非齐次线性方程组例题

合集下载

例5非齐次线性方程组

例5非齐次线性方程组

1 0 0
0 2 1
1 3 2
2 6 9
2
6
5
1 0 1 2 2
~r2
r3
0
1
2
9
5
0 2 3 6 6
1 0 1 2 2
~ 0 r3(2)r2 1 2
9
5
0 0 1 12 4
1
~ 0 r1(1)r3
r2 2r3 0
0 1 0

0 0 1
10 15 12
~ 2
3 4
,P2
BQ2
Er2 0
0
0
AB
P11
Er1 0
0 0
Q1 1
P21
Er2 0
0 0
Q2-1
令C=Q1-1P21
C1
C3
C2 C4
,其中C1为r1
r2型矩阵,
R(C)=n,又
Er1 0
0 0
C
Er2 0
0
0
C1 0
0 0
D
R( AB) R(D) R(C1),
2
0 9 9 9
可知系数矩阵A与增广矩阵B的
秩不等,所以方程组无解;
当 1时,增广矩阵B为
1
B=(A
b)=
2
2 4
2 4
~ 1
2
r2 r3
( 2 2 r1
)
r1
1 0
2 0
2 1
0
0
2 4 4 2
0 0 0 0
由此可知系数矩阵A与增广矩阵B的秩相等1,所以方 程组解且有无穷多.
1 0 0
c2 (1)
0
1

第4章第3节非齐次线性方程组

第4章第3节非齐次线性方程组

证明 A (ξ +η ) = Aξ + Aη = 0 + β = β 所以 x = ξ +η 是方程 A x = β 的解
非齐次线性方程组 的通解
其中 kξ1+kξ + + kn−r ξ n − r 是对应的 齐次 方程组 的通解, ... 是对应的齐次 通解, 1 2 2 5 η * 是非齐 线性方程组的任何一个特解. 线性方程组的任何一个特解 特解.
1 1 0 0.5 1 0 0 −2 0
原方程组有无穷多个解, 原方程组有无穷多个解, 它同解于 无穷多个解
x1+0.5x2−0.5x3 = 0.5 −0.5 0.5 x1 0.5 x4 = 0 x 1 0 通解为 2 = 0 + k1 + k2 x1 =0.5 −0.5x2+0.5x3 0 1 x3 0 x2 = x2 0 0 x4 0 x = x3 3 第2行减去 第1行 与第,3行之和 与第3 其中 k1 k2 为任意实数 x4 = 0第3行减去 第1行 7

x=k1 1+k2ξ 2 +... +kn−r ξ n− r +η* =ξ
x1 − x2 − x3 + x4 = 0 例1 求解方程组 x1 − x2 + x3 −3x4 = 2 x1 − x2 −3 x3+5x4 = −2 1 1 1 1 −1 −1 1 0 1 −1 −0 − 1 0 解 对增广矩阵 A =1 −1 1 −3 2 ~ 0 0 1 −4 2 2 2 1 进行初等行变换 1 −1 −3 5 −2 0 0 −2 4 −0 0 0 2 R ( A ) = 2 = R( A ) < 4

齐次和非齐次线性方程组的解法整理

齐次和非齐次线性方程组的解法整理

线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】r(A)= r <n ,若小 0 (A为用"矩阵)的一组解为匚爲,…,爲一,且满足:(1)看岛宀雋円线性无关;⑵AX= 0的)任一解都可由这组解线性表示.则称刍易,…,蔦-为的二0的基础解系.称X =镯刍+ k為+…+为AX= 0的通解。

其中人,虬…,A-,为任意常数).齐次线性方程组的关键问题就是求通解,而求通解的关键问题是求基础解系.【定理】若齐次线性方程组衣二0有解,则(1)若齐次线性方程组AT二0 (A为〃7"矩阵)满足r(A) = n ,则只有零解;⑵ 齐次线性方程组有非零解的充要条件是r(A) <n.(注:当山=/?时,齐次线性方程组有非零解的充要条件是它的系数行列式\A\=0.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于n-r(A).2、非齐次线性方程组AX=B的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX=O所对应的同解方程组。

由上述定理可知,若加是系数矩阵的行数(也即方程的个数),"是未知量的个数,则有:(1)当加<"时,r(A)<m<n,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当/;/ = //时,齐次线性方程组有非零解的充要条件是它的系数行列式卜| = 0;(3)当m =八且HA)="时,若系数矩阵的行列式则齐次线性方程组只有零解;(4)当川>”时,若r(A) < n ,则存在齐次线性方程组的同解方程组;若r(A) > n ,则齐次线性方程组无解。

1、求AT= 0 (A为m x //矩阵)通解的三步骤(1)A^-^C (行最简形);写出同解方程组6T=0.(2)求出6T=0的基础解系⑶ 写出通解*=人刍+心金+•・・ + /-总t其中 7 也为任意常数.所以,原方程组的通解为X=k^+k2^2+k^ (人,町,2R).二、非齐次线性方程组的解法求AX- b的解(A mxn r(A) = r )用初等行变换求解,不妨设前r列线性无关(1) <+1工0时,原方程组无解.⑵= 0” = ”时,原方程组有唯一解.⑶〃冲=0” S时,原方程组有无穷多解.其通解为焉爲+••• + &・《“,也,…,咕为任意常数。

3-6.非齐次线性方程组

3-6.非齐次线性方程组

ïï í ï
x2 x3
= =
x2
2x4 + 1 2
ïîx4 =
x4
çæ x1 ÷ö çæ 1÷ö çæ 1÷ö çæ1 2÷ö
ç ç ççè
x2 x3 x4
÷ ÷ ÷÷ø
=
k1
ç ç
ççè
1÷ 00÷÷÷ø
+
k2
ç ç
ççè
0÷ 12÷÷÷ø
+
ççççè1002÷÷÷÷ø.
(k1, k2 Î R)
例2 求解非齐次线性方程组
ú ú
êë0 0 0 0 0 k -3úû
ìx1 = x3 + x4 + 5x5 - 2

ï ïï í
x2 x3
= =
-2 x3 x3
-
2x4
-
6 x5
+
3
ï ï
x4
=
x4
ïîx5 =
x5
通解 为
é 1 ù é 1 ù é 5 ù é- 2ù
êê- 2úú
êê- 2úú
êê- 6úú
ê ê
3
ú ú
x
x = k1x1 + L + kn-rxn-r + h * .
例1 求解非齐次方程组的通解
ì ï í
x1 x1
-
x2 x2
+
x3 x3
+ -
x4 = 0 3x4 = 1
注意书写格式
ïî x1 - x2 - 2x3 + 3x4 = - 1 2
非齐次线性方程组:增广矩阵化成行阶梯形矩 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解;

已知非齐次线性方程组

已知非齐次线性方程组

已知非齐次线性方程组
常数项不全为零的线性方程组称为非齐次线性方程组。

非齐次线性方程组的表达式为:ax=b非齐次线性方程组ax=b有解的充分必要条件是:系数矩阵的秩等于增广矩阵的秩,即rank(a)=rank(a, b)(否则为无解)。

含n-r个参数的通解。

求解的存有性
非齐次线性方程组有唯一解的充要条件是rank(a)=n。

非齐次线性方程组存有无穷多求解的充要条件就是rank(a)\ucn。

(rank(a)则表示a
的秩)
解法
非齐次线性方程组ax=b的解步骤:
(1)对增广矩阵b施行初等行变换化为行阶梯形。

若r(a)\ucr(b),则方程组无解。

(2)若r(a)=r(b),则进一步将b化成行及最简形。

(3)设r(a)=r(b)=r;把行最简形中r个非零行的非0首元所对应的未知数用其余
n-r个未知数(自由未知数)表示,并令自由未知数分别等于c1,c2,..-r,即可写出。

4.4 非齐次线性方程组

4.4   非齐次线性方程组
线 性
1 1 −1 2 1 0 a +1 0 b 0 0 a + 1 0 1 1 1
代 数
(1)当a ≠ −1, r ( A) = r ( A) = 4(未知量个数), 有唯一解, 为求解, 将 A进一步化为简化行阶梯型 :
= =
1 1 1 1 0 1 1 1 1 1 0 1 − 1 2 1 0 1 − 1 0 1 A→ b → b 0 0 1 0 0 0 1 0 a + 1 a + 1 0 0 0 0 1 0 0 0 0 1 2b b 1 1 0 0 1 − a + 1 1 0 0 0 − a + 1 b b 0 1 0 0 1 + 0 1 0 0 1 + → → a + 1 a + 1 b b 0 0 1 0 0 0 1 0 a +1 a +1 0 0 0 0 1 0 0 0 0 1 ⇒ 唯一解为 − 2b a + b +1 b x1 = , x2 = , x3 = , x4 = 0 a +1 a +1 a +1 (2)当a = −1, 且b ≠ 0时, r ( A) = 2, r ( A) = 3, 方程组无解

A的行向量组是 的行向量组的部分组, 的行向量组是B 的行向量组的部分组,
线
的行向量组可由B 的行向量组线性表出, 所以 A 的行向量组可由 的行向量组线性表出 A 的行向量组的秩 ≤ B 的行向量组的秩 性 又
性 代 数
x1 b1 矩阵形式 : Ax = b, 其中A = (aij ) m×n , x = ⋮ , b = ⋮ xn bm 向量形式 : x1α1 + x2α 2 + ⋯ + xnα n = b (4.9) 其中, α j = (a1 j , a2 j ,⋯ , amj )T , j = 1, 2,⋯ , n 即 A = [α1 α 2 ⋯ α n ]

方程组课后练习及答案

方程组课后练习及答案

x3 x2 x1 bi x3 x2
x1
bi x3 x2
x1
bi
解: 1 2 a
1
1
2
a
1
1
2
a
1
1 1 2 b 0 1 a 2 b 1 0 1 (a 2) (b 1)
4 5 10 c 0 3 4a 10 c 4 0 0 a 4 c 3b 1
(1)
3.设 2x1 x2 x3 2x4 0,
已知 1,1,1,1T 是方程组的一个解,则
3x1 (2 )x2 (4 )x3 4x4 1,
= k ; k (k为任意常数).
(5)方程组习题课课后练习 1. 设1, 2 , 3 是四元非齐次线性方程组 AX=B 的三个解向量,
rA 3,1 1,2,3,4T , 2 3 0,1,2,3T , 则 AX=B 的通解为 (C) ,C 为任意
1
4
8
7
0
1
3
3
0
1
3
3
0
1
3
3
3 7 9 6 0 2 6 6 0 0 0 0 0 0 0 0
-4
-5
同解方程组
x1 x2
4x3 5,解得基础解系: = 3x3 3
3 1
,非齐次特解
3 0

-4 -5
故通解为:k
3
3
,k为任意常数..
1 0
常数。
2
1 1
(A)
2 3 4
C 111;
1 0
(B)
2 34
C
1 2 3
;
1 2
(C)
2 34
C
3 4 5

齐次和非齐次线性方程组的解法整理定稿

齐次和非齐次线性方程组的解法整理定稿

线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】 r(A )= r <n ,若AX = 0(A为m n ⨯矩阵)的一组解为,,,n r -12ξξξ ,且满足:(1) ,,,n r -12ξξξ线性无关;(2) A X = 0 的)任一解都可由这组解线性表示. 则称,,,n r -12ξξξ为A X = 0的基础解系.称n r n r k k k --=+++1122X ξξξ为A X = 0的通解 。

其中k 1,k2,…, k n-r 为任意常数).齐次线性方程组的关键问题就是求通解, 而求通解的关键问题是求基础解系. 【定理】 若齐次线性方程组A X = 0有解,则(1) 若齐次线性方程组AX = 0(A为m n ⨯矩阵)满足()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.(注:当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -. 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。

由上述定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1) 当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =; (3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;若()r A n >,则齐次线性方程组无解。

1、求AX = 0(A 为m n ⨯矩阵)通解的三步骤(1)−−→A C 行(行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ;(3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.【例题1】 解线性方程组12341234123412342350,320,4360,2470.x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解法一:将系数矩阵A 化为阶梯形矩阵12472315071014312143001641367124726000743A --⎡⎤⎢⎥-⎡⎤-⎢⎥⎢⎥-⎢⎥⎢⎥=→→-⎢⎥⎢⎥-⎢⎥⎢⎥--⎢⎥⎣⎦⎢⎥⎣⎦显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====.解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式:23153121327041361247A --==≠---,知方程组仅有零解,即12340x x x x ====.注:此法仅对n 较小时方便【例题2】 解线性方程组12345123452345123450,3230,2260,54330.x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩解:将系数矩阵A 化为简化阶梯形矩阵11111321130122654331A ⎡⎤⎢⎥-⎢⎥=⎢⎥⎢⎥-⎣⎦1412(5)(3)r r r r ⨯-+⨯-+−−−−→11111012260122601226⎡⎤⎢⎥----⎢⎥⎢⎥⎢⎥----⎣⎦2123242(1)(1)r r r r r r r ++⨯-+-⨯−−−−→10115012260000000000---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦可得()2r A n =<,则方程组有无穷多解,其同解方程组为134523455,226.x x x x x x x x =++⎧⎨=---⎩(其中3x ,4x ,5x 为自由未知量)令31x =,40x =,50x =,得121,2x x ==-; 令30x =,41x =,50x =,得121,2x x ==-; 令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为112100ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212010ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,356001ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.所以,原方程组的通解为 112233X k k k ξξξ=++(1k ,2k ,3k R ∈). 二、非齐次线性方程组的解法 求 AX = b 的解(,()m n r r ⨯=A A ) 用初等行变换求解,不妨设前r列线性无关1112111222221()00rn r n rrrn r r c c c c d c c c d c c d d +⎡⎤⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A b 行其中 0(1,2,,),ii c i r ≠= 所以知1(1)0r d +≠时,原方程组无解.1(2)0,r d r n +==时,原方程组有唯一解. 1(3)0,r d r n +=<时,原方程组有无穷多解.其通解为01122n r n r k k k --=++++X ξξξη,12,,,n r k k k -为任意常数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档