(2)根据a 的值补全频数分布直方图; (3)利用360°乘以对应的比例即可求解;(4)利用总人数1000乘以对应的比例即可求解.详解:(1)调查的总人数是20÷40%=50(人),则a =50﹣4﹣20﹣8﹣2=16,A 组所占的百分比是450=8%,则m =8. 故答案为50,16,8;(2)补全频数分布直方图如图:(3)扇形统计图中扇形B 的圆心角度数是360°×1650=115.2°; (4)每月零花钱的数额x 在30≤x <90范围的人数是1000×162050+=720(人). 答:每月零花钱的数额x 在30≤x <90范围的人数大约为720人.点睛:本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题的关键,扇形统计图直接反映部分占总体的百分比大小. 6.(1)见解析;(2)见解析. 【分析】(1)由“AAS”可证△AFE ≌△DBE ,从而得AF=BD(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质的AD =DC ,即可证明四边形ADCF 是菱形.【详解】 (1)∵AF ∥BC , ∴∠AFE=∠DBE∵△ABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点, ∴AE=DE ,BD=CD 在△AFE 和△DBE 中,AFE DBE AEF BED AE DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△AFE ≌△DBE (AAS )) ∴AF=BD(2)由(1)知,AF=BD ,且BD=CD , ∴AF=CD ,且AF ∥BC , ∴四边形ADCF 是平行四边形 ∵∠BAC=90°,D 是BC 的中点, ∴AD =12BC =DC ∴四边形ADCF 是菱形 【点睛】本题考查了菱形的判定、全等三角形的判定与性质、直角三角形的性质.证明AD =DC 是解题的关键.7.(1)求证见解析;(2)2OE =EB +EA ;(3)见解析. 【分析】(1)延长EA 至点F ,使AF =BE ,连接OF ,由SAS 证得△OBE ≌△OAF ,得出OE =OF ,∠BEO =∠AFO ,由等腰三角形的性质与等量代换即可得出结论; (2)判断出△EOF 是等腰直角三角形,根据勾股定理即可得出结论;(3)先根据ASA 证得△ABE ≌△ADH ,△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF ,得出FG =EF =EH =HG ,再由∠F =∠H =∠AEB =90°,由此可得出结论. 【详解】(1)证明:延长EA 至点F ,使AF =BE ,连接OF ,如图所示:∵四边形ABCD 是正方形, ∴∠BOA =90°,OB =OA ,∵∠AEB =90°,∴∠OBE +∠OAE =360°﹣90°﹣90°=180°, ∵∠OAE +∠OAF =180°,∴∠OBE =∠OAE ,在△OBE 与△OAF 中,0OB A OBE OAF BE AF =⎧⎪∠=∠⎨⎪=⎩, ∴△OBE ≌△OAF (SAS ), ∴OE =OF ,∠BEO =∠AFO , ∴∠AEO =∠AFO , ∴∠BEO =∠AEO , ∴EO 平分∠AEB ;(2OE =EB +EA ,理由如下: 由(1)得:△OBE ≌△OAF , ∴OE =OF ,∠BOE =∠AOF , ∵∠BOE +∠AOE =90°, ∴∠AOF +∠AOE =90°, ∴∠EOF =90°,∴△EOF 是等腰直角三角形, ∴2OE 2=EF 2, ∵EF =EA +AF =EA +EB , ∴2OE 2=(EB +EA )2,OE =EB +EA ,OE =EB +EA ; (3)证明:∵CF ⊥EB ,DH ⊥EA , ∴∠F =∠H =∠AEB =90°, ∵四边形ABCD 是正方形, ∴AB =AD ,∠BAD =90°,∴∠EAB +∠DAH =90°,∠EAB +∠ABE =90°,∠ADH +∠DAH =90°, ∴∠EAB =∠HDA ,∠ABE =∠DAH . 在△ABE 与△ADH 中,EAB HDA AB ADABE DAH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABE ≌△ADH (ASA ), ∴BE =AH ,AE =DH ,同理可得:△ABE ≌△BCF ,△ADH ≌△DCG ,△DCG ≌△CBF , ∴BE =CF ,AE =BF ,AH =DG ,DH =CG ,DG =CF ,CG =BF ,∴CG +FC =BF +BE =AE +AH =DH +DG ,∴FG =EF =EH =HG ,∵∠F =∠H =∠AEB =90°,∴四边形EFGH 为正方形.【点睛】本题是四边形综合题,主要考查了正方形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、等腰直角三角形的判定与性质、角平分线定义等知识;熟练掌握正方形的判定和性质,作辅助线构建全等三角形是解题的关键.8.(1)见解析;(2)见解析【解析】【分析】(1)证出△ABE ≌△CDF 即可求解;(2)证出AE 平行CF ,AE CF =即可/【详解】(1)∵AE BD CF BD ⊥⊥,∴∠AEB=∠CFD∵平行四边形ABCD∴∠ABE=∠CDF,AB=CD∴△ABE ≌△CDF∴AE=CF(2)∵AE BD CF BD ⊥⊥,∴AE ∥CF∵AE=CF∴四边形AECF 是平行四边形【点睛】本题考查的是平行四边形的综合运用,熟练掌握全等三角形的性质是解题的关键.9.(1)254 (2)152【分析】(1)根据折叠的性质可得∠ADB=∠EDB ,再根据两直线平行,内错角相等可得∠ADB=∠DBC ,然后求出∠FBD=∠FDB ,根据等角对等边可得BF=DF ,设BF=x ,表示出CF ,在Rt △CDF 中,利用勾股定理列出方程求解即可;(2)根据折叠的性质可得DH=BH ,设BH=DH=x ,表示出CH ,然后在Rt △CDH 中,利用勾股定理列出方程求出x ,再连接BD 、BG ,根据翻折的性质可得【详解】(1) 由折叠得,∠ADB=∠EDB ,∵矩形ABCD 的对边AD ∥BC ,∴∠ADB=∠DBC ,∴∠FBD=∠FDB ,∴BF=DF ,设BF=x ,则CF=8−x ,在Rt △CDF 中,222+=CD CF DF即2226(8)x x +-=解得x=254故答案:254(2)由折叠得,DH=BH ,设BH=DH=x ,则CH=8−x ,在Rt △CDH 中, 222+=CD CH DH即2226(8)x x +-=解得x=254连接BD 、BG ,由翻折的性质可得,BG=DG ,∠BHG=∠DHG ,∵矩形ABCD 的边AD ∥BC ,∴∠BHG=∠DGH ,∴∠DHG=∠DGH ,∴DH=DG ,∴BH=DH=DG=BG ,∴四边形BHDG 是菱形,在Rt △BCD 中, S 菱形BHDG =12BD ⋅GH=BH ⋅CD ,即12×10⋅GH=254×6,解得GH=152.故答案:152【点睛】 本题考查了翻折变换的性质,矩形的性质,勾股定理的应用,菱形的判定与性质,熟记翻折的性质并利用勾股定理列出方程是解题的关键.10.2BC ,2BC ,证明见解析 【分析】 证法1:根据三角形中位线定理得到DE=12BC ,根据直角三角形的性质得到AF=12BC ,等量代换证明结论;证法2:连接DF 、EF ,根据三角形中位线定理得到DF ∥AC ,EF ∥AB ,证明四边形ADFE 是矩形,根据矩形的对角线相等证明即可.【详解】证法1:∵DE 是△ABC 的中位线,∴DE=12BC , ∵AF 是△ABC 的中线,∠BAC=90°, ∴AF=12BC , ∴DE=AF ,证法2:连接DF 、EF ,∵DE 是△ABC 的中位线,AF 是△ABC 的中线,∴DF 、EF 是△ABC 的中位线,∴DF ∥AC ,EF ∥AB ,∴四边形ADFE是平行四边形,∵∠BAC=90°,∴四边形ADFE是矩形,∴DE=AF.故答案为:12BC;12BC.【点睛】本题考查的是三角形中位线定理、矩形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.11.(1)见解析;(2)DF⊥ON,理由见解析;(3)24【分析】(1)根据正方形的性质证明△BCE≌△DCE即可;(2)由第一题所得条件和已知条件可推出∠EDC=∠CBN,再利用90°的代换即可证明;(3)过D点作DG垂直于OM,交点为G,结合已知条件推出DF和BF的长,再根据第一题结论得出△BEF的周长等于DF加BF即可得出答案.【详解】解:(1)证明:∵四边形ABCD正方形,∴CA平分∠BCD,BC=DC,∴∠BCE=∠DCE=45°,∵CE=CE,∴△BCE≌△DCE(SAS);∴BE=DE;(2)DF⊥ON,理由如下:∵△BCE≌△DCE,∴∠EBC=∠EDC,∵∠EBC=∠CBN,∴∠EDC=∠CBN,∵∠EDC+∠1=90°,∠1=∠2,∴∠2+∠CBN=90°,∴∠EFB=90°,即DF⊥ON;(3)过D点作DG垂直于OM,交点为G,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAG+∠BAO=90°,∵∠ABO+∠BAO=90°,∴∠DAG=∠ABO,又∵∠MON=90°,DG⊥OM,∴△ADG≌△ABO,∴DM=AO,GA=OB=5,∵AB=13,OB=5,根据勾股定理可得AO=12,由(2)可知DF⊥ON,又∵∠MON=90°,DG⊥OM,∴四边形OFDM是矩形,∴OF=DG=AO=12,DF=OM=17,由(1)可知BE=DE,∴△BEF的周长=DF+BF=17+(12-5)=24.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,矩形的判定,掌握知识点是解题关键.12.第一次购进这种商品10千克【分析】根据“商店分别花500元和750元先后两次以相同的进价购进某种商品,且第二次的数量比第一次多5千克”列出分式方程求解即可.【详解】解:设第一次购进这种商品x千克,则第二次购进这种商品(x+5)千克,由题意,得5007505x x=+,解得x=10.经检验:x=10是所列方程的解.答:第一次购进这种商品10千克.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,注意得出分式方程的解之后要验根.13.t =2【分析】当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,由EF ∥AB ,BF ∥AE 可得出四边形ABFE 为平行四边形,利用平行四边形的性质可得出关于t 的一元一次方程,解之即可得出结论.【详解】解:当运动时间为t 秒时,BF =tcm ,AE =(6﹣2t )cm ,∵EF ∥AB ,BF ∥AE ,∴四边形ABFE 为平行四边形,∴BF =AE ,即t =6﹣2t ,解得:t =2.答:当t =2秒时,EF ∥AB .【点睛】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t 的一元一次方程是解题的关键.14.(1)详见解析;(2)2180αβ+=︒,证明见解析.【分析】(1)如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE ,根据三角形的中位线定理和直角三角形的性质可得PM NE =,DM PN =,根据等腰三角形的性质、三角形的外角性质和已知条件可得BMD CNE ∠=∠,根据平行线的性质可得BMP BAC ∠=∠=CNP ∠,进而可得DMP PNE ∠=∠,于是可根据SAS 证明MDP NPE ∆≅∆,从而可得结论;(2)根据平行线的性质可得BMP MPN ∠=∠,根据全等三角形的性质可得EPN MDP ∠=∠,然后在DMP ∆中利用三角形的内角和定理和等量代换即可得出结论.【详解】(1)证明:如图,分别取AB 、AC 的中点M 、N ,连接DM 、PM 、PN 、NE . 点P 为ABC ∆的边BC 的中点, ∴12PM AC =, NE 为Rt AEC ∆斜边上的中线, ∴12NE AN AC ==, PM NE ∴=,同理可得:DM PN =,12DM AM AB ==, ADM BAD ∴∠=∠,2BMD BAD ∴∠=∠,同理,2CNE CAE ∠=∠,又BAD CAE α∠=∠=,BMD CNE ∴∠=∠,又PM 、PN 都是ABC ∆的中位线,//PM AC ∴,//PN AB ,BMP BAC ∴∠=∠,CNP BAC ∠=∠,BMP CNP ∴∠=∠,∴DMP PNE ∠=∠,MDP NPE ∴∆≅∆(SAS),PD PE ∴=;(2)解:α与β的数量关系是:2180αβ+=︒;证明://PN AB ,BMP MPN ∴∠=∠,∵MDP NPE ∆≅∆,EPN MDP ∴∠=∠,在DMP ∆中,∵180MDP DPM DMP ∠+∠+∠=︒,∴180MDP DPM DMB PMB ∠+∠+∠+∠=︒,而22DMB BAD α∠=∠=,2180EPN DPM MPN α∴∠+∠++∠=︒,DPE DPM MPN EPN β∠=∠+∠+∠=, 2180αβ∴+=︒.【点睛】本题考查了三角形的中位线定理、全等三角形的判定和性质、直角三角形的性质、等腰三角形的性质、平行线的性质、三角形的外角性质和三角形的内角和定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.15.(12332)存在.(0,23Q 或()32或(0,3-或3⎛ ⎝⎭;(2)PHOB S 梯形334m =-,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形334m =-,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB 33m =-,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()()11,0,0,3A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:233a =, 11223232233ABC S AC AB ∆∴==⨯⨯=; ()2存在设()0,Q a ,则(2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =, (243a ∴=-,解得:123a =232a =,()()120,23,0,32Q Q ∴=+=-; ②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =-或3a =(舍去,与B 重合),()30,3Q ∴-;③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:3a =, 430,Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,P m ⎛ ⎝⎭, (),0H m ∴,3,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形, ()13322m =⨯⨯-⎭334m =,1113222AOB S OA OB ∆==⨯⨯=,()11122APH S AH PH m ∆==⨯-)1m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)124m =+--=, ABP ABC S S ∆∆=,+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。

苏科八年级苏科初二数学下册第二学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下册第二学期期末测试题及答案(共五套)

苏科八年级苏科初二数学下册第二学期期末测试题及答案(共五套)一、解答题1.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?2.先化简:22241a aa a a+--÷-,再从﹣1、0、1、2中选一个你喜欢的数作为a的值代入求值.3.某文化用品商店用120元从某厂家购进一批套尺,很快销售一空;第二次购买时,该厂家回馈老客户,给予8折优惠,商店用100元购进第二批该款套尺,所购到的数量比第一批还多1套.(1)求第一批套尺购进时的单价;(2)若商店以每套5.5元的价格将第二批套尺全部售出,可以盈利多少元?4.如图,平行四边形ABCD中,已知BC=10,CD=5.(1)试用无刻度的直尺和圆规在AD边上找一点E,使点E到B、D两点的距离相等(不要求写作法,但要保留清晰的作图痕迹);(2)求△ABE的周长.5.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.6.如图,四边形ABCD是正方形,点E是BC边上的动点(不与点B、C重合),将射线AE绕点A按逆时针方向旋转45°后交CD边于点F,AE、AF分别交BD于G、H两点.(1)当∠BEA=55°时,求∠HAD的度数;(2)设∠BEA=α,试用含α的代数式表示∠DFA的大小;(3)点E运动的过程中,试探究∠BEA与∠FEA有怎样的数量关系,并说明理由.7.某校为了庆祝建国七十周年,决定举办一台文艺晚会,为了了解学生最喜爱的节目形式,随机抽取了部分学生进行调查,规定每人从“歌曲”,“舞蹈”,“小品”,“相声”和“其它”五个选项中选择一个,并将调查结果绘制成如下两幅不完整的统计图表,请根据图中信息,解答下列题:最喜爱的节目人数歌曲15舞蹈a小品12相声10其它b(1)在此次调查中,该校一共调查了名学生;(2)a=;b=;(3)在扇形计图中,计算“歌曲”所在扇形的圆心角的度数;(4)若该校共有1200名学生,请你估计最喜爱“相声”的学生的人数.8.如图,在平面直角坐标系xOy中,边长为1个单位长度的正方形ABCD的边BC平行于x轴,点A、C分别在直线OM、ON上,点A的坐标为(3,3),矩形EFGH的顶点E、G 也分别在射线OM、ON上,且FG平行于x轴,EF:FG=3:5.(1)点B的坐标为,直线ON对应的函数表达式为;(2)当EF=3时,求H点的坐标;(3)若三角形OEG的面积为s1,矩形EFGH的面积为s2,试问s1:s2的值是一个常数吗?若是,求出这个常数;若不是,请说明理由.9.正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.10.某种油菜籽在相同条件下的发芽实验结果如表:(1)a=,b=;(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10000粒该种油菜籽可得到油菜秧苗多少棵?11.为了解某区初中生一周课外阅读时长的情况,随机抽取部分中学生进行调查,根据调查结果,将阅读时长分为四类:2小时以内,2~4小时(含2小时),4~6小时(含4小时),6小时及以上,并绘制了如图所示不完整的统计图.(1)本次调查共随机抽取了名学生;(2)补全条形统计图;(3)扇形统计图中,课外阅读时长“4~6小时”对应的圆心角度数为 ;(4)若该区共有10 000名初中生,估计该地区中学生一周课外阅读时长不少于4小时的人数.12.(方法回顾)(1)如图1,过正方形ABCD的顶点A作一条直l交边BC于点P,BE⊥AP于点E,DF⊥AP 于点F,若DF=2.5,BE=1,则EF=.(问题解决)(2)如图2,菱形ABCD的边长为1.5,过点A作一条直线l交边BC于点P,且∠DAP=90°,点F是AP上一点,且∠BAD+∠AFD=180°,过点B作BE⊥AB,与直线l交于点E,若EF=1,求BE的长.(思维拓展)(3)如图3,在正方形ABCD中,点P在AD所在直线上的上方,AP=2,连接PB,PD,若△PAD的面积与△PAB的面积之差为m(m>0),则PB2﹣PD2的值为.(用含m的式子表示)13.某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?14.如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.15.已知ABC ∆是边长为8cm 的等边三角形,动点,P Q 同时出发,分别在三角形的边或延长线上运动,他们的运动时间为()t s .()1如图1,若P 点由A 向B 运动,Q 点由C 向A 运动,他们的速度都是1/cm s ,连接PQ .则AP =__,AQ = ,(用含t 式子表示);()2在(1)的条件下,是否存在某一时刻,使得APQ ∆为直角三角形?若存在,请求出t 的值,若不存在,请说明理由;()3如图2,若P 点由A 出发,沿射线AB 方向运动,Q 点由C 出发,沿射线AC 方向运动,P 的速度为3/,cm s Q 的速度为./acm s 是否存在某个a 的值,使得在运动过程中BPO ∆恒为以BP 为底的等腰三角形?如果存在,请求出这个值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析(2)成立 【解析】试题分析:(1)由DF=BE ,四边形ABCD 为正方形可证△CEB ≌△CFD ,从而证出CE=CF . (2)由(1)得,CE=CF ,∠BCE+∠ECD=∠DCF+∠ECD 即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF ,故可证得△ECG ≌△FCG ,即EG=FG=GD+DF .又因为DF=BE ,所以可证出GE=BE+GD 成立.试题解析:(1)在正方形ABCD 中,{BC CD B CDF BE DF∠∠=== ∴△CBE ≌△CDF (SAS ). ∴CE=CF .(2)GE=BE+GD 成立.理由是:∵由(1)得:△CBE ≌△CDF , ∴∠BCE=∠DCF ,∴∠BCE+∠ECD=∠DCF+∠ECD ,即∠ECF=∠BCD=90°, 又∵∠GCE=45°,∴∠GCF=∠GCE=45°. CE =CF ∵∠GCE =∠GCF , GC =GC ∴△ECG ≌△FCG (SAS ). ∴GE=GF .∴GE=DF+GD=BE+GD .考点:1.正方形的性质;2.全等三角形的判定与性质.2.1a 2--,当1a =-时,原式1=3 【分析】本题根据分式的除法和减法运算法则,结合平方差以及提公因式法将题目化简,然后从1-、0、1、2中选一个使得原分式有意义的值代入化简后的式子即可解答本题. 【详解】原式2(1)1111(2)(2)22a a a a a a a a a +--=-⨯=-=-+---, 由已知得:若使原分式有意义,需满足0a ≠,20a a -≠,240a -≠, 即当0a =、1、2、2-时原分式无意义, 故当1a =-时,原式11123=-=--. 【点睛】本题考查分式的化简求值,解题关键在于对平方差、完全平方公式等运算法则的运用,其次注意计算仔细即可.3.(1)第一批套尺购进时单价为5元;(2)可以盈利37.5元.【分析】(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,根据数量=总价÷单价结合第二次购进的数量比第一批多1套,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用单价=总价÷数量可求出第二批套尺购进时的单价,再利用总利润=单套利润×销售数量(购进数量),即可求出结论. 【详解】解:(1)设第一批套尺购进时单价为x 元,则第二批套尺购进时单价为0.8x 元,依题意,得:10012010.8x x-=, 解得:x =5,经检验,x =5是原方程的解,且符合题意. 答:第一批套尺购进时单价为5元.(2)第二批套尺购进时单价为5×0.8=4(元). 全部售出后的利润为(5.5﹣4)×[100÷4]=37.5(元). 答:可以盈利37.5元. 【点睛】本题考查的是分式方程的应用,掌握寻找相等关系列分式方程是解题的关键. 4.(1)见解析;(2)15;见解析. 【分析】(1)连接BD 作线段BD 的垂直平分线MN 交AD 于点E ,点E 即为所求. (2)证明△ABE 的周长=AB +AD 即可. 【详解】解:(1)如图,点E 即为所求.(2)解:连接BE∵四边形ABCD 是平行四边形 ∴AD =BC =10,AB =CD =5 又由(1)知BE =DE ∴15ABEAB AE BE AB AE ED AB CAD +++++====.【点睛】本题主要考查垂直平分线的作法及性质,熟练掌握知识点是解题的关键. 5.(1)详见解析;(2)24 【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点 ∴AE =DE ∵AF ∥BC ∴∠AFE =∠DBE在△AEF 和△DEB 中AFE DBE DEB AEF AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF ≌△DEB (AAS ) ∴AF =DB ∵D 是BC 的中点 ∴BD=CD=AF∴四边形ADCF 是平行四边形 ∵∠BAC =90°, ∴AD =CD =12BC ∴四边形ADCF 是菱形;(2)解:设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°,AC =6,AB =8 ∴S 菱形ADCF =CD•h =12BC•h =S △ABC =12AB•AC =168242⨯⨯=. 【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.6.(1)10°;(2)135DFA α∠=︒-;(3)∠BEA =∠FEA ,理由见解析 【分析】(1)根据正方形的性质和三角形的内角和解答即可; (2)根据正方形的性质和三角形内角和解答即可;(3)延长CB 至I ,使BI =DF ,根据全等三角形的判定和性质解答即可. 【详解】解:(1)∵四边形ABCD 是正方形, ∴∠EBA =∠BAD =90°,∴∠EAB =90°﹣∠BAE =90°﹣55°=35°,∴∠HAD =∠BAD ﹣∠EAF ﹣∠EAB =90°﹣45°﹣35°=10°; (2)∵四边形ABCD 是正方形,∴∠EBA =∠BAD =∠ADF =90°, ∴∠EAB =90°﹣∠BAE =90°﹣α,∴∠DAF =∠BAD ﹣∠EAF ﹣∠EAB =()90459045αα︒-︒-︒--︒=, ∴∠DFA =90°﹣∠DAF =()9045α︒--︒=135°﹣α; (3)∠BEA =∠FEA ,理由如下:延长CB 至I ,使BI =DF ,连接AI . ∵四边形ABCD 是正方形, ∴AD =AB ,∠ADF =∠ABC =90°, ∴∠ABI =90°, 又∵BI =DF ,∴△DAF ≌△BAI (SAS ), ∴AF =AI ,∠DAF =∠BAI ,∴∠EAI =∠BAI +∠BAE =∠DAF +∠BAE =45°=∠EAF , 又∵AE 是△EAI 与△EAF 的公共边, ∴△EAI ≌△EAF (SAS ), ∴∠BEA =∠FEA . 【点睛】本题主要考查正方形的性质、三角形外角性质及全等三角形,关键是根据正方形的性质及外角和性质得到角之间的关系,然后求解. 7.(1)50;(2)8,5;(3)108°;(4)240人. 【分析】(1)从表格和统计图中可以得到喜欢“小品”的人数为12人,占调查人数的24%,可求出调查人数,(2)舞蹈占50人的16%可以求出a 的值,进而从总人数中减去其他组的人数得到b 的值,(3)先计算“歌曲”所占的百分比,用360°去乘即可,(4)样本估计总体,用样本喜欢“相声”的百分比估计总体的百分比,进而求出人数. 【详解】(1)12÷24%=50人 故答案为50.(2)a =50×16%=8人,b=50﹣15﹣8﹣12﹣10=5人,故答案为:8,5.(3)360°×1550=108°答:“歌曲”所在扇形的圆心角的度数为108°;(4)1200×1050=240人答:该校1200名学生中最喜爱“相声”的学生大约有240人.【点睛】考查扇形统计图、频数统计表的制作方法,明确统计图表中的各个数据之间的关系是解决问题的关键.8.(1)(3,2),12y x=;(2)H(16,11);(3)4415,证明见解析.【分析】(1)先根据A的坐标为(3,3),正方形ABCD的边长为1求出C点的坐标,利用待定系数法即可求出直线ON的解析式.(2)点E在直线OM上,设点E的坐标为(e,e),由题意F(e,e﹣3),G(e+5,e﹣3),由点G在直线ON上,可得e﹣3=12(e+5),解得e=11即可解决问题.(3)如图,连接EG,延长EF交x轴于J,延长HG交x轴于k.设E(a,a),EF=3m,FG=5m,则G(a+5m,a﹣3m),由点G在直线y=12x上,可得a﹣3m=12(a+5m),推出a=11m,推出E(11m,11m),H(16m,11m),F(11m,8m),G (16m,8m)J(11m,0),K(16m,0),求出S1,S2即可解决问题.【详解】解:(1)∵A的坐标为(3,3),∴直线OM的解析式为y=x,∵正方形ABCD的边长为1,∴B(3,2),∴C(4,2)设直线ON的解析式为y=kx(k≠0),把C的坐标代入得,2=4k,解得k=12,∴直线ON的解析式为:y=12 x;故答案是:(3,2),12y x =;(2)∵EF=3,EF:FG=3:5.∴FG=5,设矩形EFGH的宽为3a,则长为5a,∵点E 在直线OM 上,设点E 的坐标为(e ,e ),∴F (e ,e ﹣3),G (e +5,e ﹣3),∵点G 在直线ON 上,∴e ﹣3=12(e +5), 解得e =11,∴H (16,11).(3)s 1:s 2的值是一个常数,理由如下:如图,连接EG ,延长EF 交x 轴于J ,延长HG 交x 轴于k .设E (a ,a ),EF =3m ,FG =5m ,则G (a +5m ,a ﹣3m ),∵点G 在直线y =12x 上, ∴a ﹣3m =12(a +5m ), ∴a =11m ,∴E (11m ,11m ),H (16m ,11m ),F (11m ,8m ),G (16m ,8m )J (11m ,0),K (16m ,0),∴S △OEG =S △OEJ +S 梯形EJKG ﹣S △OKG =12×11m ×11m +12(8m +11m )•5m •12﹣12×16m ×8m =44m 2,S 矩形EFGH =EF •FG =15m 2,∴12S S =224415m m =4415. ∴s 1:s 2的值是一个常数,这个常数是4415. 【点晴】本题是一次函数的综合题,考查待定系数法,一次函数的性质,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.9.(1)AP=EF ,AP ⊥EF ,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS 证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.10.(1)0.70,0.70;(2)0.70,理由见解析;(3)6300棵.【分析】(1)用发芽的粒数m÷每批粒数n即可得到发芽的频率mn;(2)6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,所以估计当n很大时,频率将接近0.70,由此即可得出答案;(3)首先计算发芽的种子数,然后乘以90%即可得.【详解】(1)5600.70800a==,7000.701000b==故答案为:0.70,0.70;(2)这种油菜籽发芽的概率估计值是0.70理由:由表可知,这6批次种子粒数从100粒逐渐增加到1000粒时,种子发芽的频率趋近于0.70,则种子发芽的频率为0.70由频率估计概率可得:这种油菜籽发芽的概率估计值是0.70;(3)这种油菜籽发芽的种子数为100000.707000⨯=(粒)则700090%6300⨯=(棵)答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.【点睛】本题考查了频率的计算、利用频率估计概率等知识点,掌握频率的相关知识是解题关键.11.(1)200;(2)图见解析;(3)144;(4)6 500人【分析】(1)用阅读时长在“6小时及以上”的人数除以对应百分比即可计算;(2)先根据统计图中的数据求出课外阅读时长在“2~4小时”和“4~6小时”的人数,然后补全条形统计图即可;(3)用360°乘以课外阅读时长“4~6小时”对应的百分比即可求出;(4)用初中生总数乘以一周课外阅读时长不少于4小时的百分比即可.【详解】(1)本次调查共随机抽取了:50÷25%=200(名);(2)课外阅读时长“2~4小时”的有:200×20%=40(人),课外阅读时长“4~6小时”的有:200-30-40-50=80(人),故条形统计图如下:;(3)阅读时长在“2小时以内”的人数所占的百分比为:30÷200×100%=15%,课外阅读时长“4~6小时”对应的圆心角度数为:360°×(1-20%-25%-15%)=144°; (4)10000×(1-20%-15%)=6500(人).【点睛】本题考查了扇形统计图和条形统计图的结合,由图表获取数据是解题关键.12.(1)1.5;(2)58;(3)4m . 【分析】(1)【方法回顾】如图1,利用“AAS ”证明ABE ADF ≌,则BE AF =,AE DF =,然后利用EF AE AF =-得到DF BE EF -=.(2)【问题解决】证明()DAF ABE ASA △≌△,推出1DF AE AF EF AF ==+=+,AF BE =,再利用勾股定理构建方程解决问题即可.(3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.设==AB AD a ,由PAD PAB S S m -=△△,推出1122ay ax m -=,可得2ay ax m -=,利用勾股定理即可解决问题. 【详解】解:(1)【方法回顾】如图1中,四边形ABCD 为正方形,AB AD ∴=,90BAD ∠=︒,90BAE DAF ∠+∠=︒,90BAE ABE ∠+∠=︒,ABE DAF ∴∠=∠, ()ABE ADF AAS ∴△≌△,BE AF ∴=,AE DF =,EF AE AF =-, 2.5DF =,1BE = 2.51 1.5EF DF BE ∴=-=-=. 故答案为1.5.(2)【问题解决】如图2中,四边形ABCD 是菱形,AB AD ∴=,BE AB ⊥,90ABE DAF ∴∠=∠=︒,180BAD AFD ∠+∠=︒,即180BAP FAD AFD ∠+∠+∠=︒,180ADF FAD AFD ∠+∠+∠=︒,BAP ADF ∴∠=∠,()DAF ABE ASA ∴△≌△,1DF AE AF EF AF ∴==+=+,AF BE =,90DAF ∠=︒,222AF AD DF ∴+=,2223()(1)2AF AF ∴+=+. 58AF ∴=, 58BE AF ∴==. (3)【思维拓展】如图3中,过点P 作PN BA ⊥交BA 的延长线于N ,PM DA ⊥交DA 的延长线于M ,设PN x =,PM y =.90PMA MAN PNA ∠=∠=∠=︒,∴四边形PMAN 是矩形,PN AM x ∴==,PM AN y ==,四边形ABCD 是正方形,AB AD ∴=,设==AB AD a ,PAD PAB S S m -=△△,∴1122ay ax m -=,2ay ax m ∴-=, 222222()[()]222()4PB PD x a y y a x ay ax ay ax m ∴-=++-++=-=-=,故答案为4m .【点睛】本题属于四边形综合题,考查了正方形的性质,菱形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.13.人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【详解】因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点睛】本题考查了事件发生的可能性的大小,根据时间长短确定可能性的大小是解答的关键.14.(1)见解析;(210,6;(3)3【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【详解】解:(1)如图,菱形AEBF 即为所求.(2)AE =223+1=10,菱形AEBF 的面积=12×6×2=6, 故答案为10,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点睛】本题主要考查了格点作图和菱形的性质应用,涉及了勾股定理等,正确理解,准确利用网格的特点是解题的关键.15.(1)(),6AP tcm AQ t cm ==-;(2)存在,8163t s s=或;(3)存在, 3/a cm s =.【分析】(1)根据路程=时间×速度,即可表示出来(2)要讨论PA AB ⊥,PQ AC ⊥两种情况,即可求出对应的时间(3)根据BPQ ∆以BP 为底的等腰三角形,作QM BP ⊥于M ,用a ,t 的代数式表示出AP ,CQ ,AQ ,BP 等边长,再根据ABC ∆是等边三角形,求出30AQM ︒∠=,从而得出2AQ AM =,讨论P 在线段AB 内运动和P 在AB 外运动两种情况,即可求出结果.【详解】解:()1由题意可知:(),,6AP tcm CQ tcm AQ t cm ===-()2存在8163t s s=或时,使得APQ ∆为直角三角形,理由是 ①当PA AB ⊥时,由题意有28t t =-,解得83t s = ②当PQ AC ⊥时,由题意有()8,2t t =-解得163t s =∴综上所述,存在8163t s s=或时,使得APQ ∆为直角三角形 ()3存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形,理由是:作QM BP ⊥于M ,如图2所示由题意得:3,AP t CQ at ==,则8,83AQ at BP t =+=-,PQ BQ QM BP =⊥ 12PM BM BP ∴== ABC ∆是等边三角形,60A ︒∴∠=30AQM ︒∴∠=2AQ AM ∴=,①当83t ≤时,由题意有832382t t at -⎛⎫+=+ ⎪⎝⎭,解得3/a cm s =, ②当83t ≥时,由题意有382382t t at -⎛⎫-=+ ⎪⎝⎭,解得3/a cm s =, ∴综上所述,存在3/a cm s =时,BPQ ∆恒为以BP 为底的等腰三角形.【点睛】本题主要考察了直角三角形,等腰三角形,动点等知识点,记住它们的常用性质和把动点问题转换成代数式求解问题是解题关键.。

苏教版八年级下数学期末试卷及答案

苏教版八年级下数学期末试卷及答案

苏教版八年级下数学期末试卷及答案苏教版八年级下册数学的期末考试即将到来,愿你发扬以前的刻苦努力学习一刻不放松,祝你期末考试成功!下面给大家分享一些苏教版八年级下册数学的期末试卷及答案,大家快来跟一起看看吧。

苏教版八年级下数学期末试卷一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是( )A.2,3,4B.4,5,6C.6,8,11D.5,12,132.在平面直角坐标系中,点(﹣1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限3.点P(﹣2,3)关于y轴的对称点的坐标是( )A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)4.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A. B. C. D.5.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为( )A.56B.192C.20D.以上答案都不对7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为( )A.y=kx﹣3B.y=kx+1C.y=kx+3D.y=kx﹣18.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )A.1B.2C.3D.49.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点( )A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)10.一次函数y=kx+k的图象可能是( )A. B. C. D.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30 的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为米.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)13.函数的自变量x的取值范围是 .14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是 .15.函数y=(k+1)x+k2﹣1中,当k满足时,它是一次函数.16.菱形的周长是20,一条对角线的长为6,则它的面积为 .17.若正多边形的一个内角等于140 ,则这个正多边形的边数是 .18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表.则an= .(用含n的代数式表示)所剪次数1 2 3 4 n正三角形个数4 7 10 13 an三、解答题(本大题共2个小题,每小题6分,满分12分)19.如图,在△ABC中,CE,BF是两条高,若A=70 ,BCE=30 ,求EBF与FBC的度数.20.已知y+6与x成正比例,且当x=3时,y=﹣12,求y与x 的函数关系式.四、解答题(本大题共2个小题,每小题8分,满分16分)21.为创建国家园林城市,某校举行了以爱我黄石为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50 x 100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80 x 90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?22.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?五、解答题(本大题共2个小题,每小题9分,满分18分)23.为了响应国家节能减排的号召,鼓励市民节约用电,我市从2012年7月1日起,居民用电实行一户一表的阶梯电价,分三个档次收费,第一档是用电量不超过180千瓦时实行基本电价,第二、三档实行提高电价,具体收费情况如右折线图,请根据图象回答下列问题;(1)当用电量是180千瓦时时,电费是元;(2)第二档的用电量范围是;(3) 基本电价是元/千瓦时;(4)小明家8月份的电费是328.5元,这个月他家用电多少千瓦时?24.如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.六、综合探究题(本大题共2个小题,每小题10分,满分20分)25.如图,在菱形ABCD中,AC,BD相交于点O,E为AB的中点,DE AB.(1)求ABC的度数;(2)如果,求DE的长.26.如图,在Rt△ABC中,B=90 ,AC=60cm,A=60 ,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.苏教版八年级下数学期末试卷参考答案一、选择题(本大题共10个小题,每小题3分,满分30分.每小题给出的四个选项中,只有一项是符合题设要求的)1.下列几组数中,能作为直角三角形三边长度的是( )A.2,3,4B.4,5,6C.6,8,11D.5,12,13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32 42,故不是直角三角形,故错误;B、42+52 62,故是直角三角形,故错误;C、62+82 112,故不是直角三角形,故错误;D、52+122=132,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.在平面直角坐标系中,点(﹣1,2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【考点】坐标确定位置.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(﹣1,2)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).3.点P(﹣2,3)关于y轴的对称点的坐标是( )A.(2,3 )B.(﹣2,﹣3)C.(﹣2,3)D.(﹣3,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点P(﹣2,3)关于y轴的对称点的坐标是(2,3),故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.4.下列汉字或字母中既是中心对称图形又是轴对称图形的是( )A. B. C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.下列命题中,错误的是( )A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.【解答】解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.矩形的对角线长为20,两邻边之比为3:4,则矩形的面积为( )A.56B.192C.20D.以上答案都不对【考点】矩形的性质.【分析】首先设矩形的两邻边长分别为:3x,4x,可得(3x)2+(4x)2=202,继而求得矩形的两邻边长,则可求得答案.【解答】解:∵矩形的两邻边之比为3:4,设矩形的两邻边长分别为:3x,4x,∵对角线长为20,(3x)2+(4x)2=202,解得:x=2,矩形的两邻边长分别为:12,16;矩形的面积为:12 16=192.故选:B.【点评】此题考查了矩形的性质以及勾股定理.此题难度不大,注意掌握方程思想的应用.7.将直线y=kx﹣1向上平移2个单位长度,可得直线的解析式为( )A.y=kx﹣3B.y=kx+1C.y=kx+3D.y=kx﹣1【考点】一次函数图象与几何变换.【分析】平移时k的值不变,只有b发生变化.【解答】解:原直线的k=k,b=﹣1;向上平移2个单位长度,得到了新直线,那么新直线的k=k,b=﹣1+2=1.新直线的解析式为y=kx+1.故选B.【点评】本题考查了一次函数图象的几何变换,难度不大,要注意平移后k值不变.8.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是( )A.1B.2C.3D.4【考点】一次函数的性质.【分析】根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.【解答】解:根据一次函数的性质,对于y=(k﹣3)x+2,当(k﹣3) 0时,即k 3时,y随x的增大而增大,分析选项可得D选项正确.答案为D.【点评】本题考查一次函数的性质,掌握一次项系数及常数项与图象间的关系.9.已知一次函数的图象过点(0,3)和(﹣2,0),那么直线必过下面的点( )A.(4,6)B.(﹣4,﹣3)C.(6,9)D.(﹣6,6)【考点】一次函数图象上点的坐标特征.【专题】计算题.【分析】根据两点法确定一次函数解析式,再检验直线解析式是否满足各点的横纵坐标.【解答】解:设经过两点(0,3)和(﹣2,0)的直线解析式为y=kx+b,则,解得,y= x+3;A、当x=4时,y= 4+3=9 6,点不在直线上;B、当x=﹣4时,y= (﹣4)+3=﹣3,点在直线上;C、当x=6时,y= 6+3=12 9,点不在直线上;D、当x=﹣6时,y= (﹣6)+3=﹣6 6,点不在直线上;故选B.【点评】本题考查用待定系数法求直线解析式以及一定经过某点的函数应适合这个点的横纵坐标.10.一次函数y=kx+k的图象可能是( )A. B. C. D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k 0时,函数图象经过一、二、三象限;当k 0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k 0)中,当k 0,b 0时,函数图象经过二、三、四象限是解答此题的关键.二、填空题(本大题共8个小题,每小题3分,满分24分)11.如图所示,小明从坡角为30 的斜坡的山底(A)到山顶(B)共走了200米,则山坡的高度BC为100 米.【考点】解直角三角形的应用-坡度坡角问题.【分析】直接利用坡角的定义以及结合直角三角中30 所对的边与斜边的关系得出答案.【解答】解:由题意可得:AB=200m,A=30 ,则BC= AB=100(m).故答案为:100.【点评】此题主要考查了解直角三角形的应用,正确得出BC 与AB的数量关系是解题关键.12.如图,在四边形ABCD中,已知AB=CD,再添加一个条件AD=BC (写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)【考点】平行四边形的判定.【专题】开放型.【分析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD=BC故答案为:AD=BC(答案不唯一).【点评】此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.13.函数的自变量x的取值范围是x 2 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣2 0,解得x 2.故答案为:x 2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是0.1 .【考点】频数与频率.【分析】根据频率=频数总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40 0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.【点评】本题是对频率=频数总数这一公式的灵活运用的综合考查.注意:各小组频数之和等于数据总和,各小组频率之和等于1.15.函数y=(k+1)x+k2﹣1中,当k满足k ﹣1 时,它是一次函数.【考点】一次函数的定义.【专题】计算题;一次函数及其应用.【分析】利用一次函数定义判断即可求出k的值.【解答】解:函数y=(k+1)x+k2﹣1中,当k满足k ﹣1时,它是一次函数.故答案为:k ﹣1【点评】此题考查了一次函数的定义,熟练掌握一次函数定义是解本题的关键.16.菱形的周长是20,一条对角线的长为6,则它的面积为24 .【考点】菱形的性质;勾股定理.【专题】计算题.【分析】根据周长可求得其边长,再根据勾股定理可求得另一条对角线的长,从而利用面积公式即可求得其面积.【解答】解:∵菱形的周长是20边长=5∵一条对角线的长为6另一条对角线的长为8菱形的面积= 6 8=24.故答案为24.【点评】此题主要考查菱形的性质和菱形的面积公式,综合利用了勾股定理.17.若正多边形的一个内角等于140 ,则这个正多边形的边数是9 .【考点】多边形内角与外角.【分析】首先根据求出外角度数,再利用外角和定理求出边数.【解答】解:∵正多边形的一个内角是140 ,它的外角是:180 ﹣140 =40 ,360 40 =9.故答案为:9.【点评】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.18.将一个正三角形纸片剪成四个全等的小正三角形,再将其中的一个按同样的方法剪成四个更小的正三角形,如此继续下去,结果如下表.则an= 3n+1 .(用含n的代数式表示)所剪次数1 2 3 4 n正三角形个数4 7 10 13 an【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】从表格中的数据,不难发现:多剪一次,多3个三角形.即剪n次时,共有4+3(n﹣1)=3n+1.【解答】解:故剪n次时,共有4+3(n﹣1)=3n+1.【点评】此类题的属于找规律,从所给数据中,很容易发现规律,再分析整理,得出结论.。

苏教版八年级下册数学补充习题答案

苏教版八年级下册数学补充习题答案

苏教版八年级下册数学补充习题答案第一章有理数1.1 有理数的概念和分类1.1.1 有理数的定义有理数是指可以表示成两个整数的比值的数,它可以是正数、负数或零。

常见的有理数包括整数、分数和小数。

1.1.2 有理数的分类根据有理数的大小,可以将其分为以下三类:1.正有理数:大于零的有理数,如 1/2、3/4。

2.负有理数:小于零的有理数,如 -1/2、-3/4。

3.零:0。

1.2 有理数的比较和运算1.2.1 有理数的比较对于两个有理数 a 和 b,可以进行比较大小。

比较的方法如下:1.若 a > b,则说 a 大于 b。

2.若 a < b,则说 a 小于 b。

3.若 a = b,则说 a 等于 b。

要比较两个有理数的大小,可以先将它们转化为相同的分母,然后比较分子的大小。

1.2.2 有理数的加法和减法对于有理数的加法和减法,有以下性质:1.正数加正数 = 正数2.负数加负数 = 负数3.正数加负数 = 正数或负数,取决于绝对值的大小4.零加任何数 = 任何数5.正数减正数 = 正数或负数,取决于绝对值的大小6.负数减负数 = 正数或负数,取决于绝对值的大小7.零减任何数 = 负数取相反数1.2.3 有理数的乘法和除法对于有理数的乘法和除法,有以下性质:1.正数乘正数 = 正数2.负数乘负数 = 正数3.正数乘负数 = 负数4.零乘任何数 = 05.除法的运算结果是两个数的商,如果除数不为零。

6.正数除以正数 = 正数7.负数除以负数 = 正数8.正数除以负数 = 负数9.零除以任何数 = 01.3 有理数的乘方有理数的乘方是指一个数自乘若干次的运算。

1.3.1 正有理数的乘方对于正有理数 a 和自然数 n,有以下性质:1.a^n = a * a * a * … * a (n 个 a 相乘)1.3.3 负有理数的乘方对于负有理数 a 和自然数 n,有以下性质:1.(-a)^n = (-1)^n * a^n1.3.4 零的乘方对于零的乘方,有以下性质:1.0^n = 0 (n > 0)2.0^0 = 1第二章几何与图形2.1 基本概念2.1.1 点、线、面、角的概念在几何学中,点、线、面和角是基本概念。

【苏教版】八年级下学期数学《期中测试卷》及答案解析

【苏教版】八年级下学期数学《期中测试卷》及答案解析

2020-2021学年第二学期期中测试苏教版八年级试题一、单项选择题:(本题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.下列调查中,适合用全面调查的是( ) A .灯泡厂检测一批灯泡的使用寿命 B .了解全国中学生心理健康状况 C .某校对退休教职工进行健康检查 D .了解居民对废电池的处理情况2.要使分式12x +有意义,则x 的取值应满足( ) A .2x =-B .2x ≠-C .2x >-D .2x <-3.如果一个三角形的面积为10,底边长为x ,底边上的高为y ,则y 与x 的函数表达式为( ) A .y =10xB .y =5xC .y =20xD .y =20x 4.下列命题正确的是( )A .一组对边平行、一组对角相等的四边形是平行四边形B .一组对边平行、另一组对边相等的四边形是平行四边形C .对角线相等的四边形是平行四边形D .平行四边形的对角线将平行四边形分成四个全等的三角形5.把分式2223y x y-的x ,y 的值都扩大为原来的4倍,则分式的值( )A .不变B .扩大为原来的4倍C .缩小为原来的14D .不确定 6.如图,在ABC 中,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,24∠︒=C ,则BAC ∠的度数为( ).A.72°B.108°C.144°D.156二、填空题:(本题共10小题,每小题2分,共20分)7.某射手在同一条件下进行射击,结果如下表所示:由此表估计这个射手射击1次,击中靶心的概率是____________.(保留一位小数)8.请写出一个只含有未知数x且根是1-的分式方程__________.9.一个菱形的面积为20cm2,它的两条对角线长分别为ycm,xcm,则y与x之间的函数关系式为y=_____.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的中线为_____.11.化简3622aa a+--=____.12.若点()6,n在函数13y x=-的图像上,则n=________.13.如图,在平行四边形ABCD中,2,3,AB BC BCD==∠的平分线交AD于点M,70DMC∠=度,则平行四边形A∠=__________度,AM的长=___________.14.若分式方程23-2x ax x-+12x-=2x有增根,则实数a的取值是__________.15.如图a是长方形纸带,∠DEF=16°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__.16.在矩形ABCD 中,AB =5,BC =7,点P 是直线BC 一动点,若将∠ABP 沿AP 折叠,使点B 落在平面上的点E 处,连结AE 、PE .若P 、E 、D 三点在一直线上,则BP =_________.三、解答题:(本题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤.)17.根据要求解答: (1)计算:2422a a a a-++; (2)先化简,再求值:2222111a a a a a --⎛⎫-÷ ⎪+⎝⎭,其中2a =. (3)解分式方程2222x x x+=--.18.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a =______;b =______;(2)请估计:当次数s 很大时,摸到白球的频率将会接近______(精确到0.1); (3)请推算:摸到红球的概率是_______(精确到0.1); (4)试估算:这一个不透明的口袋中红球有______只.19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)以原点O 为对称中心,画出ABC 关于原点O 对称的111A B C △;(2)将ABC 绕A 点逆时针旋转90°得到22AB C △,画出22AB C △.20.冠状病毒病感染的疫情牵动着全国人民的心,病毒无情,人间有爱.疫情爆发初期,某中学学生会号召同学们用自己的压岁钱捐献爱心.已知七年级捐款总额为16000元,八年级捐款总额为14000元,七年级捐款人数比八年级多20人,而且两个年级人均捐款额相等,请问七、八年级捐款的人数分别为多少人?21.已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =时,2y =;当1x =-时,1y =.(1)求y 与x 之间的函数关系式; (2)当3x =时,求y 的值.22.如图,在菱形ABCD中,过点D分别作DE∠AB于点E,作DF∠BC于点F.求证:AE=CF.23.如图,将长方形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AB =6,∠ABF的面积是24,求DE的长.24.共享单车横空出世,很好地解决了人们“最后一公里”出行难的问题,但也给城市环境造成了一定的影响,为了解初中学生对共享单车对城市影响的看法,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“乱停放影响他人”、B类表示“方便市民”、C类表示“缓解交通拥挤”、D类表示“其他影响”,调查的数据经整理后形成下列尚未完成的条形统计图(如图∠)和扇形统计图(如图∠);(1)在这次抽样调查中,一共抽查了______名学生; (2)请把图∠中的条形统计图补充完整;(3)图∠的扇形统计图中D 类部分所对应扇形的圆心角的度数为______︒;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中共享单车对城市影响“缓解交通拥挤”和“方便市民”的学生共有多少名?25.如图,将Rt ADF ∆绕着点A 顺时针旋转90︒得到Rt ABE ∆,射线EB 与DF 相交于点C ,90D ∠=︒,求证:四边形ABCD 为正方形.26.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:86222223333+==+=.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如11x x -+,21x x -这样的分式就是假分式;31x +,221x x +这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式). 如:()12121111x x x x x +--==-+++; 解决下列问题: (1)分式2x是________分式(填“真”或“假”); (2)将假分式212x x -+化为带分式;(3)如果x 为整数,分式2251x x ++的值为整数,求所有符合条件的x 的值.27.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD 中,∠ABC =90°,若AB =2,BC =3,则BD =_____; (2)如图2,正方形ABCD 中,点E 、F 分别是边AD 、AB 上的点,且CF∠BE ,求证:四边形BCEF 是准矩形;(3)已知,准矩形ABCD 中,∠ABC =90°,∠BAC =60°,AB =2,当∠ADC 为等腰三角形时,求这个准矩形的面积.答案与解析一、单项选择题:(本题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.下列调查中,适合用全面调查的是( ) A .灯泡厂检测一批灯泡的使用寿命 B .了解全国中学生心理健康状况 C .某校对退休教职工进行健康检查 D .了解居民对废电池的处理情况【答案】C 【分析】在要求精确、调查难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查. 【详解】解:A 、灯泡厂检测一批灯泡的使用寿命,具有破坏性,适合抽样调查,故不符合; B 、了解全国中学生心理健康状况,人数众多,适合抽样调查,故不符合; C 、某校对退休教职工进行健康检查,人数不多,适合全面调查,故符合; D 、了解居民对废电池的处理情况,人数众多,适合抽样调查,故不符合; 故选C . 【点睛】本题考查了抽样调查和全面调查的区别,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查. 2.要使分式12x +有意义,则x 的取值应满足( ) A .2x =- B .2x ≠-C .2x >-D .2x <-【答案】B 【分析】根据分式有意义的条件可得x +2≠0,再解即可. 【详解】解:由题意得:x +2≠0, 解得:x ≠﹣2, 故选:B .【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.3.如果一个三角形的面积为10,底边长为x,底边上的高为y,则y与x的函数表达式为()A.y=10xB.y=5xC.y=20xD.y=20x【答案】C【分析】根据三角形面积公式得到x、y关系式,变形即可求解.【详解】解:∵底边长为x,底边上的高为y,的三角形面积为10,∵110 2xy ,∵ y=20x.故选:C【点睛】本题考查了反比例函数的意义,根据三角形面积公式得到x、y的关系式是解题关键.4.下列命题正确的是()A.一组对边平行、一组对角相等的四边形是平行四边形B.一组对边平行、另一组对边相等的四边形是平行四边形C.对角线相等的四边形是平行四边形D.平行四边形的对角线将平行四边形分成四个全等的三角形【答案】A【分析】根据平行四边形的判定定理和性质定理进行判断.【详解】A、一组对边平行,一组对角相等的四边形可证出另一组对边也平行,所以该四边形是平行四边形,故本选项正确;B、一组对边平行,另一组对边相等的四边形不一定是平行四边形,也可以是等腰梯形,故本选项错误;C、对角线相等的四边形不一定是平行四边形,故本选项错误;D 、平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形,并不一定全等,故本选项错误; 故选:A . 【点睛】本题主要考查了平行四边形的判定和性质.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.5.把分式2223y x y-的x ,y 的值都扩大为原来的4倍,则分式的值( )A .不变B .扩大为原来的4倍C .缩小为原来的14D .不确定 【答案】B 【分析】依题意分别用4x 和4y 去代换原分式中的x 和y ,利用分式的基本性质化简即可. 【详解】解:分别用4x 和4y 去代换原分式中的x 和y , 得()()()()2222421624243442323y y y x y x y x y⨯==⨯---,可见新分式是原分式的4倍. 故选:B . 【点睛】本题考查了分式的基本性质.解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.如图,在ABC 中,将ABC 绕点A 按逆时针方向旋转得到AB C ''△.若点B '恰好落在BC 边上,且AB CB ''=,24∠︒=C ,则BAC ∠的度数为( ).A .72°B .108°C .144°D .156【答案】B 【分析】根据旋转可得等腰三角形AB 'B ,再根据AB CB ''=,求出∵B '和∵B 即可. 【详解】解:∵ABC 绕点A 按逆时针方向旋转得到AB C ''△, ∵AB AB '=, ∵AB B B '∠=∠, ∵AB CB ''=,∵24C B AC ∠∠'==︒,∵248AB B C B AC C ∠∠∠∠+='=='︒, ∵48B AB B ∠∠'==︒,∵1801804824108BAC B C ∠∠∠︒︒︒=--=--=︒. 故选B . 【点睛】本题考查了旋转的性质和等腰三角形的性质,解题关键是熟练利用等腰三角形的性质求出相应角的度数.二、填空题:(本题共10小题,每小题2分,共20分)7.某射手在同一条件下进行射击,结果如下表所示:由此表估计这个射手射击1次,击中靶心的概率是____________.(保留一位小数)【答案】0.9.【分析】用频率估计概率即可.【详解】解:从表中可以发现,随着射击次数的增加,击中靶心的频率越来越稳定.当射击次数为500时,击中靶心的频率为0.906,于是可以估计这个射手射击1次,击中靶心的概率是0.9.故答案为:0.9.【点睛】本题考查了用频率估计概率,解题关键是明确大量反复试验下频率稳定值即概率.8.请写出一个只含有未知数x且根是1-的分式方程__________.【答案】213x= +【分析】根据分式方程的定义即可得出结论.【详解】解:根据题意,得213x=+.故答案为:213x=+(答案不唯一).【点睛】本题考查了分式方程的定义,掌握分式方程的定义是解答此题的关键.9.一个菱形的面积为20cm2,它的两条对角线长分别为ycm,xcm,则y与x之间的函数关系式为y=_____.【答案】40 x【分析】根据菱形面积12=⨯对角线的积可列出关系式.【详解】解:由题意得:1202xy=,可得40yx=,故答案为40x.【点睛】本题考查菱形的性质,反比例函数等知识,解题的关键是记住菱形的面积公式,属于中考常考题型.10.一个三角形的三边长分别为6,8,10,则这个三角形最长边上的中线为_____.【答案】5【分析】根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:∵62+82=100=102,∵该三角形是直角三角形,∵12×10=5.故答案为:5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出直角三角形是解题的关键.11.化简3622aa a+--=____.【答案】3【分析】先把分母变同分母,利用同分母分式加法法则相加,分子因式分解,约分即可.【详解】解:3636=2222a a a a a a +-----, 362a a -=-, ()322a a -=-,3=,故答案为:3. 【点睛】本题考查同分母分式加法运算,掌握同分母分式加法法则,解题关键是利用相反数的符号法则改变2a -符号. 12.若点()6,n 在函数13y x =-的图像上,则n =________. 【答案】-2 【分析】把点()6,n 代入函数解析式即可求解. 【详解】解:∵点()6,n 在函数13y x =-的图象上, ∵136n =-⨯, ∵2n =-, 故答案为:-2. 【点睛】本题主要考察函数值的求法,抓准图像上点的坐标和解析式的关系是解题的关键. 13.如图,在平行四边形ABCD 中,2,3,AB BC BCD ==∠的平分线交AD 于点M ,70DMC ∠=度,则平行四边形A ∠=__________度,AM 的长=___________.【答案】140 1 【分析】已知CM 是∵BCD 的平分线,可证得∵CMD 是等腰三角形,由于∵DMC=70度,所以∵BCD=140°,再证明DM=CD=AB=2,AD=BC=3,则AM 的值可求. 【详解】 解:∵AD∵BC , ∵∵DMC=∵BCM=70°, 又∵CM 平分∵BCD , ∵∵BCD=2∵BCM=140°, ∵∵BCD=∵A=140°;∵MC 为角平分线,则∵DCM=∵MCB=∵DMC=70°, ∵DM=DC ,∵AB=CD=DM=2,BC=AD=3, ∵AM=AD -DM=3-2=1, 故答案为:140,1. 【点睛】本题考查了平行四边形的性质,利用平行四边形的对边相等、对角相等,是证明线段、角相等的一种方法.本题是平行线与角平分线同时出现的一种基本图形.要注意体会解题思想与方法. 14.若分式方程23-2x a x x -+12x -=2x有增根,则实数a 的取值是__________. 【答案】4或8 【分析】化为整式方程2x =a ﹣4,当x =0或x =2时,分式方程有增根,分别求出a 的值即可. 【详解】 解:∵231222x a x x x x-+=-- , 去分母得,3x ﹣a +x =2x ﹣4, 整理得,2x =a ﹣4, ∵分式方程有增根,∵x=0或x=2,当x=0时,a=4;当x=2时,a=8.故答案是4或8.【点睛】本题主要考查分式方程的增根,掌握分式方程的增根使其分母为0是解题的关键.15.如图a是长方形纸带,∠DEF=16°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__.【答案】132°【分析】先由矩形的性质得出∵BFE=∵DEF=16°,再根据折叠的性质得出∵CFG=180°﹣2∵BFE,由∵CFE=∵CFG﹣∵EFG即可得出答案.【详解】解:∵四边形ABCD是矩形,∵AD∵BC,∵∵BFE=∵DEF=16°,∵∵CFE=∵CFG﹣∵EFG=180°﹣2∵BFE﹣∵EFG=180°﹣3×16°=132°,故答案为:132°.【点睛】本题考查了翻折变换的性质、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.16.在矩形ABCD中,AB=5,BC=7,点P是直线BC一动点,若将∠ABP沿AP折叠,使点B落在平面上的点E处,连结AE、PE.若P、E、D三点在一直线上,则BP=_________.【答案】或7﹣ 【分析】由折叠的性质可得:5AB AE ==,BP PE =,APB APE ∠=∠,90AEP B ∠=∠=︒,则有BC =AD =7,AB =CD =5,AD ∵BC ,当点P 在线段BC 上时,且P 、E 、D 三点在一条直线上时,可得7AD DP ==,设BP x =,则7PC x =-,然后根据勾股定理可求解;当点P 在线段BC 外时,且P 、E 、D 三点在一条直线上时,设CP x =,则7BP x =+,同理可求解. 【详解】解:由折叠的性质可得:5AB AE ==,BP PE =,APB APE ∠=∠,90AEP B ∠=∠=︒, ∵四边形ABCD 是矩形,∵BC =AD =7,AB =CD =5,AD ∵BC ,当点P 在线段BC 上时,且P 、E 、D 三点在一条直线上时,如图所示:∵APB DAP ∠=∠, ∵DAP APE ∠=∠, ∵7AD DP ==,设BP x =,则7PC x =-,∵在Rt DCP 中,()222757x -+=,解得:1277x x =-=+;当点P 在线段BC 外时,且P 、E 、D 三点在一条直线上时,如图所示:∵APB DAP ∠=∠, ∵DAP APE ∠=∠, ∵7AD DP ==,设CP x =,则7BP x =+, ∵90DCP DCB ∠=∠=︒, ∵在Rt DCP 中,22257x +=,解得:12x x ==-(不符合题意,舍去);∵7BP =+综上所述:当P 、E 、D 三点在一条直线上时,7BP =+7-故答案为7-7+ 【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键.三、解答题:(本题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤.)17.根据要求解答: (1)计算:2422a a a a-++; (2)先化简,再求值:2222111a a a a a --⎛⎫-÷ ⎪+⎝⎭,其中2a =. (3)解分式方程2222x x x+=--.【答案】(1)2a a-;(2)1a a -,12;(3)x=2【分析】(1)先通分,再作减法,最后化简;(2)先算括号内的,再将除法转化为乘法,约分计算,最后将a=2代入计算; (3)方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【详解】 解:(1)2422a a a a-++ =()()2422a a a a a -++=()242a a a -+ =()()()222a a a a +-+=2a a-; (2)2222111a a a a a --⎛⎫-÷ ⎪+⎝⎭ =()()()()221111a a a aa a -+⨯+-=1a a- 将2a =代入, 原式=12; (3)2222x x x+=--, ∵()222x x -=-, 解得:x=2,经检验:x=2是原方程的解. 【点睛】本题考查了分式的混合运算—化简求值,解分式方程,解题的关键是掌握运算法则,注意解分式方程一定注意要验根.18.在一个不透明的口袋里装有若干个相同的红球,为了用估计袋中红球的数量,八(1)班学生在数学实验室分组做摸球实验:每组先将10个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:(1)按表格数据格式,表中的a =______;b =______;(2)请估计:当次数s 很大时,摸到白球的频率将会接近______(精确到0.1); (3)请推算:摸到红球的概率是_______(精确到0.1); (4)试估算:这一个不透明的口袋中红球有______只. 【答案】(1)123;0.404;(2)0.40;(3)0.6;(4)15. 【分析】(1)根据频率=频数÷样本总数分别求得a 、b 的值即可; (2)从表中的统计数据可知,摸到白球的频率稳定在0.4左右;(3)先利用频率估计概率可得摸到白球的概率,再利用1减去摸到白球的概率即可得; (4)根据红球的概率公式得到相应方程求解即可. 【详解】解:(1)3000.41123a =⨯=,60615000.404b =÷=; (2)当次数s 很大时,摸到白球的频率将会接近0.40; (3)由题意得:摸到白球的概率为0.4, 则摸到红球的概率是10.40.6-=; (4)设红球有x 个, 根据题意得:0.610xx =+, 解得:15x =,经检验,x=15是所列分式方程的解,则口袋中红球有15只;故答案为:123,0.404;0.4;0.6;15. 【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率,用到的知识点为:概率=所求情况数与总情况数之比,组成整体的几部分的概率之和为1.19.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,.(1)以原点O 为对称中心,画出ABC 关于原点O 对称的111A B C △; (2)将ABC 绕A 点逆时针旋转90°得到22AB C △,画出22AB C △. 【答案】(1)画图见解析;(2)画图见解析. 【分析】(1)分别确定,,A B C 关于原点对称的111,,A B C ,再顺次连接111,,A B C ,即可得到答案; (2)分别确定,B C 绕A 逆时针旋转90︒的对应点22,,B C 再顺序连接22,,A B C 即可得到答案. 【详解】解:(1)如图,111A B C △是所求作的三角形, (2)如图,22AB C △是所求作的三角形,【点睛】本题考查的是中心对称的作图,旋转的作图,坐标与图形,掌握旋转与中心对称的性质是解题的关键.20.冠状病毒病感染的疫情牵动着全国人民的心,病毒无情,人间有爱.疫情爆发初期,某中学学生会号召同学们用自己的压岁钱捐献爱心.已知七年级捐款总额为16000元,八年级捐款总额为14000元,七年级捐款人数比八年级多20人,而且两个年级人均捐款额相等,请问七、八年级捐款的人数分别为多少人?【答案】七年级捐款人数为160人,八年级捐款人数为140人 【分析】设七年级捐款的人数为x 人,则八年级捐款的人数为(x -20)人,根据题意给出的等量关系列出方程,解方程即可求出答案. 【详解】解:设七年级的捐款人数为x 人,则八年级(x -20)人, 根据题意得160001400020x x =-, 解得:160x =,经检验160x =是原分式方程的解, 八年级捐款人数:160-20=140(人),答:七年级捐款人数为160人,八年级捐款人数为140人. 【点睛】本题考查了分式方程的应用,解题的关键是正确找出题中的等量关系列出分式方程. 21.已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =时,2y =;当1x =-时,1y =.(1)求y 与x 之间的函数关系式; (2)当3x =时,求y 的值. 【答案】(1)271699y x x=+;(2)20581 【分析】(1)设122,a y kx y x ==,则有2a y kx x=+,然后把当2x =时,2y =;当1x =-时,1y =代入求解即可;(2)由(1)可直接把x=3代入求解. 【详解】解:(1)设122,a y kx y x ==,由12y y y =+可得:2ay kx x=+, ∵把2x =,2y =和1x =-,1y =代入得:2241a k k a ⎧+=⎪⎨⎪-+=⎩,解得:79169k a ⎧=⎪⎪⎨⎪=⎪⎩, ∵y 与x 的函数解析式为:271699y x x=+; (2)由(1)可把x=3代入得:2716205399381y =⨯+=⨯.【点睛】本题主要考查反比例函数的定义及函数解析式,熟练掌握反比例函数的定义及求函数解析式的方法是解题的关键.22.如图,在菱形ABCD 中,过点D 分别作DE∠AB 于点E ,作DF∠BC 于点F .求证:AE =CF .【答案】见解析 【分析】先由菱形的性质得到AD CD =,A C ∠=∠,再由AAS 证得ADE CDF ∆≅∆,即可得出结论. 【详解】解:证明:∵四边形ABCD 是菱形,AD CD ∴=,A C ∠=∠,DE AB ∵⊥,DF BC ⊥,90AED CFD ∴∠=∠=︒,在ADE ∆和CDF ∆中,AED CFD A CAD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ADE CDF AAS ∴∆≅∆,AE CF ∴=.【点睛】本题考查了菱形的性质、全等三角形的判定与性质等知识;熟练掌握菱形的性质和全等三角形的判定与性质是解题的关键.23.如图,将长方形ABCD 边AD 沿折痕AE 折叠,使点D 落在BC 上的点F 处,已知AB =6,∠ABF 的面积是24,求DE 的长.【答案】103【分析】先根据三角形的面积公式求得BF的长,然后根据勾股定理可求得AF=10,由翻折的性质和矩形的性质可知BC=10,故此FC=2,最后在∵EFC中,由勾股定理列方程求解即可.【详解】解:∵S∵ABF=24,∵12AB•BF=24,即12×6×BF=24.解得:BF=8.在Rt∵ABF中由勾股定理得:=10.由翻折的性质可知:BC=AD=AF=10,ED=FE.∵FC=10-8=2.设DE=x,则EC=6-x.在Rt∵EFC中,由勾股定理得:EF2=FC2+EC2,x2=4+(6-x)2.解得:x=103,∵DE=103.【点睛】本题主要考查的是矩形与折叠、三角形的面积公式、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键.24.共享单车横空出世,很好地解决了人们“最后一公里”出行难的问题,但也给城市环境造成了一定的影响,为了解初中学生对共享单车对城市影响的看法,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A、B、C、D四类,其中A类表示“乱停放影响他人”、B类表示“方便市民”、C类表示“缓解交通拥挤”、D类表示“其他影响”,调查的数据经整理后形成下列尚未完成的条形统计图(如图∠)和扇形统计图(如图∠);(1)在这次抽样调查中,一共抽查了______名学生;(2)请把图∠中的条形统计图补充完整;(3)图∠的扇形统计图中D类部分所对应扇形的圆心角的度数为______︒;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中共享单车对城市影响“缓解交通拥挤”和“方便市民”的学生共有多少名?【答案】(1)200;(2)见解析;(3)36°;(4)1125名【分析】(1)从两个图中可得,样本中A类的有30人,占调查人数的15%,可求出调查人数,(2)求出C类的人数,即可补全条形统计图,(3)D类占调查人数的20200,其对应的圆心角也占360︒的20200,(4)根据样本估计总体,样本中B类、C类共占调查人数的9060200+,则总体中B类、C类也占调查人数的9060200+,从而计算.【详解】解:(1)3015%200÷=人,答:本次调查一共抽查200名学生.(2)20030%60⨯=人,补全条形统计图如图所示:(3)2036036200,答:图2中D类所对应的圆心角的度数为36︒.(4)9060 15001125200+⨯=人,答:这所学校1500名学生中共享单车对城市影响“缓解交通拥挤”和“方便市民”的学生共有1125名.【点睛】本题考查条形统计图、扇形统计图的特点和制作方法,从两个统计图中获取数据和数据之间的数量关系是解决问题的关键.25.如图,将Rt ADF ∆绕着点A 顺时针旋转90︒得到Rt ABE ∆,射线EB 与DF 相交于点C ,90D ∠=︒,求证:四边形ABCD 为正方形.【答案】见解析 【分析】由题意易得∵D=∵ABC=∵BAD=90°,则有四边形ABCD 是矩形,然后由AB=AD 可求证. 【详解】证明:∵将Rt ADF ∆绕着点A 顺时针旋转90︒得到Rt ABE ∆, ∵90,EAF ADF ABE ∠=︒≌, ∵∵EAB=∵FAD ,AB=AD , ∵∵D=90°, ∵∵ABE=90°, ∵∵ABC=90°, ∵∵EAB+∵BAF=90°,∵∵DAF+∵BAF=90°,即∵BAD=90°, ∵四边形ABCD 是矩形, ∵AB=AD ,∵矩形ABCD 是正方形. 【点睛】本题主要考查正方形的判定,熟练掌握正方形的判定方法是解题的关键. 26.阅读下列材料:通过小学的学习我们知道,分数可分为“真分数”和“假分数”,而假分数都可化为带分数.如:86222223333+==+=.我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”.如11xx-+,21xx-这样的分式就是假分式;31x+,221xx+这样的分式就是真分式.类似地,假分式也可以化为带分式(即:整式与真分式的和的形式).如:()12121111xxx x x+--==-+++;解决下列问题:(1)分式2x是________分式(填“真”或“假”);(2)将假分式212xx-+化为带分式;(3)如果x为整数,分式2251xx++的值为整数,求所有符合条件的x的值.【答案】(1)真;(2)322xx-++;(3)6,0,8-,2-【分析】(1)根据阅读材料中的内容可知:分式2x是真分式;(2)参照阅读材料中的例子,把分式212xx-+的分子化为22212x x xx+--+即可把原分式化为带分式;(3)先把分式2251xx++化成带分式的形式可得:7221xx-++,由原分式的值为整数,可得7+1x的值为整数,由此即可分析得到整数x的值.【详解】解:(1)由“真分式、假分式”的定义可知,分式2x是真分式;故答案为:真;(2)原式2221212(2)3322222x x x x xx x xx x x x+--++-==-=-=-+++++;(3)原式22225252(1)7722221111x x x x x x x x x x x x +-+-+-==-=-=-+++++, 由x 为整数,分式的值为整数,得到17x +=,解得:6x =,11x +=,解得:0x =,17x +=-,解得:8x =-,11+=-x ,解得:2x =-,则所有符合条件的x 值为6,0,8-,2-.【点睛】本题考查的是一道有关分式运算的阅读理解类的题目,分式新定义,解一元一次方程,解题时需注意:认真阅读理解所给内容,通过例题,弄清把“假分式”化为“带分式”的方法是解题的关键.27.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD 中,∠ABC =90°,若AB =2,BC =3,则BD =_____;(2)如图2,正方形ABCD 中,点E 、F 分别是边AD 、AB 上的点,且CF∠BE ,求证:四边形BCEF 是准矩形;(3)已知,准矩形ABCD 中,∠ABC =90°,∠BAC =60°,AB =2,当∠ADC 为等腰三角形时,求这个准矩形的面积.【答案】(1(2)证明见解析;(3【分析】(1)直接应用勾股定理计算即可;(2)证明∵ABE∵∵BCF 即可;(3)把等腰三角形的腰分三种情形求解即可.。

苏教版初二数学下册期末试卷及答案分析

苏教版初二数学下册期末试卷及答案分析

苏教版初二数学下册期末试卷及答案分析本试卷满分共100分,考试用时120分钟。

一、选择题(每题3分,共27分)1.下列各式中,31-x 、12+a b 、πy x +2、21--m 、a +21、22)()(y x y x +-、x 12-、115-分式的个数有( ).A. 2个B. 3个C. 4个D. 5个2.反比例函数y = 1x的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限3.分别以下列四组数为一个三角形的边长:(1)6、8、10;(2)5、12、13;(3)8、15、17; (4)4、5、6,其中能构成直角三角形的有( )A.四组B.三组C.二组D.一组 4.把分式(0)xyx y x y+≠+中的x 、y 都扩大3倍,那么分式的值( ). A. 扩大3倍 B. 缩小3倍 C. 扩大9倍 D. 不变5. 顺次连结四边形各边中点所得的四边形是( ).A. 平行四边形B. 矩形C. 菱形D. 以上都不对6.为筹备班级的中秋联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A .中位数B .平均数C .众数D .加权平均数7. 如图,等腰梯形ABCD 中,AD∥BC,AE∥DC,∠B=60º,BC=3,△ABE 的周长为6,则等腰梯形的周长是( ). A .8 B.108.解分式方程032222=+---x x x x 时,利用换元法...设y x x=-22,把原方程变形成整式方程为( )(A )0132=++y y (B )0132=+-y y (C )0132=--y y (D )0132=-+y y 9.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .23B .26C .3D .6二、填空题(每小题3分,共24分)10.当x= 时,分式22x x --值为零.11.化简:x y x y y x+=++ .12. 已知矩形的两对角线所夹的角为60︒,且其中一条对角线长为4㎝,则该矩形的两边长分别为 .13.若反比例函数my x=-的图象经过点(32)--,,则m = .14.如图7,平行四边形ABCD 中,AE 、CF 分别是∠BAD 和∠BCD 的角平分线,根据现有的图形,请添加一个条件,使四边形AECF 为菱形,则添加的一个条件可以是_______ (只需写出一个即可,图中不能再添加别的“点”和“线”)图715.小玲家的鱼塘里养了2000条鲢鱼,现准备打捞出售。

苏教版八年级下册数学课课练 学习与评价 答案

苏教版八年级下册数学课课练 学习与评价 答案

一、口算题( 12分 )4.4÷11=0.3×0.3=0÷730= 0.03×10-0.1=7÷5=0.25÷0.5= 0.53×7=125×0.5×0.8=1.9×0.5= 29×5=2.3×0.8= 0.2×7.6×50=二、简算题( 6分 )9.9×8.6+0.86三、计算题(每道小题 6分共 12分 )1. 3-7.14÷3.5×1.052. [20-(90.75÷6.6+2.25)]×11.6四、应用题(每道小题 10分共 20分 )1. 红光农场有两块麦田,第一块5.5公顷,共收小麦27.3吨,第二块3.6公顷,共收小麦18.2吨,这两块麦田平均每公顷收小麦多少吨?2. 一辆汽车在山区行驶,上山用了3小时,平均每小时行30千米,下山行完同样的路程,只用了2小时,求这辆汽车上山,下山的平均速度.五、其它题(第1小题 8分, 2-4每题 10分, 第5小题 12分, 共 50分)1. 一个小组学生的作文得分如下表,这个小组学生作文的平均分是多少?(得数保留一位小数)得分 90 85 80 75人数 2 3 1 12. 下面是某班男生跳远成绩纪录单(单位:米).把这些成绩分类整理,填入下表.3.08 2.95 3.15 3.05 2.83 2.92 2.87 3.05 2.852.65 2.86 2.38 2.95 2.803.03 2.84 2.943.02成绩(米) 2.8以下 2.80-2.89 2.90-2.99 3.00-3.09 3.10以上人数3. 把下面的统计表填完整.××机器厂一车间各小组生产××零件数量统计表 1989年4月4. 某工厂有四个车间,第一车间有男职工62人,女职工50人.第二车间有男职工34人,女职工47人.第三车间有男职工45人,女职工38人.第四车间有男职工12人,女职工83人.制成条形统计表.5. 根据下面的统计表制成条形统计图.××电视机厂产量统计表 1990年2月。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选资料
可修改编辑
苏教版八年级下册数学
一、选择题(本大题共20小题,共60.0分)
1.要使二次根式 在实数范围内有意义,则x 的取值范围是( ) A.x >2 B.x ≥2 C.x <2 D.x =2
2.把
化成最简二次根式的结果是( )
A. B.
C.
D.2
3.下列二次根式中,与 是同类二次根式的是( )
A. B. C. D.
4.下列各式计算正确的是( )
A. + =
B.5 -3 =2
C.( + )÷2= + =7
D.3 + =6 5.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )
A.0.7米
B.1.5米
C.2.2米
D.2.4米
6.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“
赵爽弦图
”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( )
A.3
B.4
C.5
D.6
7.如图,一艘海轮位于灯塔P 的南偏东45°方向,距离灯塔60nmile 的A 处,它沿正北方向航行一段时间后,到达位于灯塔P 的北偏东30°方向上的B 处,这时,B 处与灯塔P 的距离为
初中数学试卷第2页,共28页
( )
A.60 nmile
B.60 nmile
C.30 nmile
D.30 nmile 8.如图,等边△OAB 的边长为2,则点B 的坐标为( ) A.(1,1) B.( ,1) C.( , ) D.(1, ) 9.下列几组数中,为勾股数的是( ) A.3、4、6 B.


C.7、24、25
D.0.9、1.2、1.6
10.若直角三角形的三边长为偶数,则这三边的边长可能是( ) A.3,4,5 B.6,8,10 C.7,24,29 D.8,12,20 11.满足下列条件的三角形中,不是直角三角形的是( )
A.三内角的度数之比为1:2:3
B.三内角的度数之比为3:4:5
C.三边长之比为3:4:5
D.三边长的平方之比为1:2:3
12.在平行四边形ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则平行四边形ABCD 周长是( )
A.22
B.20
C.22或20
D.18
13.在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD 是矩形,E 是BA 延长线上一点,F 是CE 上一点,∠ACF=∠AFC ,∠FAE=∠FEA .若∠ACB=21°,则∠ECD 的度数是( )
A.7°
B.21°
C.23°
D.24°
14.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )
A.∠BAC=∠DCA
B.∠BAC=∠DAC
C.∠BAC=∠ABD
D.∠BAC=∠ADB 15.如图,在菱形ABCD 中,AC=8,BD=6,则△ABC 的周长是( ) A.14 B.16 C.18
D.20
精选资料
可修改编辑
16.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是( )
A. B. C. D.
17.已知点 A (-1,1),B (1,1),C (2,4)在同一个函数图象上,这个函数图象可能是( )
A. B. C. D.
18.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A.甲 B.乙 C.丙 D.丁
19.“莲城读书月”活动结束后,对八年级(三)班45人所阅读书籍数量情况的统计结果如下表所示:
根据统计结果,阅读2本书籍的人数最多,这个数据2是( ) A.平均数 B.中位数 C.众数 D.方差
20.关于2、6、1、10、6的这组数据,下列说法正确的是( ) A.这组数据的众数是6 B.这组数据的中位数是1 C.这组数据的平均数是6 D.这组数据的方差是10
初中数学试卷第4页,共28页
二、填空题(本大题共11小题,共33.0分)
21.把
根号外的因式移到根号内,结果为 ______ .
22.能使得 = • 成立的所有整数a 的和是 ______ . 23.在△ABC 中BC=2,AB=2 ,AC=b ,且关于x 的方程x 2-4x +b =0有两个相等的实数根,则AC 边上的中线长为 ______ .
24.如图,已知△ABC 三条边AC=20cm ,BC=15cm ,AB=25cm ,CD ⊥AB ,则CD= ______
cm .
25.如图,在矩形ABCD 中,AB= ,E 是BC 的中点,AE ⊥BD 于点F ,则CF 的长是 ______ .
26.如图,在正方形ABCD 中,AD=2 ,把边BC 绕点B 逆时针旋转30°得到线段BP ,连接AP 并延长交CD 于点E ,连接PC ,则三角形PCE 的面积为 ______ .
27.在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,要使四边形ABCD 是正方形,还需添加一组条件.下面给出了四组条件:①AB ⊥AD ,且AB=AD ;②AB=BD ,且AB ⊥BD ;③OB=OC ,且OB ⊥OC ;④AB=AD ,且AC=BD .其中正确的序号是 ______ .
28.等腰三角形的周长为16cm ,底边长为xcm ,腰长为ycm ,则x 与y 之间的关系式为 ______ . 29.已知函数y =2x 2a +b +a +2b 是正比例函数,则a = ______ .
30.记实数x 1,x 2中的最小值为min {x 1,x 2},例如min {0,-1}=-1,当x 取任意实数时,则min {-x 2+4,3x }的最大值为 ______ .
31.当k = ______ 时,函数y =(k +3)x
-5是关于x 的一次函数. 三、解答题(本大题共9小题,共72.0分) 32.计算:-12017-丨1-
丨+ ×(
)-2+(2017-π)0.
精选资料
可修改编辑
33.已知:x 2+y 2-10x +2y +26=0,求( +y )( -y )的值.
34.在R t △ABC 中,a 为直角边,c 为斜边,且满足 +2 =a -4,求这个三角形的周长和面积.
35.已知△ABC 的三边为a 、b 、c ,且a +b =7,ab =12,c =5,试判定△ABC 的形状.
36.如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF ,BE . (1)求证:△AGE ≌△BGF ;
(2)试判断四边形AFBE 的形状,并说明理由.
37.矩形ABCD中,E、F分别是AD、BC的中点,CE、AF分别交BD于G、H 两点.
求证:(1)四边形AFCE是平行四边形;
(2)EG=FH.
38.如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.
(1)求证:四边形BEDF是平行四边形;
(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.
初中数学试卷第6页,共28页
精选资料
可修改编辑
39.如图,在四边形ABCD 中,BD 为一条对角线,AD ∥BC ,AD=2BC ,∠ABD=90°,E 为AD 的中点,连接BE . (1)求证:四边形BCDE 为菱形;
(2)连接AC ,若AC 平分∠BAD ,BC=1,求AC 的长.
40.如图,矩形ABCD 中,AD=6,DC=8,菱形EFGH 的三个顶点E 、G 、H 分别在矩形ABCD 的边AB 、CD 、DA 上,AH=2. (1)若DG=6,求AE 的长;
(2)若DG=2,求证:四边形EFGH 是正方形.
苏教版八年级下册数学
答案和解析
【答案】
1.B
2.B
3.C
4.D
5.C
6.C
7.B
8.D
9.C10.B11.B12.C13.C14.C15.C16.D17.B 18.D19.C20.A
21.-22.5 23.2 24.12 25.26.6-10 27.①③④ 28.y=8-x(0<x<8)29.30.3 31.3
初中数学试卷第8页,共28页。

相关文档
最新文档