概率论(等可能概型)
1-4 等可能概型(古典概型)

n
1
证:从n个不同的元素中取出n1个元素有 n n !( n n )! 种取法;
1 1
n!
(n n1 )! 再从剩下的n-n1个元素中取出n2个元素有 n !(n n n )! 2 1 2
组合分析的两条基本原理
火车2次 火车
成都
汽车3次
重庆
成都
汽车
重庆
火车 飞机 轮船
武汉
共有23=6种方法 共有2+3=5种方法 1.加法原理 若完成一件事有两种方式,第一种方式有n1种方法, 第二种方式有n2种方法,无论通过哪种方法都可以完成这件事,
则完成这件事总共有n1+n2种方法。 2.乘法原理 若完成一件事有两个步骤,第一个步骤有n1种方法,
种分法。
例题7
例7 将15名新生随机地平均分配到三个班级中去,这15名新生中
种取法;„
从最后剩下的n-(n1+n2+„+nk-1)个元素中取出nk个元素有
[n (n1 n2 nk 1 )]! 种取法。 nk ![n (n1 n2 nk )]!
按乘法原理,n个不同的元素,分成k组,每组分别有n1,n2,„,nk 个元素,应该有
[n (n1 n2 nk 1 )]! n! (n n1 )! n! n1!(n n1 )! n2!(n n1 n2 )! nk !0! n1!n2! nk !
P ( A) kA 16 4 , n 36 9
kB 4 1 . n 36 9 5 8 P( A B) P( A) P( B) , P(C ) P( B) 1 P( B) 9 9 P( B)
概率论1-4

n
C3 100
k C926C41
P(C) C926C41 C3
100
练习:设在N 件产品中,有 D件次品,其余均为正 品.任取n件,问其中恰有k(k≤D)件次品的概率。
解:所求的概率为
P
C C k nk D ND CNn
上式为超几何分布的概率公式。
练习、课后习题第五题
古典概率的计算:投球入盒
分析 此问题可以用投球入盒模型来模拟
50个学生
50个小球
365天
365个盒子
P( A)
C 50 365
50!
36550
0.03
至少有两人生日相同的概率为
P( A) 1 0.03 0.97
例:一单位有5个员工,一星期共七天,
老板让每位员工独立地挑一天休息,
求不出现至少有2人在同一天休息的
概率。
b
----------与k无关
10
例、从5双不同的鞋子中任取4只,问这4只鞋子中 至少有两只配成一双的概率是多少?
解、考虑4只鞋子是有次序是有次序一只一只取出
令A=“4只鞋子中至少有两只配成一双”
则 A “所取4只鞋子无配对” P( A) 1 P( A) 1 108 6 4 13 1098 7 21
抛掷一颗匀质骰子,观察出现的点数 , 求“出现的 点数是不小于3的偶数”的概率.
试验 抛掷一颗匀质骰子,观察出现的点数
样本空间
S ={1,2,3,4,5,6}
n=6
事件A
A=“出现的点数是不小于3的偶数”={4,6} m=2
事件A的概率
P( A) m 2 1 n 63
例、掷一枚硬币三次,(1)设事件A1为“恰有一 次出现正面”,求P(A1 );(2)设事件A2为“至少 有一次出现正面” ,求P(A2 )
概率论与数理统计 第一章 1.3等可能概型

概率论
54 3 P(C) = 2 = . 所以 8 12 (2) 采取不放回抽样.
从箱子中任取两件产品,每次取一件,取法总数为12⋅ 11 . ⋅
⋅ 即样本空间中所含有的基本事件总数为 12⋅ 11 . 1 1 事件A 事件 中所含有的基本事件数为 C9C8 = 9⋅ 8 . 9⋅ 8 6 = . 所以 P( A) = 12⋅ 11 11 事件B 事件 中所含有的基本事件数为 C1C1 = 9⋅ 3 . 9 3 9⋅ 3 9 所以 P( B) = = . 12⋅ 11 44
8 5 1 9 4 6 7 2 3 10
概率论
我们用 i 表示取到 i 号球, 号球, i =1,2,…,10 . 则该试验的样本空间
如i =2
2
S={1,2,…,10} ,
且每个样本点(或者说基本 且每个样本点 或者说基本 事件)出现的可能性相同 事件 出现的可能性相同 . 称这样一类随机试验为古 称这样一类随机试验为古 典概型. 典概型
乘法原理
概率论
完成某件事情需先后分成m个步骤 做第一步有 完成某件事情需先后分成 个步骤,做第一步有 1 个步骤 做第一步有n 种方法,第二步有 种方法,依次类推 第二步有n 依次类推,第 步有 步有n 种方法 第二步有 2种方法 依次类推 第m步有 m种方 特点是各个步骤连续完成. 法,特点是各个步骤连续完成 特点是各个步骤连续完成 则完成这件事共有N=n1×n2×…×nm种不同的方法 则完成这件事共有 × 种不同的方法,
即样本空间中所含的基本事件数为122 . C1C1 = 92 . 事件A 事件 中所含有的基本事件数为 9 9 92 9 = 2 = . 所以 P( A) 12 16 C1C1 = 9⋅ 3 . 事件B 事件 中所含有的基本事件数为 9 3 9⋅ 3 3 所以 P( B) = 2 = . 16 12 事件C 事件 中所含有的基本事件数为
1.3 等可能概型、几何概型

人们在长期的实践中总结得到“概率 很小的事件在一次实验中几乎是不发生的” (称之为实际推断原理)。这样小概率的 事件在一次抽卡的试验中就发生了,人们 有比较大的把握怀疑这是魔术. 具体地说,可以99.9%的把 握怀疑这是魔术.
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
第一章 第三节 --第3页--
例如,一个袋子中装有 10个大小、形状完全相同 的球. 将球编号为1-10 . 把球搅匀,蒙上眼睛,从 中任取一球.
8 5 1 9 4 6 7 2 3 10
2013年7月29日星期一
中央财经大学《概率统计》课件--孙 博
i 1, 2,, n .
中央财经大学《概率统计》课件--孙 博
其中
2013年7月29日星期一
n
第一章 第三节 --第6页--
古典概型的概率计算(概率的古典定义)
确定试验的基本事件总数
设试验结果共有n个基本事件ω1,ω2,...,ωn , 而且这些事件的发生具有相同的可能性
确定事件A包含的基本事件数
P ( A1 A2 Ak ) P ( A1) P ( A2 ) P ( Ak ) 可列可加性
排列组合是计算古典概率的重要工具 .
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第8页--
“等可能性”是一种假设,在实际应用中, 需要根据实际情况去判断。在许多场合, 由对称性和均衡性,我们就可以认为基本 事件是等可能的并在此基础上计算事件的 概率.
2013年7月29日星期一 中央财经大学《概率统计》课件--孙 博 第一章 第三节 --第10页--
概率论与数理统计--第一章 概率论的基本概念(2)

利用软件包进行数值计算
3 超几何概率
设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解
在N件产品中抽取n件的取法数
C
n N
在 N 件产品中抽取n件,其中恰有k 件次品的取法数
C
nk N D
C
k D
于是所求的概率为
p
C
nk N D n N
7 12
周ቤተ መጻሕፍቲ ባይዱ 周四 周五 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4
2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
(1) 每一个班级各分配到一名特长生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名特长生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名特长生分配在同一个班级的分法共有
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是特长生.问 (1) 每一个班 级各分配到一名特长生的概率是多少? (2) 3 名特长生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!
第1.3节 等可能概型

定义:
概率论所讨论的问题中,有一类问题最简单直观,这类问题
所涉及到的试验具有下面两个特征:
1)(有限性)试验的样本空间的元素只有有限个; 2)(等可能性)试验中每个基本事件发生的可能性相同. 把具有上述两个特征的试验称为等可能概型或古典概型.
例如,抛一枚质地均匀的硬币,或者出现正面或者出现反面,只
方法2 (利用对立事件的概率关系)
P ( A ) 1 P ( A ) 1 P ( A0 ) 1 C 20
甲、乙两人同时向目标射击一次,设甲击中的概率
为 0.85 ,乙击中的概率为 0.8 .两人都击中的概率为
0.68 .求目标被击中的概率.
解
设A表示甲击中目标,B表示乙击中目标,
有两种结果,且每种结果出现的可能性相同.又如抛一颗骰子, 观察出现的点数,则共有6种结果,且每一种结果出现的可能性 相同.
设古典概率 E 的样本空间为 S e1 , e2 , , en .
由于在试验中每个基本事件发生的可能性相同 , 即
P e1 P e 2 P e n
得 P(A1)
m A1 n
3 8
.
( 2 ) A 2 { HHH , HHT , HTH , THH , HTT , THT , TTH }.
因此
P(A2)
m A2 n
7 8
.
例 2 一口袋装有 6 只球,其中 4 只白球、 只红球. 从 2 袋中取球两次,每次随机地取一只.考虑有放回和无放 回两种抽样,试分别就这两种情况求:(1) 取到的两只 球都是白球的概率,(2) 取到的两只球颜色相同的概 率,(3) 取到的两只球中至少有一只是白球的概率.
1-4 等可能概型

【评】古典概型在概率论中占有相当重要的地位。 一方面,由于它简单,对它的讨论有助于直观地理解
概率论的许多基本概念,因此,我们常从古典概型 开始引入新的概念;另一方面,古典概型概率的计算
在产品质量抽样检查等实际问题中有重要的应用。
二、基本排列与组合公式
乘法原理:若进行A1过程有n1种方法,进行A2过程有 n2种方法,则进行A1过程后再进行A2过程共有n1n2种 方法。 加法原理:若进行A1过程有n1种方法,进行A2过程有
r n
设r1+r2+…+rk=n,把n个不同的元素分成k个部分,
第一部分含r1个元素,第二部分含r2个元素,…
则不同的分法为
C C
r1 n
r2 n r1
C
rk 1 rk n r1 rk 2 n r1 rk 1
C
n! r1 !r2 ! rk !
一些常用公式
1 3 5 6 1 2 1 64 2 3 6 1 3
Bk-1={取得的n个数中最大的数不超过k-1},
则 Bk-1Bk,且 A=Bk-Bk-1,依概率的性质,
C C 【注】利用事件间的关系与运算求解概率。
P(A)= P(Bk)-P(Bk-1)
Ckn
n 10
Ckn1
n 10
例3 从1~9这9个数中有放回地取出 n 个数, 试求取出的 n个数的乘积能被 10 整除的概率。
§4 等可能概型
教学纲目 一、古典概型的定义与计算公式
二、基本排列与组合公式
三、典型例题
10 放回抽样与不放回抽样; 20 抽签与顺序无关;
30生日问题; 40超几何分布;
50 实际推断原理。
四、几何概型
数学部分经典问题之概率问题

写在前面的话1、朋友们的热心,是qzzn(求职指南论坛)行政职业能力测试版发展的动力!也是加入到qzzn的各位朋友共有的财富!2、所有汇编资料,免费提供,仅供大家交流和学习。
请在学习结束后,自行删除!3、严禁用于商业用途!4、希望在公务员考试的道路上,有qzzn,有行政职业能力测试版的陪伴,大家能同进步、共发展!5、最后,祝愿大家在即将的考试中,金榜题名,马到成功!qzzn(求职指南论坛)行政职业能力测试版版主westwood2006年3月2日概率原理1.重视概念的甄别,即弄清某些容易混淆的概念之间的区别。
在概率论中存在许多容易混淆的概念,如果不能认真区分,仔细加以甄别,就不能正确理解这些重要概念,在应用时就会产生各种各样的错误。
➢ 互不相容事件与相互独立事件是最容易混淆的一对概念“互不相容”是指两个事件不能同时发生。
而“相互独立”则是指一个事件发生与否对另一事件发生的概率没有影响。
➢ 随机变量的独立性与不相关性是两个既有区别又有联系的概念对两个随机变量而言,相互独立⇒不相关。
➢ 条件概率P(A|B)与乘积概率P(AB) 也是容易混淆的一对概念一般来说,当事件B A ,同时发生时,常用)(AB P ,而在有包含关系或明确的主从关系中,用)(A B P 。
如袋中有9个白球1个红球,作不放回抽样,每次任取一球,取2次,求:(1)第二次才取到白球的概率;(2)第一次取到的是白球的条件下,第二次取到的也是白球的概率。
问题(1)是求第一次取到红球且第二次取到白球这一积事件的概率,而问题(2)则是求在第一次取到白球的条件下,第二次取到白球的条件概率。
2.善于识别一些重要的概率模型并能正确进行计算是提高分析和解决概率实际问题能力的关键。
在概率论中有许多经长期实践概括出的重要概率模型(简称“概型”),学生必须了解其背景、特点和适用范围,要熟记计算公式,以便能正确应用。
例如:(1)古典概型:一类具有有限个“等可能”发生的基本事件的概率模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
说明
随机选取n( 365)个人, 他们的生日各不相同的 概 率为
365 364 ( 365 n 1) p . n 365
而n个人中至少有两个人生 日相同的概率为
365 364 ( 365 n 1) p 1 . n 365
会面问题
例7 甲、乙两人相约在 0 到 T 这段时间内, 在预 定地点会面. 先到的人等候另一个人, 经过时间 t ( t<T ) 后离去.设每人在0 到T 这段时间内各时刻
到达该地是等可能的 , 且两人到达的时刻互不牵
连.求甲、乙两人能会面的概率.
的 解 设 x , y 分别为甲、乙两人到达 时刻 , 那么 0 x T , 0 y T .
周五
7 12 周六 周日
故一周内接待 12 次来访共有 712 种.
2 1
2
2 3
2 4
2 12
周一 周二 周三 周四 周五 周六 周日
12 次接待都是在周二和周四进行的共有 212 种. 故12 次接待都是在周二和周四进行的概率为
212 p 12 0.0000003 . 7
小概率事件在实际中几乎是不可能发生的 , 从 而可知接待时间是有规定的.
例4 将 15 名新生随机地平均分配到三个班级中 去,这15名新生中有3名是优秀生.问 (1) 每一个班 级各分配到一名优秀生的概率是多少? (2) 3 名优 秀生分配在同一个班级的概率是多少?
解 15名新生平均分配到三个班级中的分法总数:
15 10 5 15! . 5 5 5 5! 5! 5!
( 2) A 2 { HHH , HHT , HTH , THH , HTT , THT ,TTH }.
因此 P ( A 2 ) 7 8 .
例 2 设有 N 件产品, 其中有 D 件次品, 今从中任取 n 件,问其中恰有 k ( k D ) 件次品的概率是多少 ?
解 在N件产品中抽取n件的所有可能取法共有 N 种, n
设试验 E 的样本空间由n 个样本点构成, A
为 E 的任意一个事件,且包含 m 个样本点,则事 件 A 出现的概率记为:
m A 所包含样本点的个数 P ( A) . n 样本点总数
称此为概率的古典定义.
3. 古典概型的基本模型:摸球模型
(1) 无放回地摸球
问题1
设袋中有4 只白球和 2只黑球, 现从袋中无
放回地依次摸出2只球,求这2只球都是白球的概率. 解 设 A {摸得 2 只球都是白球 }, 6 基本事件总数为 , 2 4 A 所包含基本事件的个数为 , 2 4 6 2 故 P ( A) . 2 2 5
(2) 有放回地摸球 问题2 设袋中有4只红球和6只黑球,现从袋中有放 回地摸球3次,求前2次摸到黑球、第3次摸到红球 的概率. 解 设 A { 前 2 次摸到黑球, 第 3 次摸到红球}
第四节 等可能概型(古典概型)
一、等可能概型 二、典型例题 三、几何概率 四、小结
一、等可能概型(古典概型)
1. 定义
(1) 试验的样本空间只包含 有限个元素; ( 2) 试验中每个基本事件发 生的可能性相同 . 具有以上两个特点的试 验称为等可能概型或 古典概型 .
2. 古典概型中事件概率的计算公式
(1) 每一个班级各分配到一名优秀生的分法共有
( 3!12! ) (4! 4! 4! ) 种.
因此所求概率为
25 3!12! 15! . p1 4! 4! 4! 5! 5! 5! 91
(2)将3名优秀生分配在同一个班级的分法共有3种, 12! 种. 对于每一种分法,其余12名新生的分法有 2! 5! 5! 因此3名优秀生分配在同一个班级的分法共有
3
3
3
3
4个球放到3个杯子的所有放法 3 3 3 3 34 种,
4 种 2
2个
2 种 2
2个
因此第1、2个杯子中各有两个球的概率为
4 2 4 2 p 3 . 27 2 2
在 N 件产品中抽取n件,其中恰有k 件次品的取法 共有
D N D 种, k n k
D N D N . 于是所求的概率为 p k n k n
例3 在1~2000的整数中随机地取一个数,问取到 的整数既不能被6整除, 又不能被8整除的概率是 多少 ? 解 设 A 为事件“取到的数能被6整除”,B为事件
两人会面的充要条件为 x y t ,
若以 x, y 表示平面 上点的坐标 , 则有
故所求的概率为
T
y
y xt
x yt
阴影部分面积 p 正方形面积
o
t
T
x
T (T t ) T2 t 2 1 (1 ) . T
2
2
例8 甲、乙两人约定在下午1 时到2 时之间到某 站乘公共汽车 , 又这段时间内有四班公共汽车, 它们的开车时刻分别为 1:15、1:30、1:45、2:00. 如果甲、乙约定 (1) 见车就乘; (2) 最多等一辆 车. 求甲、乙同乘一车的概率. 假定甲、乙两人到达车站的时 刻是互相不牵连的,且每人在 1 时到 2 时的任何时刻到达车 站是等可能的.
次出现正面”求 P ( A1 ). ( 2) 设事件 A2 为 , “至少有一 次出现正面”求 P ( A2 ). ,
解 (1) 设 H 为出现正面, T 为出现反面.
则 S { HHH , HHT , HTH , THH , HTT , THT , TTH , TTT }.
而 A 1 { HTT , THT , TTH }. 得 P ( A 1 ) 3 8 .
( 3 12! ) ( 2! 5! 5! ) 种 , 因此所求概率为
6 3 12! 15! . p2 2! 5! 5! 5! 5! 5! 91
例5 某接待站在某一周曾接待过 12次来访,已知 所有这 12 次接待都是在周二和周四进行的,问是 否可以推断接待时间是有规定的. 解 假设接待站的接待时间没有 规定,且各来访者在一周的任一天 中去接待站是等可能的. 7 1 周一 7 2 周二 7 3 周三 7 4 周四
P( “取到的数能被8整除”,则所求概率为 A B ). P ( AB ) P ( A B ) 1 P ( A B )
1 { P ( A) P ( B ) P ( A334, 所以 P ( A) , 6 2000
(答案 : 2 9)
2o 生日问题 某班有20个学生都 是同一年出生的,求有10个学生生 日是1月1日,另外10个学生生日是 12月31日的概率. 20 10
(答案 : p 36520 ) 10 10
二、典型例题
例1 将一枚硬币抛掷三次 (1) 设事件 A1 为“恰有一 .
y
2
1 : 45
1 : 30
1 : 15
1
o
1 1 : 15 1 : 30 1 : 45 2
x
1 3 (1 16) 5 最多等一辆车,甲、乙 p 2 . 同乘一车的概率为 4 1 8
蒲丰投针试验
蒲丰资料
例9 1777年,法国科学家蒲丰(Buffon)提出了投针 试验问题.平面上画有等距离为a(a>0)的一些平行直 线,现向此平面任意投掷一根长为b( b<a )的针,试求 针与某一平行直线相交的概率. a M 解 以x表示针投到平面上时 , x 针的中点M到最近的一条平行
解 设 x, y 分别为 甲、乙两人到 达的时刻, 则有
y 2
1 : 45
1 : 30
1 : 15
1 x 2,
1 y 2.
1
o
1 1 : 15 1 : 30 1 : 45 2
x
2 见车就乘 阴影部分面积 4 (1 4) 1 p 2 . 的概率为 ( 2 1) 4 正方形面积
第3次摸到红球 4种
第1次摸到黑球 6种 第2次摸到黑球
第3次摸球 第2次摸球 第1次摸球
10种
基本事件总数为 10 10 10 103 , A 所包含基本事件的个数为 6 6 4, 6 6 4 0.144 . 故 P ( A) 3 10 课堂练习 1o 电话号码问题 在7位数的电话号码中,第一位 不能为0,求数字0出现3次的概率.
我们利用软件包进行数值计算.
三、几何概型
定义 当随机试验的样本空间是某个区域,并且 任意一点落在度量 (长度、 面积、体积) 相同的 子区域是等可能的,则事件 A 的概率可定义为 SA P ( A) . S (其中 S 是样本空间的度量 S A 是构成事件 A的子 ,
区域的度量.) 这样借助于几何上的度 量来合理规 定的概率称为几何概型. 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型.
9 6 3 3 (答案 : p 1 9 9 106 ) 1 3
2o 骰子问题 概率.
掷3颗均匀骰子,求点数之和为4的
(答案 : p 3 63 )
4.古典概型的基本模型:球放入杯子模型
(1)杯子容量无限 问题1 把 4 个球放到 3个杯子中去,求第1、2个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球.
(2) 每个杯子只能放一个球
问题2 把4个球放到10个杯子中去,每个杯子只能