集成触发器和数讲义字触发电路

合集下载

KC41C电路

KC41C电路

16引脚双列直插式集成元件 16引脚双列直插式集成元件 用于单相或三相全控桥式装 置 15脚输出两个窄脉冲 1脚和15脚输出两个窄脉冲 脚和15 脉冲宽度由R8、C2的值决定 脉冲宽度由R8、C2的值决定 R8
KC04各点电压波形 各点电压波形
集成触发器和数KC41C六路双脉冲形成器 六路双脉冲形成器件 一块KC41C与三块 一块KC41C与三块 KC41C KC04组成三相全控桥双 KC04组成三相全控桥双 脉冲触发电路。 脉冲触发电路。
集成触发器和数字触发电路


1、集成触发器和数字触发器的特点。 2、KC41C与KC04组成的集成触发器的功能。 3、数字触发器的工作原理。
三相全控桥集成触发电路
集成触发器和数字触发电路
三、数字触发电路
微机控制数字触发系统框图
集成触发器和数字触发电路
利用T0、 构成 位定时、 构成16位定时 利用 、T1构成 位定时、计数 器。 计数溢出时, 计数溢出时,向CPU发出中断请 发出中断请 执行中断程序。发出触发信号。 示,执行中断程序。发出触发信号。
集成触发器和数字触发电路
一、KC04移相集成触发器 KC04移相集成触发器 16引脚双列 16引脚双列 直插式集成元件 用于单相或 三相全控桥式装 置 1脚和15脚 脚和15脚 15 输出两个窄脉冲 脉冲宽度由 R8、C2的值决定 R8、C2的值决定
集成触发器和数字触发电路
一、KC04移相集成触发器 KC04移相集成触发器
KC41C六路双脉冲形成器 六路双脉冲形成器
集成触发器和数字触发电路
二、KC41C六路双脉冲形成器 KC41C六路双脉冲形成器 六路双脉冲形成器件 一块KC41C与三块 一块KC41C与三块 KC41C KC04组成三相全控桥双 KC04组成三相全控桥双 脉冲触发电路。 脉冲触发电路。

数电第4章触发器课件

数电第4章触发器课件

与该当前的输入信号有关,而且与此前电路的状态有关。
结构特征:由组合逻辑电路和存储电路组成,电路中存在反馈。 锁存器和触发器是构成时序逻辑电路的基本逻辑单元 。
2
4.1 概述 一、触发器的概念及特点 1.概念:
FF: (Flip-Flop, 简称FF)能够存储1位二进制信号 的基本单元电路。
2.特点: (1)有两个稳定的状态:0状态和1状态。 (2)在触发信号控制下,根据不同输入信号可置成 0或1状态。 (触发信号为时钟脉冲信号)
第4章 触发器
4.1 概述
4.2 基本SR触发器(SR锁存器)
4.3 同步触发器(电平触发)
4.4 主从触发器(脉冲触发)
4.5 边沿触发器(边沿触发) 4.6 触发器的逻辑功能及描述方法 4.7 集成触发器 4.8 触发器应用举例
作业题
【5】【6】【8】【11】
1
时序逻辑电路与锁存器、触发器: 时序逻辑电路: 工作特征:时序逻辑电路的工作特点是任意时刻的输出状态不仅
1、电路结构 以基本SRFF为基础,增加两个与非门。
置1端 时钟信号 (高电平有效) (同步控制)
置 0端 (高电平有效)
图4-5 同步SRFF
13
2、工作原理
分析CLK=0时: 有 SD’ =RD’=1, 则Q、Q’不变。 分析CLK=1时: (1)S=R=0时,有SD’ =RD’=1:Q、Q’不变(保持原态) (2)S =0, R=1:输出Q=0, Q’=1 (置0状态) (3)S =1, R=0:Q=1, Q’=0 (置1状态) (4)S=R=1:Q=Q’=1(未定义状态)
t t
1

O
Q

O
图4-13 主从JKFF波形

实验四集成触发器和用SSI的设计同步时序电路-PPT文档资料

实验四集成触发器和用SSI的设计同步时序电路-PPT文档资料

74LS74
2片
74LS00
1片
微动开关 4只
1台
74LS112 2片 74LS04 1片
器件引脚图
74LS112 双下降沿JK 触发器
1CP 1 1K 2 1J 3 1SD 4 1Q 5 1Q 6 2Q 7 GND 8
16 VCC 15 1RD 14 2RD
74LS112 13 2CP
12 2K 11 2J 10 2SD 9 2Q
实验四 集成触发器和用SSI设计同步时序电路
一、实验目的
1.掌握触发器的原理、作用及调试方法; 2.学习简单时序逻辑电路的设计和调试方法。
二、预习要求
根据实验内容,设计出电路,并画出逻辑图,标出管脚。
三、实验原理
1.触发器
SD
S
J
1J
Q
CP
C1
K
1K
Q
RD
R
边沿JK触发器
Qn1JQnKQn
CP下降沿时刻有效
74LS74 双上升沿D 触发器
1RD 1 1D 2 1CP 3 1SD 4 1Q 5 1Q 6 GND 7
74LS74
14 VCC 13 2RD 12 2D 11 2CP 10 2SD 9 2Q 8 2Q
74LS04 六反相器
1A 1 1Y 2 2A 3 2Y 4 3A 5 3Y能测试。
按下表要求观察和记录Q与Q 的状态
表1
SD RD J K CP
Qn+1
Qn=0
Qn=1
1
1

1100 1101 21 1 1 0
31 1 1 1
2. 3人智力抢答电路
QA Q A
QB QB

数字电路触发器

数字电路触发器
1. 基本构造
S:置位(置1)端 R:复位(置0)端
两互补输出端
Q
Q
.
. 反馈线
& G1
& G2
两输入端 SD
RD
(二) 基本RS触发器
2. 逻辑功能
正常情况下, 两输出端旳状态 保持相反。一般 以Q端旳逻辑电 平表达触发器旳 状态,即Q=1, Q=0时,称为“1” 态;反之为“0” 态。
两互补输出端
发器状态不定。
3. 基本RS触发器应用电路:
(1) 无震颤开关电路
Q
Q
&&
5V
S
R
1k 1k
K
图4- 3 无震颤开关电路
机械开关在静止到新旳位置 之前其机械触头将要震颤几 次。图4-3电路能够处理震颤 问题。
设初始时K接R端,基本原 理如下:
a.K由右扳向左端,而且震颤几次,相当于RS=10
(或11)
1
K
1

0
G8 1
& G6
0
B

1
G4
& G2
Q
01
0
0
10
CP
设触发器原
& 01
G9
(a)
1
Rd
主从状 态一致
态为“0”
翻转为“1”态

(1)J=1, K=1
1
J
K
1 1
0
0
CP
设触发器原 态为“1”态
& G7
F主
& G8
Sd
A
1
Q’
& G5
& G3
Q’ F从
& G6 B
& G4
& G1
& G2

数字电子技术优质课件精选集成触发器02

数字电子技术优质课件精选集成触发器02

状态Q的改变时间:CP下沿
Q 保持 Q 改变
Q的次态值:取决于CP=1的输入(R与S)
进一步说明:Q的值, 只能在CP下沿变,其它时间不会变
Q主的值,可能在CP=1改变多次
(4-36)
X表示
CP S R
Qn+1
CP=1/0
X X X Qn
00
Qn
01
0
10
1
11
1*
(4-37)
画波形
CP S R
按功能分类:R-S触发器、D型触发器、 JK触发器、T型触发器等。
(4-4)
5.1 基本 触发器
1. 基本 R-S 触发器
正常情况下, 两输出端的状态 保持相反。通常 以Q端的逻辑电 平表示触发器的 状态,即Q=1, Q=0时,称为“1” 态;反之为“0” 态。
两互补输出端
Q
Q
反馈线
& G1
& G2
SD 两输入端
RD
(4-5)
触发器输出与输入的逻辑关系
(1) SD=1,RD = 0
设触发器原态 为“1”态。
1Q 0 & G1
1
Q0 1
& G2 0
翻转为“0”态
SD 1
RD 0
(4-6)
设原态为“0”态
结论: 不论 触发器原来 为何种状态, 当 SD=1,
RD=0时, 将使触发器 置“0”或称 为复位。
触发器保持
“1”态不变
1Q
Q0
1
0
& G1 0
& G2 1
SD 0 置位
RD 1
(4-9)
(3) SD=1,RD = 1

《集成触发器》课件

《集成触发器》课件
可靠性
由于触发器在事件发生时自动执行,减少了 人工干预,降低了出错的可能性。
可扩展性
通过集成多个触发器,可以实现更复杂的业 务逻辑,满足不断变化的业务需求。
灵活性
可以根据实际需求配置触发器的行为,实现 个性化的业务处理。
局限性
性能开销
集成触发器在处理大量事件时可能会 对系统性能产生影响。
复杂性
由于集成触发器的使用涉及到业务逻 辑的编写和配置,使用不当可能导致 系统变得复杂和难以维护。
这种触发器在一定时间 间隔后执行特定操作。
按结构分类
01
02
03
04
简单触发器
只有一个操作,当满足特定条 件时执行。
复合触发器
包含多个操作,当满足特定条 件时按照一定顺序执行。
嵌套触发器
一个触发器内部包含另一个触 发器,当外部触发器满足条件
时,内部触发器执行。
链式触发器
多个触发器依次链接,前一个 触发器的输出作为后一个触发
测试与验证
功能验证
验证触发器是否实现了所有预期的功能。
性能验证
验证触发器的性能是否满足预期要求。
05
集成触发器的应用案例
案例一:智能家居系统中的应用
总结词
智能家居控制
详细描述
集成触发器在智能家居系统中用于控制家电设备的自动化运行,通过预设条件触发相应 的操作,如自动开启空调、调节灯光亮度等。
案例二:工业自动化系统中的应用
《集成触发器》ppt课 件
目 录
• 集成触发器概述 • 集成触发器的分类 • 集成触发器的优势与局限性 • 集成触发器的设计与实现 • 集成触发器的应用案例 • 集成触发器的发展趋势与展望
01

集成电子技术习题及解析-第二篇第4章

解: 这是将D功能触发器转换为JK功能触发器的一个功能转换电路,转换的的基本思路如图所示:
因为D触发器的特性方程为: ,而 触发器的特性方程为 所以 ,所以电路为:
题2.4.14由负边沿JK触发器组成的电路及CP、A的波形如图题2.4.14所示,试画出QA和QB的波形。设QA的初始状态为0。
图题2.4.14
② 依次设定初始状态,代入状态方程,求得次态,初态一般设为从0000开始;
③ 由求得的状态,画出状态转换图(把所有的状态都画上);
④ 根据状态转换图,可以画出波形图(时序图);
⑤得出电路的功能结论(计数器的模、进制数、能否自启动或其它结论);
分析时序电路还可以用其它的方法,本题不一一列出。
题2.4.22三相步进马达对电脉冲的要求如图题2.4.22所示,要求正转时,三相绕组Y0、Y1、Y2按A、B、C的信号顺序通电,反转时,Y0、Y1、Y2绕组按A、C、B的信号顺序通电(分别如图中的状态转换图所示)。同时,三相绕组在任何时候都不允许同时通电或断电。试用JK触发器设计一个控制步进马达正反转的三相脉冲分配电路。
(a) 是一个同步计数器,各触发器激励方程
触发器激励方程代入各自的特性方程求得状态方程:
依次设定初态,计算出次态如下:
初态设定从 开始,→001→010→011→100→001
→010, →000, →000
有状态转换图为:
111→000←110所以电路的模是M=4,采用余1码进行计数
↓ 四分频后,最高位的输出频率为
图题2.4.19
解:解该题时,注意全加器是一个合逻辑电路,而移位寄存器和触发器是一个时序电路,要注意时序关系。其波形如图:
题2.4.20(1)试分析图题2.4.20(a)、(b)所示计数器的模是多少?采用什么编码进行计数?

数字电子技术优质课件精选集成触发器01

3、输入信号消失后,能将状态保存下来
5.2 触发器的电路结构 与动作特点
触发器当其逻辑功能相同时、其动作特点并不 相同,也就是说同样逻辑功能的触发器,当电 路结构不一样时,在相同的输入下,有着不一 样的输出。 四种电路结构:
1、基本
2、同步(钟控)
3、主从
4、边沿
一、基本RS触发器
1.用与非门组成的基本RS触发器
1 1 取反
卡诺图
Q n +1
KQ
n
00
01
11
10
J
00 1 0 0
11 1 0 1
JK
Qn Qn+1
00
00
00
1
1
Q
n01 0
1
1
J Q 0n1
0
K0Q
n
10
0
1
10
1
1
(3)状态转换图:
11
01
11
1
0
J = 1 K=×
J=0
K =×
0
K=0
1
J =×
K = 1 J=×
*4.主从JK触发器的主触发器一次翻转现象
1
& G4
10
R
CP
S
00 00 01 01
10 10
11 11
0
0
1
1
保持
0
1 输出状态
1
1 同S状态
0
0 输出状态
1
0 同S状态
0
×
1
×
不定
同步RS触发器的状态转换分别由R、S和CP控制,其中, R、S控制状态转换的方向;CP控制状态转换的时刻。

触发电路的工作原理

触发电路的工作原理引言:在现代电子技术中,触发电路是一种重要的电路元件,用于产生特定的脉冲信号,以控制其他电路或设备的工作。

本文将介绍触发电路的工作原理,包括对触发电路的定义、主要类型以及工作原理的详细解释。

一、触发电路的定义触发电路是用于控制其他电路或设备的开关电路,其输入信号被称为触发信号。

触发电路通常由触发器、计数器、比较器等基本元件组成。

通过设置适当的参数和条件,触发电路能够在特定的时刻产生或传递脉冲信号,用于控制其他电路或设备的工作。

二、触发电路的主要类型触发电路根据其工作原理和结构可分为多种类型,其中比较常见的有单稳态触发电路、双稳态触发电路和多稳态触发电路。

下面将分别对这些类型进行详细介绍。

1. 单稳态触发电路:单稳态触发电路在触发信号的作用下,在输出端产生一个持续时间较短的方波脉冲。

单稳态触发电路可分为正脉冲单稳态触发电路和负脉冲单稳态触发电路两种。

正脉冲单稳态触发电路在输入信号为正脉冲时触发,负脉冲单稳态触发电路在输入信号为负脉冲时触发。

2. 双稳态触发电路:双稳态触发电路在触发信号的作用下,在输出端产生两个稳定的状态,即高电平和低电平。

典型的双稳态触发电路有RS触发器、D触发器、JK触发器等。

这些触发器由逻辑门电路构成,能够根据输入信号的变化在输出端产生相应的稳定状态。

3. 多稳态触发电路:多稳态触发电路是指在触发信号的作用下,在输出端产生多个不同的稳定状态。

这类触发电路常用于数字系统中的存储电路和计数器等。

多稳态触发电路的实现较为复杂,通常需要利用逻辑门电路和时序电路来实现。

三、触发电路的工作原理触发电路的工作原理主要涉及触发器的工作机制和逻辑门电路的应用。

触发器是一种存储器件,能够根据输入信号的变化在输出端产生相应的稳定状态。

逻辑门电路则用于控制触发器的输入信号,以实现特定的触发条件。

以JK触发器为例,说明触发电路的工作原理。

JK触发器由两个输入端J和K组成,以及两个输出端Q和Q'。

触发电路


C7 +15V
R10 C8
KJ004
KJ004
R11 C9
( 1~ 6 脚为6路单脉冲输入 )
1 2 3 4 5 6 7 8
KJ041
16 15 14 13 12 11 10 9
(15~10 脚为6
C4
R16
8 7 6 5 4 3 2 1
R7
9 10 11 12 13 14 15 16
R4 C1
C5
2 1
us+Up
2.8.3 集成触发器
可靠性高,技术性能好,体积小,功耗低,调试方便。 晶闸管触发电路的集成化已逐渐普及,已逐步取代分立式电路。 国产KC(KJ)系列晶闸管触发器已有10余种品种,可适应各种相控变流电 路的移相控制要求
KC04
与分立元件的锯齿波移相触发电路相似 ,分为同步、锯齿波形成、移相、 脉冲形成、脉冲分选及脉冲放大几个环节。 RP1,R23,C1调锯齿波的宽度。 R28,C2调脉冲的宽度。 同步电压US滞后主电路电源电压30度。

R R 可见u s为锯齿波 R R R R C T R C R C
快速放电( R5 R4 , R5 10K )
R
V2
1
(2)同步的实现 选择合适的R1 / C1值 使V2在电源周期内 导通240 , 截止120
当电容电压为图示 方向时V2总是截止
(3V )同步电压与移相电压的 叠加 V u G D D 位于图示位置 , U C 脉冲左移,
2.8.3 集成触发器
完整的三相全控桥触发电路
3个KJ004集成块和 1个KJ041集成块,可形成六路双脉冲, u u u 再由六个晶体管进行脉冲放大即可。
sa sb sc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档