弹性力学第四章应力应变[研究材料]

合集下载

弹性力学:04 应力和应变的关系

弹性力学:04  应力和应变的关系

广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题

弹性力学第四章应力和应变关系.

弹性力学第四章应力和应变关系.

弹性⼒学第四章应⼒和应变关系.第四章应⼒和应变关系知识点应变能原理应⼒应变关系的⼀般表达式完全各向异性弹性体正交各向异性弹性体本构关系弹性常数各向同性弹性体应变能格林公式⼴义胡克定理⼀个弹性对称⾯的弹性体本构关系各向同性弹性体的应⼒和应变关系应变表⽰的各向同性本构关系⼀、内容介绍前两章分别从静⼒学和运动学的⾓度推导了静⼒平衡⽅程,⼏何⽅程和变形协调⽅程。

由于弹性体的静⼒平衡和⼏何变形是通过具体物体的材料性质相联系的,因此,必须建⽴了材料的应⼒和应变的内在联系。

应⼒和应变是相辅相成的,有应⼒就有应变;反之,有应变则必有应⼒。

对于每⼀种材料,在⼀定的温度下,应⼒和应变之间有着完全确定的关系。

这是材料的固有特性,因此称为物理⽅程或者本构关系。

对于复杂应⼒状态,应⼒应变关系的实验测试是有困难的,因此本章⾸先通过能量法讨论本构关系的⼀般形式。

分别讨论⼴义胡克定理;具有⼀个和两个弹性对称⾯的本构关系⼀般表达式;各向同性材料的本构关系等。

本章的任务就是建⽴弹性变形阶段的应⼒应变关系。

⼆、重点1、应变能函数和格林公式;2、⼴义胡克定律的⼀般表达式;3、具有⼀个和两个弹性对称⾯的本构关系;4、各向同性材料的本构关系;5、材料的弹性常数。

§4.1 弹性体的应变能原理学习思路:弹性体在外⼒作⽤下产⽣变形,因此外⼒在变形过程中作功。

同时,弹性体内部的能量也要相应的发⽣变化。

借助于能量关系,可以使得弹性⼒学问题的求解⽅法和思路简化,因此能量原理是⼀个有效的分析⼯具。

本节根据热⼒学概念推导弹性体的应变能函数表达式,并且建⽴应变能函数表达的材料本构⽅程。

根据能量关系,容易得到由于变形⽽存储于物体内的单位体积的弹性势能,即应变能函数。

探讨应变能的全微分,可以得到格林公式,格林公式是以能量形式表达的本构关系。

如果材料的应⼒应变关系是线性弹性的,则单位体积的应变能必为应变分量的齐⼆次函数。

因此由齐次函数的欧拉定理,可以得到⽤应变或者应⼒表⽰的应变能函数。

弹性力学与材料的应变与应力关系研究

弹性力学与材料的应变与应力关系研究

弹性力学与材料的应变与应力关系研究材料科学是一门研究物质的性质和结构的学科,而弹性力学是其中重要的一个领域。

弹性力学的研究主要关注材料在受力作用下的变形以及变形所产生的应力。

这种变形和应力之间的关系在材料的设计和使用中起着至关重要的作用。

首先,我们可以从一个简单的弹簧模型开始,了解应变与应力之间的关系。

考虑一根弹簧,我们可以通过施加一个外力来使其发生变形。

这个外力会产生一个内部力,即弹性力,使弹簧恢复到原始的形状。

弹簧的变形程度可以用应变来描述,而内部的弹性力可以用应力来表示。

弹簧的应变与应力之间存在线性关系,即应力等于弹性模量乘以应变。

这个关系被称为胡克定律。

然而,材料的力学性质往往比弹簧更为复杂。

在实际应用中,材料常常需要承受更大的力和变形。

由于这种情况下,材料不再服从线性的胡克定律,因此弹性力学的研究也就更为复杂。

材料科学家通过实验和理论分析,发现了不同材料在不同应力状态下的应变与应力之间的关系,并提出了一系列描述这种关系的模型。

其中最常用的模型之一是线弹性模型。

线弹性模型假设材料在小应力范围内呈现线性弹性,即应变与应力之间存在线性关系。

这在实际应用中是非常有用的,例如在建筑结构中,我们可以通过线弹性模型来估计材料的变形和承载能力,从而保证结构的安全性。

然而,当应力超过一定范围时,线弹性模型就无法准确描述材料的力学性质了。

这时,材料会发生塑性变形,即不可逆的变形。

塑性变形与应力之间的关系可以通过简单的拉伸试验来确定。

拉伸试验是一种将材料加以拉伸直至破裂的试验,通过测量材料在不同应力下的应变,可以得到材料的应力-应变曲线。

这个曲线描述了材料在不同应力下的塑性行为,可以帮助工程师选择合适的材料设计和制造产品。

除了线弹性和塑性变形,还存在一些特殊的力学性质。

例如,某些材料在受力时会发生形状记忆效应,即经历过变形后能够恢复到原来的形状。

这种材料被称为形状记忆合金,具有广泛的应用前景。

还有一些材料如液晶,具有流变性质,即受到剪切力时会出现非线性的变形行为。

弹性力学平面应力平面应变问题

弹性力学平面应力平面应变问题
u u v v w w (在 u 上)
用矩阵形式表示为:
u u (在 u 上)
小结
弹性力学基本方程的一般形式为
回顾
平衡微分方程 σ b 0
(在 内)
几何方程 物理方程
ε tu σ Dε
(在 内) (在 内)
边界条件
nσ t
(在 t 上)
回顾
弹性体在应力边界 t 上单位面积的面力为X 、Y 、Z 。设 边界外法线的方向余弦为 nx、ny、nz ,则边界上弹性体 的应力边界条件可表示为
X Y
nx x ny xy nx yx ny y

nz nz
xz yz

Z
nx zx
ny zy
nz z

其矩阵表达式为
t nσ
(在 t 上)
其中,面积力向量 t [ X Y Z ]T ,方向余弦矩阵为
n n0x
0 ny
0 0
ny nx
0 nz
nz 0

0 0 nz 0 ny nx
5. 位移边界条件
回顾
已知位移 u 边界上弹性体的位移为 u、v、w ,
则有
(1) 物质连续性假定:物质无空隙,可用连续函数来描述; (2) 物质均匀性假定:物体内各个位置的物质具有相同特性; (3) 物质(力学)特性各向同性假定:物体内同一位置的物质在
各个方向上具有相同特性; (4) 线性弹性假定:物体的变形与外来作用力的关系是线性的,
外力去除后,物体可恢复原状; (5) 小变形假定:物体变形远小于物体的几何尺寸。
弹性力学平面应力平面应变问题
回顾
弹性力学目的:对弹性体中的位移、应力、应变进行 定义和表达,进而建立平衡方程、几何方程和材料物 理方程

弹塑性力学第四章弹性本构关系资料

弹塑性力学第四章弹性本构关系资料
产生的x方向应变:
产生的x方向应变:
叠加
产生的x方向应变:
同理:
剪应变:
物理方程:
说明:
1.方程表示了各向同性材料的应力与应 变的关系,称为广义Hooke定义。也称 为本构关系或物理方程。
2.方程组在线弹性条件下成立。
. 体积应变与体积弹性模量
令: 则: 令:
sm称为平均应力; q 称为体积应变
eij
1 2G
sij
(4.40)
因为 J1 0, J1' 0 ,所以以上六个式子中独立变量只有5个
因此应力偏张量形式的广义虎克定律,即
eij
1 2G
sij
em
1 3K
sm
(4.41)
用应变表示应力:
或: ✓ 各种弹性常数之间的关系
§4-2 线弹性体本构方程的一般表达式
弹性条件下,应力与应变有唯一确定的对应关系,三维 应力状态下,一点的应力取决于该点的应变状态,应力是应 变的函数(或应变是应力的函数) 6个应力分量可表述为6个应变分量的函数。
式(2)中的系数 有36个.
称为弹性常数,共
由均匀性假设,弹性体各点作用同样应力 时,必产生同样的应变,反之亦然.因此 为 常数,其数值由弹性体材料的性质而定.
式(2)推导过程未引用各向同性假设, 故可适用于极端各向异性体、正交各向异性体、 二维各向同性体以及各向同性体等.
式(2)可用矩阵表示
式(3)可用简写为 称为弹性矩阵.
三、. 弹性常数
1. 极端各向异性体:
物体内的任一点, 沿各个方向的性能都不相 同, 则称为极端各向异性体. (这种物体的材料极 少见)
即使在极端各向异性条件下, 式(2)中的36个 弹性常数也不是全部独立.

弹性力学平面应力问题和平面应变问题

弹性力学平面应力问题和平面应变问题
特点
平面应力问题的定义
平面应力问题的基本假设
假设弹性体是连续的,没有空隙或裂缝。
假设弹性体的材料性质在空间中是均匀的,即各向同性。
假设弹性体的材料性质在不同方向上相同。
假设弹性体的变形是微小的,即变形前后的形状和尺寸变化不大。
连续性
均匀性
各向同性
小变形
解析法
01
通过数学公式和定理求解弹性力学问题的精确解。适用于简单形状和边界条件的平面应力问题。
平面问题的定义
02
CHAPTER
平面应力问题
在弹性力学中,平面应力问题是指应变场和应力场在二维平面上变化的问题。这类问题通常涉及到薄板、薄壳等二维结构,其厚度相对于结构的尺寸较小,可以忽略不计。
平面应力问题
平面应力问题具有对称性,即应变和应力在垂直于平面的方向上为零。同时,由于结构厚度较小,平面应力问题通常只考虑平面内的应变和应力分量,忽略垂直于平面的分量。
弹性力学简介
平面问题是指弹性物体在平面内的变形问题,其中物体与平面平行或与平面垂直。
平面应变问题是指物体在平行于平面的方向上发生变形,而垂直于平面的方向上变形较小或忽略不计。
平面问题可以分为平面应变问题和平面应力问题两类。
平面应力问题是指物体在垂直于平面的方向上发生变形,而平行于平面的方向上变形较小或忽略不计。
03
CHAPTER
平面应变问题
平面应变问题
模拟 aword/noun like "bleepileysing前进 on how toilet b. The first time you feel that there is a word-like "bleepilexamples the first time you具有重要的 first time you feel that there is a word's a word-like "bleepilexamples[c. The first time you feel that there is a word's a word-like b. The first time you feel that there is a word's a word's a word-like "bleepilexamples the first time you's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a way toilet's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's a word's

第四章应力应变关系

第四章应力应变关系

4 应力应变关系4.1弹性变形时应力和应变的关系当材料所受应力小于其线弹性极限时,材料应力应变间的关系服从广义Hooke 定律,即1()1()1()111222x x y z y yx zz z x yxy xy yz yz zx zxE E E G G G εσνσνσεσνσνσεσνσνσετετετ⎧=--⎪⎪⎪=--⎪⎨⎪=--⎪⎪⎪===⎩,, (4.1) 式中,E 为拉压弹性模量,G 为剪切模量,ν为泊松比,对于各向同性材料,三个常数之间满足()21E G ν=+关系。

由上式可得11212()()33m x y z x y z m E E ννεεεεσσσσ--=++=++= (4.2) 于是11()'2x m x m x E G νεεσσσ+-=-= 或1112''22x m x x m G G Eνεεσσσ-=+=+ 类似地可以得到1112''22y m y y m G G E νεεσσσ-=+=+ 1112''22z m z z m G G Eνεεσσσ-=+=+于是,方程(4.1)可写成如下形式1212'00'0000'x xy xz x xy xz m v yx y yz yx y yz m G E m zx zy z zx zy z εγγσττσγεγτστσσγγεττσ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭即'1122ij ij m ij ij m G Eνεεεσδσ-'=+=+ (4.3)显然,弹性变形包括体积改变的变形和形状改变的变形。

前者与球应力分量成正比,即12m m E νεσ-= (4.4)后者与偏差应力分量成正比,即''12''12''12111222x x m x G y y m y G z z m z G xy xy yz yz zx zxG G G εεεσεεεσεεεσετετετ⎧=-=⎪=-=⎪⎨=-=⎪⎪===⎩,,或简写为2ij ij G σε''= (4.5)此即为广义Hooke 定律。

弹性力学中的应力与应变理论

弹性力学中的应力与应变理论

弹性力学中的应力与应变理论弹性力学是研究物体在受力作用下的变形与恢复的力学分支。

应力与应变理论是弹性力学的重要组成部分,它描述了物体在受到外力作用时产生的应力和应变之间的关系。

在本文中,我们将深入探讨弹性力学中的应力与应变理论。

一、应力的概念与分类应力是物体在受力作用下产生的单位面积的内力。

根据受力方向的不同,应力可以分为三类:拉应力、压应力和剪应力。

1. 拉应力:拉应力是指物体在受到拉伸力作用下产生的应力。

拉应力可分为轴向拉应力和切向拉应力。

轴向拉应力是指沿物体轴线方向产生的应力,而切向拉应力则是指垂直于轴线方向产生的应力。

2. 压应力:压应力是指物体在受到压缩力作用下产生的应力。

与拉应力类似,压应力也可分为轴向压应力和切向压应力。

3. 剪应力:剪应力是指物体在受到剪切力作用下产生的应力。

剪应力沿着物体内部平面的切线方向产生。

二、应变的概念与分类应变是物体在受力作用下发生的长度、面积或体积的变化。

根据变形形式的不同,应变可分为三类:线性应变、平面应变和体积应变。

1. 线性应变:线性应变是指物体在受力作用下产生的长度变化与初始长度之比。

它是最基本的应变形式,常用符号ε表示。

线性应变假设变形产生的应力与应变之间呈线性关系。

2. 平面应变:平面应变是指物体在受到外力作用下产生的面积变化与初始面积之比。

平面应变常用符号γ表示。

3. 体积应变:体积应变是指物体在受到外力作用下产生的体积变化与初始体积之比。

体积应变常用符号η表示。

三、胡克定律与应力应变关系胡克定律是弹性力学中最基本的定律之一,它描述了由于外力作用下物体的弹性变形情况。

胡克定律可以简要表述为:应力与应变成正比。

根据胡克定律,可以得出应力与应变的数学关系,即应力等于弹性模量与应变之积。

根据具体的应力类型和应变类型,应力与应变的关系可以用不同的公式来表示。

四、应力与应变的计算方法在实际应用中,为了计算物体在受力作用下的应变情况,可以使用不同的方法来计算应力和应变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

调研学习
1
i, j fi 0(ui ),
ij
1 2
(ui
,
j
u j,i ),
j 1, 2,3 i, j 1, 2,3
其中fi 是已知的体力。从数学分析的角度,上述方程 是不封闭的,因此没有唯一的一组解。还需补充六 个方程,使得方程组封闭。
另外,应力与应变是相辅相成的,有应力就有应变, 反之亦然。对于每一种材料在一定温度下,它们之 间存在着确定的关系,反映了材料的固有特性。本 章的任务就是建立在弹性阶段应力与应变的关系。
xz
xz
0
f3
xy
0
xy
调研学习
5
由没有初应力的基本假设,上式可表示为
x C11 x C12 y C13 z C14 yz C15 xz C16 xy y C21 x C22 y C23 z C24 yz C25 xz C26 xy z C31 x C32 y C33 z C34 yz C35 xz C36 xy
2v
xz y
C52
根据偏导数次序可交换原则,可证C25=C52。对于其它的
弹性常数可以作同样的分析,则 Cmn=Cnm 。
上述结论表明完全各向异性调研弹学性习 体只有21个弹性常数 。 11
2.具有一个弹性对称面的各向异性弹性体
如果物体内每一点都存在这样一个平面,和该面对称的方向 具有相同的弹性性质,则称该平面为物体的弹性对称面。垂 直于弹性对称面的方向称为物体的弹性主方向。
上式中 cmn(m,n=1,2…6)是弹性系数,共36个,对 于均匀材料它们为常数,称为弹性常数,与坐标无关。
调研学习
6
上式即为广义胡克定律,可以看出应 力和应变之间是线性的。
可以证明各弹性常数之间存在关系式 = cmn cnm 。对于最一般的各向异性介质,弹 性常数也只有21个。
调研学习
7
§4.2 弹性体变形过程中的功与能
0
f1
yz
0
yz
f1
xz
0
xz
f1
xy
0
xy
y
(
f2 )0
f2
x
x
0
f2
y
0
y
f2
z
z
0
f2
yz
0
yz
f2
xz
0
xz
f2
xy
0
xy
z
(
f3 )0
f3
x
x
0
f3
y
y
0
f3
z
0 z
f3
yz
0
yz
f3
x' =x,y' =y,z' =z,x'y' =-xy,y'z' =yz,z'x' =-zx x' =x,y' =y,z' =z,x'y' =-xy,y'z' =yz,z'x' =-zx
根据完全各向异性弹性体的本构方程,将上述关系式代入广义 胡克定律表达式(4-2)得
假设yz坐标面为弹性对称面,则x轴为弹性主方向。将x轴绕 动 z 轴转动π 角度,成为新的 Ox'y'z'坐标系。
新旧坐标系之间的转换关系为
x
y
z
x’
-1
0
0
y’
0
1
0
z’
0
0
1
调研学习
12
根据对称性质:关于x轴对称的应力和应变分量在坐标系变换 时保持不变,而关于x轴反对称的应力和应变分量在坐标系 变换时取负值(也可按照转轴时的变换公式计算)。有,
10
1. 极端各向异性弹§性4体.3 各向异性弹性体
利用格林公式和广义胡克定律:
v
y
y
C21 x C22 y
C23 z
C24 yz C25 xz C26 xy
再对
xz求偏导:
2v
y
xz
C25
同理有:
v
xz
xz
C51 x
C52 y
C53 z
C54 yz
C55 xz C56 xy
x f1( x , y , z , xy , yz , zx )
y f2 ( x , y , z , xy , yz , zx ) z f3 ( x , y , z , xy , yz , zx )
(4-1)
xy f4 ( x , y , z , xy , yz , zx )
yz f5 ( x , y , z , xy , yz , zx )
zx f6 ( x , y , z , xy , yz , zx )
调研学习
4
当变形较小时,可展开成泰勒级数, 并略去二阶以上的小量。
x
(
f1 )0
f1
x
x
0
f1
y
y
0
f1
z
z
x
vF x
,
y
vF y
,
z
vF z
,
xy
vF xy
,
yz
vF yz
,
xz
vF xz
调研学习
9
统一的形式:
x
v x
,
y
v y
,
z
v z
,
xy
v xy
,
yz
v yz
,
xz
v xz
弹性体的应变能函数表达式
v
1 2
(
x
x
y y
zz
xy xy
yz yz
xz xz)
调研学习
yz C41 x C42 y C43 z C44 yz C45 xz C46 xy (4-2) xz C51 x C52 y C53 z C54 yz C55 xz C56 xy
xy C61 x C62 y C63 z C64 yz C65 xz C66 xy
调研学习
2
第四章 应力和应变的关系
第一节 广义胡克定律 第二节 弹性变形过程中的能量 第三节 各向异性弹性体 第四节 各向同性弹性体 第五节 弹性常数的测定 各向同性体 应变能密度
调研学习
3
第一节 广义胡克定律
物体中一点的应力状态由6个应力分量所确定, 同一点附近的变形状态由6个应变分量所确定。应力 与形变之间的物理关系可表示为:
第四章 应力和应变的关系
在应力分析中,仅从静力学的观点出发,引入了 9个应力分量 ij ,它们满足三个平衡微分(运动方程) 剪应力互等定理,由此得到应力张量对称的结论, 因此独立的应力分量只有六个。在应变分析中,从 物体的几何连续性观点出发,研究物体变形,得到 三个位移分量 ui 和6个独立的应变分量 ij 。这样我们 总共引入了十五个变量 ui , ij , ij ,它们满足的方 程只有九个:
• 本节使用热力学的原理推导能量形式的物 理方程(本构关系)。
外力作用——弹性体变形 ——变形过程外力作功 ——弹性体内的能量也
x
vI x
,
y
vI y
,
z
vI z
,
xy
vI xy
,
yz
vI yz
,
xz
vI xz
等温过程:利用热力学第二定律
相关文档
最新文档