弹性力学第四章本构关系
材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。
弹性力学_第四章 本构关系

y ν x
其中 是弹性常数,称为泊松比。
Chapter 5.1
§4-1 本构关系概念
线弹性叠加原理
先考虑在各正应力作用
z
z
x
下沿 x 轴的相对伸长,它
由三部分组成,即
y
o
y
z
Chapter 5.1
y
x x x x
x
x
§4-1 本构关系概念
§4-2 广义胡克定律
其中
c11 C11 , c12 C1122 , c14 C1112 , c56 C2331…
即c 的下角标1、2、3、4、5、6分别对应于C 的双指
标11、22、33、12、23、31。应该指出,改写后的
cmn (m, n=1~6) 并不是张量。 由于存在Voigt对称性,所以对于最一般的各向异性 材料,独立的弹性常数共有21个。
弹性张量,共有81个分量。
• 弹性张量的Voigt对称性
Cijkl C jikl Cijlk Cklij
Chapter 5.1
§4-2 广义胡克定律
ij ji
Cijkl kl C jikl kl kl
Cijkl C jikl
kl lk
Cijkl kl Cijlk lk Cijlk kl kl
x x x x
是由于x的作用所产生的相对伸长 其中 x
x
x
E
ν 是由于y的作用所产生的相对缩短 x x E
ν 是由于z的作用所产生的相对缩短 x x
y
z
E
Chapter 5.1
§4-1 本构关系概念
弹塑性力学第四章

x
y
)
2019/7/26
36
§4-3 各向同性材料弹性常数
yz
2(1 )
E
yz
xy
2(1
E
)
xy
zx
2(1
E
)
zx
采用指标
符号表示:
ij
1 E
(1 ) ij
ij kk
ij
E
1
ij
1 2
ij kk
2G
0 0 0
2G
0
0
0
2G 0 0 0
2G 0
0
对
称
2G 0
2G
2019/7/26
31
§4-3 各向同性材料弹性常数
3.1 本构关系用、G表示
采用指标符号表示:
ij 2Gij ij kk 2Gij iⅠj
2019/7/26
16
§4-2 线弹性体的本构关系
2.1 各向异性材料 Eijkl 减少为66=36个独立系数,用矩阵 表示本构关系
{}=[c]{}
11
22
33
23
31
T 12
11
22
33
23
31
T 12
x3 弹性主轴
材料主轴,并取另一坐标
系x’i ,且x’1 = x1,x’2=x2,
x2
x’3=-x3。在两个坐标下,
弹塑性力学第四章弹性本构关系资料

产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.
弹性力学-第四章-本构关系

∵
E 0; G 0; K 0
G= E 2(1 + ν)
K
2 3
G
E
31 2
故要上式成立必要求:
1 0; 1 2 0
即 1 0.5
Chapter 5.1
§4-1 本构关系概念
1 0.5
若设=0.5,则体积模量K=,称为不可压缩材料,
∵ ij
1
E
ij
E
kkij
;
1 2
E
∴
ij
E
1
ij
1
ij
2G ij
E
1 1
2
ij
令
1
E
1
2
则 ij 2Gij kkij Chapter 5.1
§4-1 本构关系概念
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
§4-1 本构关系概念
于是,得到各向同性材料的应变-应力关系:
x
1 E
x
ν
y z
y
1 E
y
ν x
z
z
弹性关系的常规形式为
x 2G x ; xy G xy y 2G y ; yz G yz x 2G z ; zx G zx
其中 G 和 称为拉梅常数。
第4章 弹塑性本构方程

典型的本构关系模型
4-3-1 双曲线(邓肯-张)模型
它属于数学模型的范畴。即它以数学 上的双曲线来模拟土等材料的应力应 变关系曲线并以此进行应力和应变分 析的。由于这种模型是由邓肯和张两 人所提出,所以也叫邓肯-张模型,有 时简称D C模型。
a b
4-3-2 Drucker-Prager模型(D-P模型)
在F点之前,试件处于均匀应变 状态,到达F点后,试件开始出现 颈缩现象。如果再继续加载则变形 将主要集中于颈缩区进行,F点对应 的应力是材料强化阶段的最大应力, 称为强度极限,用 b 表示。
判定物体中某一点是否由弹性状态 转变到塑性状态,必然要满足一定 的条件(或判据),这一条件就称 为屈服条件。在分析物体的塑性变 形时,材料的屈服条件是非常重要 的关系式。
第4章 弹塑性本构方程
§4-1 典型金属材料
曲线分析
大量实验证明,应力和应变之间的 关系是相辅相成的,有应力就会有 应变,而有应变就会有应力。
对于每一种具体的固体材料,在一 定的条件下,应力和应变之间有着 确定的关系,这种关系反映了材料 客观固有的特性。下面以典型的金 属材料低碳钢轴向拉伸试验所得的 应力应变曲线为例来说明。
§4-5 世界上最常用岩土本构模型及土 本构模型剖析
◆
世界上最常用的土本构模型
1.概述 土作为天然地质材料在组成及构 造上呈现出高度的各向异性、非 均质性、非连续性和随机性,在 力学性能上表现出强烈的非线性、 非弹性和粘滞性,土的本构模型 就是反映这些力学性态的数学表 达式。
一般认为,一个合理的土的本构 模型应该具备理论上的严格性、 参数上的易确定性和计算机实现 的可能性。自Roscoe等创建剑桥 模型至今,各国学者已发展数百 个土的本构模型。
弹性力学本构关系

本构关系1. 各向同性线性弹性本构方程及其中的物理常数G、λ、K 与E、μ的关系式;2. 球量和偏量的本构方程。
对于每一种材料,在一定的温度下,应力和应变之间有着完全确定的关系。
这是材料的固有特性,因此称为物理方程或者本构关系。
一般情况下,材料的应力与应变呈某一函数关系,可表示为:当式中的自变量:x、y、z、yz、zx、xy为小量时,可对其按Taylor级数展开,并略去二阶以上小量,如第一式,有上式中(f 1)0表达了函数f 1在应变分量为零时的值,根据应力应变的一般关系式可知,它代表了初始应力。
而表示函数f1 对应变分量的一阶偏导数,在小变形条件下,它们均为常数,这样可得一线性方程组:上述关系式是胡克(Hooke)定律在复杂应力条件下的推广,因此又称作广义胡克定律。
广义胡克定律中的系数Cmn(m,n=1,2,…,6)称为弹性常数,一共有36个,但可以证明,只有21个常数独立。
如果物体是非均匀材料构成的,物体内各点受力后将有不同的弹性效应,因此一般的讲,Cmn是坐标x,y,z的函数。
但是如果物体是由均匀材料构成的,那么物体内部各点,如果受同样的应力,将有相同的应变;反之,物体内各点如果有相同的应变,必承受同样的应力。
这一条件反映在广义胡克定理上,就是Cmn 为弹性常数。
对于完全的各向异性弹性体,本构关系有21个弹性常数,对于具有一个弹性对称面的各向异性材料,本构各向具有13个弹性常数。
对于正交各向异性材料,弹性常数有9个。
正交各向异性材料的本构方程中,正应力仅与正应变有关,切应力仅与对应的切应变有关,因此拉压与剪切之间,以及不同平面内的剪切之间将不存在耦合作用。
1. 极端各向异性体的弹性常数为21个。
2.具有一个对称面的各向异性材料正交各向异性体:物体内的任一点存在三个弹性对称平面,在每一个对称平两侧对称方向上各自具有相同的弹性性质,这种物体称为正交各向异性体。
正交各向异性体的弹性常数为9个。
3.横观各向同性体若物体内的任一点在平行于某一平面的所各方向都具有相同的弹性性质,而垂直于该面的弹性性质不同,这种正交异性体称为横观各向同性体。
弹性力学第四章 本构关系

第四章 本构关系
§4-1 本构关系概念 §4-2 广义胡克定律 §4-3 应变能和应变余能
§4-1 本构关系概念
在以前章节我们从静力学和几何学观点出发, 得到了连续介质所共同满足的一些方程。显然,仅 用这些方程还不足以解决变形固体的平衡问题,因 为在推导这些方程时,并没有考虑应力和应变的内 在联系,而实际上他们是相辅相成的,对每种材料, 他们之间都有完全确定的关系,这种关系反映了材 料所固有的物理特性。本章就是要建立在弹性阶段 的应力和应变的关系——本构关系。
拉压:2个 剪切:1个
2个
c 4 4c 1 1c 22 /2
金属
Chapter 5.1
第四章 本构关系
§4-1 本构关系概念 §4-2 广义胡克定律 §4-3 应变能和应变余能
§4-3 应变能和应变余能
应变能
如果载荷施加得足够慢,物体的动能以及因弹性变 形引起的热效应可以忽略不计,则外力所做的功将 全部转化为变形位能而储存在弹性体内。
ij ji
Cijkl kl Cjikl kl kl
Cijkl Cjikl
kl lk
C ijkl klC ijlklkC ijlkklkl
下节中将证明 Cijkl Cklij
Cijkl Cjikl
Chapter 5.1
§4-2 广义胡克定律
Cijkl Cjikl Cijlk 独立的弹性常数由81个降为36个
应变能是弹性材料本构关系的另一种表达形式,当
y νx
其中 是弹性常数,称为泊松比。
Chapter 5.1
§4-1 本构关系概念
线弹性叠加原理
先考虑在各正应力作用
下沿 x 轴的相对伸长,它 y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
z
1 E
z
ν
x y
Chapter 5.1
§4-1 本构关系概念
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
§4-1 本构关系概念
于是,得到各向同性材料的应变-应力关系:
x
1 E
x
ν
y z
y
1 E
y
ν x
z
z
1 E
z
ν
x y
xy
xy
G
yz
yz
G
zx
zx
G
Chapter 5.1
§4-1 本构关系概念
杨氏模量,泊松比和剪切模量之间的关系为
G= E 2(1 + ν)
将弹性本构关系写成指标形式为
ij
1
E
ij
E
kk ij
Chapter 5.1
§4-1 本构关系概念
c12
)
11 22
33 12
23
31
2
金属(随机排列晶体)、短纤维增强复合材料颗粒增
强复合材料
Chapter 5.1
§4-2 广义胡克定律
小结
一般情况
有一个弹 性对称面 正交各向 异性 横观各向 同性 各向同性
独立的弹 性常数
cij
21个
6×6对称
13个
拉压与剪切不耦合
Chapter 5.1
§4-2 广义胡克定律
ij ji Cijkl kl C jikl kl kl
kl lk
Cijkl C jikl
Cijkl kl Cijlk lk Cijlk kl kl
下节中将证明 Cijkl Cklij
Cijkl C jikl
Chapter 5.1
y ν x
其中 是弹性常数,称为泊松比。
Chapter 5.1
§4-1 本构关系概念
线弹性叠加原理
先考虑在各正应力作用
下沿 x 轴的相对伸长,它 y
由三部分组成,即
z
z x
o
y
y
x x x x
x x z
Chapter 5.1
§4-1 本构关系概念
x x x x
其中 x 是由于x的作用所产生的相对伸长
E
2
由于偏量和球量相互独立 ,所以有
0 K ; ij 2Gij
Chapter 5.1
§4-1 本构关系概念
0 K ; ij 2Gij
第一式说明弹性体的体积变化是由平均应力0引起
的,相应的弹性常数K称为体积模量。(体积变化)
第二式说明弹性体的形状畸变 ij 是由应力偏量 ij
引起的,相应的弹性常数是剪切模量G的二倍。(形状
c22 c23 0
0
0
22
1323
对
c33 0 0 c44 0
0 0
33 12
23
31
称
c55
0
23
c66 31
e3
e’1
c
例:正交晶体(各种增强纤维复合材料、 木材等)
e1
b
e2 a
互相正交的e1-e2 , e2-e3, e1-e3平面为弹
性对称面
Chapter 5.1
0
则
d A
dV
ij
ij
0
d ij
ij
0
W
ij
d ij
ij
0
dW
W (ij ) W (0)
其中,W(0)和W(ij)分别为物体变形前和变形后的应变能密度。
一般取变形前的初始状态为参考状态,令W(0)=0。
Chapter 5.2
§4-3 应变能和应变余能
d A
dV
ij
例:六方晶体
c Chaaptera5.1 a
§4-2 广义胡克定律
(5) 各向同性线弹性体 :
2
c11 c12 c12
0
0
0
11 22
1323
23
31
对
c11
c12 c11
称
0
0 (c11 c12 )
2
0 0
0 (c11 c12 )
2
(c11
0 0 0
0
Chapter 5.1
§4-2 广义胡克定律
(1) 一般各向异性线弹性 : 无弹性对称面
21
11 c11 c12 c13
22
c22 c23
1323
对
c33
23
称
31
例: 三斜晶体
c14 c15 c24 c25 c34 c35 c44 c45
c55
c
b
a
c16 11
c26
E
3K
其中
K E
3(1 2 )
称为体积模量。
Chapter 5.1
§4-1 本构关系概念
∵ ij
1
E
ij
E
kkij
;
1 2
E
∴
ij
E
1
ij
1
ij2G ijFra bibliotekE1 1
2
ij
令
1
E
1
2
则 ij 2Gij kkij Chapter 5.1
§4-1 本构关系概念
弹性关系的常规形式为
§4-2 广义胡克定律
其中 c11 C11, c12 C1122 , c14 C1112 , c56 C2331… 即c 的下角标1、2、3、4、5、6分别对应于C 的双指 标11、22、33、12、23、31。应该指出,改写后的 cmn (m, n=1~6) 并不是张量。
由于存在Voigt对称性,所以对于最一般的各向异性 材料,独立的弹性常数共有21个。
x
x
E
x是由于y的作用所产生的相对缩短
x
ν
y
E
x是由于z的作用所产生的相对缩短
x
ν
z
E
Chapter 5.1
§4-1 本构关系概念
将上述三个应变相加,即得在x、y、z同时作用下
在x轴方向的应变
x
x
E
ν
y
E
νz
E
1 E
x
ν
y z
同理可得到在y轴和z轴方向的应变
y
1 E
y
ν x
z
弹性力学
第四章 本构关系
§4-1 本构关系概念 §4-2 广义胡克定律 §4-3 应变能和应变余能
§4-1 本构关系概念
在以前章节我们从静力学和几何学观点出发, 得到了连续介质所共同满足的一些方程。显然,仅 用这些方程还不足以解决变形固体的平衡问题,因 为在推导这些方程时,并没有考虑应力和应变的内 在联系,而实际上他们是相辅相成的,对每种材料, 他们之间都有完全确定的关系,这种关系反映了材 料所固有的物理特性。本章就是要建立在弹性阶段 的应力和应变的关系——本构关系。
变化)
Chapter 5.1
§4-1 本构关系概念
常用的三套弹性常数
E、ν
Lamé常数:G、λ K、G
单拉测定
静水压、纯剪(扭 转)测定
Chapter 5.1
§4-1 本构关系概念
对于给定的工程材料,可以用单向拉伸试验测定E和
;用薄壁筒扭转试验来测定G;用静水压试验来测
定K。实验表明,在这三种加载情况下物体的变形总 是和加载方向一致的(即外力总在物体变形上做正 功),所以
§4-3 应变能和应变余能
应变能
如果载荷施加得足够慢,物体的动能以及因弹性变 形引起的热效应可以忽略不计,则外力所做的功将 全部转化为变形位能而储存在弹性体内。
弹性变形是一个没有能量耗散的可逆过程,卸载后
物体恢复到未变形前的初始状态,变形位能将全部
释放出来。
Chapter 5.2
§4-3 应变能和应变余能
§4-2 广义胡克定律
Cijkl C jikl Cijlk 独立的弹性常数由81个降为36个
x c11 x c12 y c13 z c14 xy c15 yz c16 zx y c21 x c22 y c23 z c24 xy c25 yz c26 zx z c31 x c32 y c33 z c34 xy c35 yz c36 zx xy c41 x c42 y c43 z c44 xy c45 yz c46 zx yz c51 x c52 y c53 z c54 xy c55 yz c56 zx zx c61 x c62 y c63 z c64 xy c c 65 yzChapte6r65.1zx
§4-2 广义胡克定律
(4) 横观各向同性线弹性体 :
5
11 22 1323
c11 对
23
c12 c11
c13 c13 c33
称
0
0
0
c44
(c11
c12 ) 2
0 0 0 0 c55
0 0
11 22
0 0
33 12
0
23
31
c55 31
0 0
1323
e3
23
称
c55
c56
23
31
c66 31
c
例:单斜晶体(正长石和云母等) e1,e2平面为弹性对称面
e1 b
e2 a
Cheap‘t3er 5.1