非齐次线性方程组例题
齐次和非齐次线性方程组解的关系

区别:齐次方程的解向量是n-r个线性无关的向量非齐次方程的解向量是n-r+1个线性无关的向量,由非齐次特解x0和齐次方程的基础解系构成。
联系:任意两个非齐次特解之差总是齐次方程的解区别以下举例说明:1、非齐次线性方程组,等号右边不全为零的线性方程组,如:x+y+z=12x+y+z=3x+2y+2z=42、齐次线性方程组,等号右边全为零的线性方程组,如:x+y+z=02x+y+z=0x+2y+2z=0一个多项式中各个单项式的次数都相同的式子,我们称之为齐次式。
正如上面例题中的,xyz的次数都是1,所以就是齐次式。
联系:方程解加上非齐次方程的一个特解就是对应非齐次方程的解。
扩展资料齐次线性方程组有无零解和非齐次线性方程组是否有解的判定。
对于齐次线性方程组,当方程组的方程个数和未知量的个数不等时,可以按照系数矩阵的秩和未知量个数的大小关系来判定;还可以利用系数矩阵的列向量组是否相关来判定;当方程组的方程个数和未知量个数相同时,可以利用系数行列式与零的大小关系来判定,还可以利用系数矩阵有无零特征值来判定;对于非齐次线性方程组,可以利用系数矩阵的秩和增广矩阵的秩是否相等即有关矛盾方程来判定;还可以从一个向量可否由一向量组线性表出来判定;当方程个数和未知量个数相等时,可以利用系数行列式是否为零来判定非齐次线性方程组的唯一解情况;今年的考题就体现了这种思想。
2、齐次线性方程组的非零解的结构和非齐次线性方程组解的的无穷多解的结构问题。
如果齐次线性方程组有无穷多个非零解时,其通解是由其基础解系来表示的;如果非齐次线性方程组有无穷多解时,其通解是由对应的齐次线性方程组和通解加本身一个特解所构成。
例5非齐次线性方程组

1 0 0
0 2 1
1 3 2
2 6 9
2
6
5
1 0 1 2 2
~r2
r3
0
1
2
9
5
0 2 3 6 6
1 0 1 2 2
~ 0 r3(2)r2 1 2
9
5
0 0 1 12 4
1
~ 0 r1(1)r3
r2 2r3 0
0 1 0
0 0 1
10 15 12
~ 2
3 4
,P2
BQ2
Er2 0
0
0
AB
P11
Er1 0
0 0
Q1 1
P21
Er2 0
0 0
Q2-1
令C=Q1-1P21
C1
C3
C2 C4
,其中C1为r1
r2型矩阵,
R(C)=n,又
Er1 0
0 0
C
Er2 0
0
0
C1 0
0 0
D
R( AB) R(D) R(C1),
2
0 9 9 9
可知系数矩阵A与增广矩阵B的
秩不等,所以方程组无解;
当 1时,增广矩阵B为
1
B=(A
b)=
2
2 4
2 4
~ 1
2
r2 r3
( 2 2 r1
)
r1
1 0
2 0
2 1
0
0
2 4 4 2
0 0 0 0
由此可知系数矩阵A与增广矩阵B的秩相等1,所以方 程组解且有无穷多.
1 0 0
c2 (1)
0
1
第4章第3节非齐次线性方程组

证明 A (ξ +η ) = Aξ + Aη = 0 + β = β 所以 x = ξ +η 是方程 A x = β 的解
非齐次线性方程组 的通解
其中 kξ1+kξ + + kn−r ξ n − r 是对应的 齐次 方程组 的通解, ... 是对应的齐次 通解, 1 2 2 5 η * 是非齐 线性方程组的任何一个特解. 线性方程组的任何一个特解 特解.
1 1 0 0.5 1 0 0 −2 0
原方程组有无穷多个解, 原方程组有无穷多个解, 它同解于 无穷多个解
x1+0.5x2−0.5x3 = 0.5 −0.5 0.5 x1 0.5 x4 = 0 x 1 0 通解为 2 = 0 + k1 + k2 x1 =0.5 −0.5x2+0.5x3 0 1 x3 0 x2 = x2 0 0 x4 0 x = x3 3 第2行减去 第1行 与第,3行之和 与第3 其中 k1 k2 为任意实数 x4 = 0第3行减去 第1行 7
次
x=k1 1+k2ξ 2 +... +kn−r ξ n− r +η* =ξ
x1 − x2 − x3 + x4 = 0 例1 求解方程组 x1 − x2 + x3 −3x4 = 2 x1 − x2 −3 x3+5x4 = −2 1 1 1 1 −1 −1 1 0 1 −1 −0 − 1 0 解 对增广矩阵 A =1 −1 1 −3 2 ~ 0 0 1 −4 2 2 2 1 进行初等行变换 1 −1 −3 5 −2 0 0 −2 4 −0 0 0 2 R ( A ) = 2 = R( A ) < 4
齐次和非齐次线性方程组的解法整理

线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】r(A)= r <n ,若小 0 (A为用"矩阵)的一组解为匚爲,…,爲一,且满足:(1)看岛宀雋円线性无关;⑵AX= 0的)任一解都可由这组解线性表示.则称刍易,…,蔦-为的二0的基础解系.称X =镯刍+ k為+…+为AX= 0的通解。
其中人,虬…,A-,为任意常数).齐次线性方程组的关键问题就是求通解,而求通解的关键问题是求基础解系.【定理】若齐次线性方程组衣二0有解,则(1)若齐次线性方程组AT二0 (A为〃7"矩阵)满足r(A) = n ,则只有零解;⑵ 齐次线性方程组有非零解的充要条件是r(A) <n.(注:当山=/?时,齐次线性方程组有非零解的充要条件是它的系数行列式\A\=0.)注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于n-r(A).2、非齐次线性方程组AX=B的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX=O所对应的同解方程组。
由上述定理可知,若加是系数矩阵的行数(也即方程的个数),"是未知量的个数,则有:(1)当加<"时,r(A)<m<n,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解;(2)当/;/ = //时,齐次线性方程组有非零解的充要条件是它的系数行列式卜| = 0;(3)当m =八且HA)="时,若系数矩阵的行列式则齐次线性方程组只有零解;(4)当川>”时,若r(A) < n ,则存在齐次线性方程组的同解方程组;若r(A) > n ,则齐次线性方程组无解。
1、求AT= 0 (A为m x //矩阵)通解的三步骤(1)A^-^C (行最简形);写出同解方程组6T=0.(2)求出6T=0的基础解系⑶ 写出通解*=人刍+心金+•・・ + /-总t其中 7 也为任意常数.所以,原方程组的通解为X=k^+k2^2+k^ (人,町,2R).二、非齐次线性方程组的解法求AX- b的解(A mxn r(A) = r )用初等行变换求解,不妨设前r列线性无关(1) <+1工0时,原方程组无解.⑵= 0” = ”时,原方程组有唯一解.⑶〃冲=0” S时,原方程组有无穷多解.其通解为焉爲+••• + &・《“,也,…,咕为任意常数。
3-6.非齐次线性方程组

ïï í ï
x2 x3
= =
x2
2x4 + 1 2
ïîx4 =
x4
çæ x1 ÷ö çæ 1÷ö çæ 1÷ö çæ1 2÷ö
ç ç ççè
x2 x3 x4
÷ ÷ ÷÷ø
=
k1
ç ç
ççè
1÷ 00÷÷÷ø
+
k2
ç ç
ççè
0÷ 12÷÷÷ø
+
ççççè1002÷÷÷÷ø.
(k1, k2 Î R)
例2 求解非齐次线性方程组
ú ú
êë0 0 0 0 0 k -3úû
ìx1 = x3 + x4 + 5x5 - 2
得
ï ïï í
x2 x3
= =
-2 x3 x3
-
2x4
-
6 x5
+
3
ï ï
x4
=
x4
ïîx5 =
x5
通解 为
é 1 ù é 1 ù é 5 ù é- 2ù
êê- 2úú
êê- 2úú
êê- 6úú
ê ê
3
ú ú
x
x = k1x1 + L + kn-rxn-r + h * .
例1 求解非齐次方程组的通解
ì ï í
x1 x1
-
x2 x2
+
x3 x3
+ -
x4 = 0 3x4 = 1
注意书写格式
ïî x1 - x2 - 2x3 + 3x4 = - 1 2
非齐次线性方程组:增广矩阵化成行阶梯形矩 阵,便可判断其是否有解.若有解,化成行最 简形矩阵,便可写出其通解;
线性代数-非齐次线性方程组

充分性:若r(A)=r(A|b) ,即d r+1 =0,则(*)有解。
把这 r 行的第一个非零元所对应的未知量作为 非自由未知量, 其余n r个作为自由未知量,
即可得方程组的一个解. 并令 n r 个自由未知量任意取值,
定理1更常用的描述是:
此乃第三章的 精华所在
定理1’
对n 元非齐次线性方程组 Amn x b ,
Ch3 矩阵的秩与线性方程组
第 二节
(非)齐次线性方程组
一、线性方程组有解的 判定
二、线性方程组的解法
对于m个方程n个未知数的线性方程组
a11 x1 a12 x 2 a1n x n b1 a 21 x1 a 22 x 2 a 2 n x n b2 ........................................... a x a x a x b m2 2 mn n m m1 1
解 对增广矩阵 A 进行初等变换,
r12 ( 3) 1 2 3 1 1 1 2 3 1 1 r ( 2) A 3 1 5 3 2 13 0 5 4 0 1 2 1 2 2 3 r23 ( 1) 0 5 4 0 1 0 0 2
2 当 1时,
1 1 2 A ~ 0 1 1 1 2 0 0 1 2 1 1 1 1 2 ~ 0 1 1 0 0 ( 2 ) 1 2
问取何值时, 有唯一解? 无解?有无穷多个解 ?
解一 对增广矩阵 A ( A, b) 作初等行变换,
A 1 1
1
3.5 非齐次线性方程组解

a1n a2n = , ,, 1 2 n a mn
A = ( A B ) = 1, 2 ,, n ,
则有等价的矩阵形式: 则有等价的向量形式: AX=B
x1 b1 x b 2 2 X= ,B= = xn bm
求该方程组的通解. 解 因为方程组AX=B的导出组的基础解系含 4-3=1个解向量,于是导出组的任何一个非零解 都可作为其基础解系。
1 7 1 而 g 1 g 2 g 3 = 0 2 3 2
是导出组的非零解,故方程组AX=B的通解为
得通解为:
1 1 5 16 1 0 0 23 X = c1 2 c2 -2 c3 -6 0 . 0 1 0 0 0 0 1 0
令 x3 = x4 = x5 = 0,
得AX=B特解:
16 0 g 0 = 23 0 0 所以,通解为
g = g 0 c11 c22 c33
(c1, c2 , c3 R)
也可由消元解法求通解:
原方程组的同解方程组为:
不唯一。 (3)AX=B无解
r ( A) = r ( A) < n r 1, 2 ,, n = r 1, 2 ,, n , < n 可由1, 2 ,, n 线性表出,表示式 r ( A) r ( A) r 1, 2 ,, n = r 1, 2 ,, n , 1 不可由 1, 2 ,, n 线性表出。
方程组AX=B的解。 证明 因为A g =B , A=0,
4.4 非齐次线性方程组

1 1 −1 2 1 0 a +1 0 b 0 0 a + 1 0 1 1 1
代 数
(1)当a ≠ −1, r ( A) = r ( A) = 4(未知量个数), 有唯一解, 为求解, 将 A进一步化为简化行阶梯型 :
= =
1 1 1 1 0 1 1 1 1 1 0 1 − 1 2 1 0 1 − 1 0 1 A→ b → b 0 0 1 0 0 0 1 0 a + 1 a + 1 0 0 0 0 1 0 0 0 0 1 2b b 1 1 0 0 1 − a + 1 1 0 0 0 − a + 1 b b 0 1 0 0 1 + 0 1 0 0 1 + → → a + 1 a + 1 b b 0 0 1 0 0 0 1 0 a +1 a +1 0 0 0 0 1 0 0 0 0 1 ⇒ 唯一解为 − 2b a + b +1 b x1 = , x2 = , x3 = , x4 = 0 a +1 a +1 a +1 (2)当a = −1, 且b ≠ 0时, r ( A) = 2, r ( A) = 3, 方程组无解
证
A的行向量组是 的行向量组的部分组, 的行向量组是B 的行向量组的部分组,
线
的行向量组可由B 的行向量组线性表出, 所以 A 的行向量组可由 的行向量组线性表出 A 的行向量组的秩 ≤ B 的行向量组的秩 性 又
性 代 数
x1 b1 矩阵形式 : Ax = b, 其中A = (aij ) m×n , x = ⋮ , b = ⋮ xn bm 向量形式 : x1α1 + x2α 2 + ⋯ + xnα n = b (4.9) 其中, α j = (a1 j , a2 j ,⋯ , amj )T , j = 1, 2,⋯ , n 即 A = [α1 α 2 ⋯ α n ]