四川省江油市2020_2021学年七年级上期末考试试卷

合集下载

数学七年级上册《期末考试试卷》带答案

数学七年级上册《期末考试试卷》带答案

2020-2021学年第一学期期末测试人教版七年级数学试题一、选择题(本大题共16个小题每小题2分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的倒数是( ) A. ﹣16B.16C. ﹣6D. 62.下列运算结果为正数的是( ) A. (﹣3)2B. ﹣3÷2C. 0×(﹣2017)D. 2﹣33.下列几何体中没有曲面的是( ) A. 球B. 圆柱C. 棱柱D. 圆锥4.如图,C 、D 是线段AB 上的两点,且D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则AD 的长为( ) A 2cmB. 3cmC. 4cmD. 6cm5.单项式9x m y 3与单项式4x 2y n 是同类项,则m+n 的值是( ) A. 2B. 3C. 4D. 5 6.运用等式性质进行的变形, 不正确...的是 ( ) A. 如果a=b ,那么a-c=b-c B. 如果a=b ,那么a+c=b+c C. 如果a=b ,那么a b c c = D. 如果a=b ,那么ac=bc 7.在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是: A. 2x-1+6x=3(3x+1) B. 2(x-1)+6x=3(3x+1) C 2(x-1)+x=3(3x+1)D. (x-1)+x=3(3x+1) 8.下列各组数中,互为相反数的是( ) A. ﹣1与(﹣1)2B. (﹣1)2与1C. 2与12D. 2与|﹣2|9.m n 322 (2)3+3+...+3⨯⨯⨯个2个=( )A. 23m nB. 23m nC. 32m nD. 23m n10. 把一副三角板按照如图所示的位置摆放,则形成两个角,设分别为∠α、∠β,若已知∠α=65°,则∠β=( )A. 15°B. 25°C. 35°D. 45°11.下列判断中正确的是( ) A. 3a 2bc 与bca 2不是同类项 B. 25m n 不是整式C. 单项式-x 3y 2的系数是-1D. 3x 2-y +5xy 2是二次三项式12.一个两位数,个位上的数字是十位上的数字的3倍,且它们的和是12,则这个两位数是( ) A. 26B. 62C. 39D. 9313.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()-a b 等于( )A 8B. 7C. 6D. 514.根据图中给出的信息,可列正确的方程是( )A. ()2286π()π()x 522⨯=⨯⨯+B. ()2286π()π()x 522⨯=⨯⨯-C. ()22π8x π6x 5⨯=⨯⨯+D. 22π8x π65⨯=⨯⨯15.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么a b a b -++化简的结果为( )A. 2aB. 2a -C. 0D. 2b16.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二.填空题(本大题共4个小题,每小题3分,共12分)17.如果|a+4|+(b﹣3)2=0,则(a+b)2015=_____.18.定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么方程3⊕x=13的解为x=_____.19.如图,在△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC 的度数为____.20.有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2017次输出的结果是_____.三、解答题(本大题共6个小題,共56分解答应写出文字说明、证明过程或演算步骤)21.计算(1)(53﹣712)×(﹣24)(2)﹣14+(1﹣0.5)×13×[2﹣(﹣3)2]22.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)21536x x---=﹣1.23.先化简,再求值:2(a2-ab)-3(a2-ab),其中,a=-2,b=3.24.如图,点O为直线CA上一点,∠BOC=46°,OD平分∠AOB,∠EOB=90°,求∠AOE和∠DOE的度数.25.某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?26.如图,在三角形ABC中,∠C=90°,AC=6cm,BC=10cm,点P从B点开始向C点运动速度是每秒1cm,设运动时间是t秒,(1)用含t的代数式来表示三角形ACP的面积.(2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点P在BC上的什么位置?答案与解析一、选择题(本大题共16个小题每小题2分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的倒数是()A. ﹣16B.16C. ﹣6D. 6【答案】A 【解析】解:﹣6的倒数是﹣16.故选A.2.下列运算结果为正数的是()A. (﹣3)2 B. ﹣3÷2 C. 0×(﹣2017) D. 2﹣3 【答案】A【解析】A选项:原式=9,符合题意;B选项:原式=-1.5,不符合题意;C选项:原式=0,不符合题意,D选项:原式=-1,不符合题意,故选A.3.下列几何体中没有曲面的是()A. 球B. 圆柱C. 棱柱D. 圆锥【答案】C【解析】【分析】根据立体图形特征即可得出结论.【详解】根据立体图形性质可知,只有棱柱没有曲面.【点睛】本题考查了立体图形的几何特征,属于简单题,熟悉几何体的定义是解题关键.4.如图,C、D是线段AB上的两点,且D是线段AC的中点.若AB=10cm,BC=4cm,则AD的长为()A. 2cmB. 3cmC. 4cmD. 6cm【答案】B【解析】试题分析:由AB=10cm,BC=4cm,可求出AC=AB﹣BC=6cm,再由点D是AC的中点,则可求得AD=12AC=3cm.故选B.考点:两点间的距离5.单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A. 2B. 3C. 4D. 5 【答案】D【解析】试题解析:由同类项的定义:字母相同,相同字母的指数相等,可以得出:m=2,n=3.m+n=2+3=5.故选D.6.运用等式性质进行的变形, 不正确...的是( )A. 如果a=b,那么a-c=b-cB. 如果a=b,那么a+c=b+cC. 如果a=b,那么a bc c= D. 如果a=b,那么ac=bc【答案】C【解析】分析:根据等式的基本性质可判断出选项正确与否.详解:A、根据等式性质1,a=b两边都减c,即可得到a−c=b−c,故本选项正确;B、根据等式性质1,a=b两边都加c,即可得到a+c=b+c,故本选项正确;C、根据等式性质2,当c≠0时原式成立,故本选项错误;D、根据等式性质2,a=b两边都乘以c,即可得到ac=bc,故本选项正确.故选C.点睛:主要考查了等式的基本性质.等式性质:(1)等式的两边同时加上或减去同一个数或字母,等式仍成立;(2)等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.在解方程13132x xx-++=时,方程两边同时乘以6,去分母后,正确的是:A. 2x-1+6x=3(3x+1)B. 2(x-1)+6x=3(3x+1)C. 2(x-1)+x=3(3x+1)D. (x-1)+x=3(3x+1) 【答案】B【解析】去分母时一定不要漏乘了没有分母的项,方程13132x x x -++=两边同时乘以6可得. 2(x ﹣1)+6x =3(3x +1),故选B . 8.下列各组数中,互为相反数的是( ) A. ﹣1与(﹣1)2 B. (﹣1)2与1C. 2与12D. 2与|﹣2|【答案】A 【解析】 【分析】根据相反数的定义,对每个选项进行判断即可.【详解】解:A 、(﹣1)2=1,1与﹣1 互为相反数,正确; B 、(﹣1)2=1,故错误; C 、2与12互为倒数,故错误; D 、2=|﹣2|,故错误; 故选A .【点睛】本题考查了相反数的定义,解题的关键是掌握相反数的定义.9.m n 322 (2)3+3+...+3⨯⨯⨯个2个=( )A. 23m nB. 23m nC. 32m nD. 23m n【答案】B 【解析】 【分析】根据乘方和乘法的意义即可求解. 【详解】m 22...23+3+...+3n 3⨯⨯⨯个个=23mn. 故选B.【点睛】此题考查有理数的混合运算,解题关键在于掌握运算法则. 10.把一副三角板按照如图所示的位置摆放,则形成两个角,设分别为∠α、∠β,若已知∠α=65°,则∠β=( )A. 15°B. 25°C. 35°D. 45°【答案】B【解析】试题分析:按照如图所示的位置摆放,利用∠α、∠β和直角正好在一条直线上,用平角减去直角再减去65°即可得出答案.即∠β=180°﹣90°﹣65°=25°.考点:角的计算11.下列判断中正确的是()A. 3a2bc与bca2不是同类项B.25m n不是整式C. 单项式-x3y2的系数是-1D. 3x2-y+5xy2是二次三项式【答案】C【解析】解:A.3a2bc与bca2是同类项,故错误;B.25m n是整式,故错误;C.单项式﹣x3y2的系数是﹣1,正确;D.3x2﹣y+5xy2是3次3项式,故错误.故选C.点睛:主要考查了整式的有关概念.并能掌握同类项概念和单项式的系数以及多项式的次数的确定方法.12.一个两位数,个位上的数字是十位上的数字的3倍,且它们的和是12,则这个两位数是()A. 26B. 62C. 39D. 93【答案】C【解析】【分析】设十位上的数字是x,则个位上的数字是3x,利用个位数字加十位数字的和是12作为等量关系列方程求解.【详解】设十位上的数字是x,则个位上的数字是3x.由题意得:x+3x=12,解得:x=3, 则3x=9, 所以该数:39.答:这个两位数是39.【点睛】一元一次方程的应用,关键是找出等量关系,这是列方程的依据.13.如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()-a b 等于( )A. 8B. 7C. 6D. 5【答案】B 【解析】设重叠部分面积为c ,(a-b )可理解为(a+c )-(b+c ),即两个正方形面积的差,所以a-b=(a+c )-(b+c )=16-9=7. 故选:A .点睛:本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键. 14.根据图中给出的信息,可列正确的方程是( )A. ()2286π()π()x 522⨯=⨯⨯+B. ()2286π()π()x 522⨯=⨯⨯-C. ()22π8x π6x 5⨯=⨯⨯+D. 22π8x π65⨯=⨯⨯【答案】C 【解析】 【分析】设大量筒中水位高度为xcm ,则小量筒中水位高度为()x 5cm +,根据圆柱体的体积结合水的体积不变,即可得出关于x 的一元一次方程,此题得解.【详解】设大量筒中水位高度为xcm ,则小量筒中水位高度为()x 5cm +, 根据题意得:()2286π()x π()x 522⨯=⨯⨯+,变形得:()22π8x π6x 5⨯=⨯⨯+,故选C .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.15.如果在数轴上表示a ,b 两个实数的点的位置如图所示,那么a b a b -++化简的结果为( )A. 2aB. 2a -C. 0D. 2b【答案】B 【解析】试题解析:由数轴可a <0,b >0,a <b ,|a |>b , 所以a −b <0,a +b <0,∴|a −b |+|a +b |=−a +b −a −b =−2a . 故选B16.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B 【解析】 【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分, 最下面的一横作为一部分,规律为(2n-1), 上面的就是等差数列求和,规律为:(1)2n n +,则所有的五角星的数量的和的规律为:(1)2n n ++(2n-1), 则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51. 故选:B考点:规律题. 二.填空题(本大题共4个小题,每小题3分,共12分)17.如果|a+4|+(b ﹣3)2=0,则(a+b )2015=_____.【答案】-1【解析】【分析】根据0+0=0即可得出结论.【详解】∵|a+4|+(b ﹣3)2=0,又∵|a+4|0,≥(b ﹣3)20≥∴a+4=0,b-3=0,即a=-4,b=3∴a+b=-1,∴(a+b )2015=(-1)2015=-1【点睛】本题考查了绝对值的性质,属于简单题,理解零加零式的实际含义是解题关键.18.定义新运算:对于任意实数a ,b 都有:a ⊕b=a (a ﹣b )+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么方程3⊕x=13的解为x=_____.【答案】x=﹣1【解析】【分析】根据题干中的新定义得3⊕x=-3x+10,即可解题.【详解】由题可知,3⊕x=3(3-x )+1=-3x+10,即-3x+10=13解得x=﹣1【点睛】本题属于新定义题,考查了有理数的运算性质,用新定义表示出一次方程是解题关键.19.如图,在△ABC 中,∠BAC =33°,将△ABC 绕点A 按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC 的度数为____.【答案】17°【解析】【详解】解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,∴∠B′AC′=33°,∠BAB′=50°,∴∠B′AC的度数=50°−33°=17°.故答案为17°.20.有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2017次输出的结果是_____.【答案】1【解析】【详解】第一次,输出12,第二次,输入12,因为12是偶数,所以输出结果是6,第三次,输入6,因为6是偶数,所以输出结果是3第四次,输入3,因为3是奇数,所以输出结果是8,第五次,输入8,因为8是偶数,所以输出结果是4,第六次,输入4,因为4是偶数,所以输出结果是2第七次,输入2,因为2是偶数,所以输出结果是1,第八次,输入1,因为1是奇数,所以输出结果是4,∴从第六次开始,三次一循环.=670 (2)(2017-5)3∴第2017次输出的结果和第七次结果相同.【点睛】本题考查了有理数找规律,看懂框图是解题关键.三、解答题(本大题共6个小題,共56分解答应写出文字说明、证明过程或演算步骤)21.计算(1)(53﹣712)×(﹣24)(2)﹣14+(1﹣0.5)×13×[2﹣(﹣3)2]【答案】(1)-26(2)-13 6【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后计算加减运算即可得到结果.【详解】(1)(53﹣712)×(﹣24)=(﹣40)+14 =﹣26;(2)﹣14+(1﹣0.5)×13×[2﹣(﹣3)2]=﹣1+11[29] 23⨯⨯-=﹣1+1(7) 6⨯-=﹣1+(﹣76)=13 6 -.【点睛】本题考查了有理数的混合运算,解题的关键是熟练的掌握有理数的混合运算.22.解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)21536x x---=﹣1.【答案】(1) x=5 (2)x=1 5【解析】按去分母、去括号、移项、合并同类项、系数化为1的步骤即可解一元一次方程. 解:(1)3x﹣7(x﹣1)=3﹣2(x+3),3x﹣7x+7=3﹣2x﹣6,3x﹣7x+2x=3﹣6﹣7,﹣2x=﹣10,x=5;(2)213x--56x-=﹣1.2(2x﹣1)﹣(5﹣x)=﹣6,4x﹣2﹣5+x=﹣6,4x+x=﹣6+5+2,5x=1,x=15.23.先化简,再求值:2(a2-ab)-3(a2-ab),其中,a=-2,b=3.【答案】﹣a2+ab,-10【解析】【分析】先去括号,再合并同类项,最后把a、b的值代入计算即可.【详解】解:原式=2a2﹣2ab﹣3a2+3ab=﹣a2+ab,当a=﹣2,b=3时,原式=﹣(﹣2)2+(﹣2)×3=﹣4﹣6=﹣10.【点睛】本题考查了整式的化简求值,去括号、合并同类项是解决本题的关键.24.如图,点O为直线CA上一点,∠BOC=46°,OD平分∠AOB,∠EOB=90°,求∠AOE和∠DOE的度数.【答案】23°【解析】【分析】利用角平分线性质即可解题.【详解】解:∵点O为直线CA上一点,∠BOC=46°∴∠AOB=180°﹣46°=134°,∵∠EOB=90°,∴∠AOE=134°﹣90°=44°, ∵OD 平分∠AOB,∴∠AOD=12∠AOB=67°, ∴∠DOE=∠AOD ﹣∠AOE=67°﹣44°=23°.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的概念是解题关键.25.某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本? (2)请你解释:小明为什么不可能找回68元?【答案】(1) 5元笔记本买了25本,8元笔记本买了15本 (2)不可能找回68元,理由见解析.【解析】【详解】(1)设5元、8元的笔记本分别买本,本,依题意,得:40583006813x y x y +=⎧⎨+=-+⎩,解得:2515x y =⎧⎨=⎩. 答:5元和8元笔记本分别买了25本和15本.(2)设买m 本5元的笔记本,则买(40)m -本8元的笔记本.依题意,得:58(40)30068m m +-=-,解得883m =.因m 是正整数,所以883m =不合题意,应舍去,故不能找回68元.【点睛】本题难度较低,主要考查学生对二元一次方程组解决实际应用的能力.为中考常考题型,要求学生牢固掌握.26.如图,在三角形ABC 中,∠C =90°,AC =6cm ,BC =10cm ,点P 从B 点开始向C 点运动速度是每秒1cm ,设运动时间是t 秒,(1)用含t 的代数式来表示三角形ACP 的面积.(2)当三角形ACP的面积是三角形ABC的面积的一半时,求t的值,并指出此时点P在BC上的什么位置?【答案】(1)三角形ACP的面积为30﹣3t;(2)此时BP=5,点P在BC的中点上.【解析】【分析】根据运动时间和速度表示出运动路程,即可求出面积.【详解】(1)点P运动t秒后,BP=t,则PC=10﹣t,三角形ACP的面积为:×PC×AC=×(10﹣t)×6=30﹣3t;(2)因为三角形ABC的面积为:×BC×AC=×10×6=30,依题意得30﹣3t=30×,解得,t=5,此时BP=5,点P在BC的中点上.【点睛】本题考查用代数式表示三角形面积(含动点)问题,用代数式表示线段长度是解题关键.。

2020-2021学年七年级上册期末数学试卷及答案

2020-2021学年七年级上册期末数学试卷及答案

2020-2021学年七年级上册期末数学试卷及答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是( )A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是( ) A .2bc 与2abc B .3a 2b与-3ab 2 C .a与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( )A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是( )5、下列说法中,正确的有( )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是( )A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是( )8、若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19、已知a ,b 互为相反数,c ,d 互为倒数,m 是绝对值等于3的负数,则m 2+(cd +a +b)m +(cd)2021的值为( )A .-8B .0C .4D .710、按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个 二、填空题(每小题3分,共18分)11、如图,A ,B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A ,B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是______________.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为_________人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有_________盏灯. 14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是_________. 15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =________.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有_________个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2];(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)];(3)(﹣4)2×(﹣)+30÷(﹣6);(4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.18、解方程:(1)(x -3)+1=x -(x -2); 1213 (2)x +=6-. 2(x -3)3x -7619、化简:(1)(x 2-7x)-(3x 2-5-7x);(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y).20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题. (1)这次活动一共调查了_________名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于_________度.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)如图1.①若∠AOC =60°,则∠DOE 的度数为_________;②若∠AOC =α,则∠DOE 的度数为_________(用含α的式子表示);(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.25、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元. (1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?参考答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是(D)A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是(D)A .2bc 与2abcB .3a 2b 与-3ab 2C .a 与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为(C)A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是(A)5、下列说法中,正确的有(C)①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是(D)A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)8、若A=3x2-4y2,B=-y2-2x2+1,则A-B等于(C)A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)m +(cd)2 021的值为(D)A.-8 B.0 C.4 D.710、按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有(C)A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共18分)11、如图,A,B是河l两侧的两个村庄.现要在河l上修建一个抽水站P,使它到两个村庄A,B的距离和最小,小丽认为在图中连接AB与l的交点就是抽水站P的位置,你认为这里用到的数学基本事实是两点之间,线段最短.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为2.8×106人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有3盏灯.14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是抽取的70名学生英语口语的测试成绩.15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =5.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有10001个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2]; 解:原式=﹣12﹣×(﹣)=﹣12+=﹣.(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)]; 解:原式=5÷(9﹣10)=5÷(﹣1)=﹣5.(10分)(3)(﹣4)2×(﹣)+30÷(﹣6);解:原式=16×(﹣)﹣30÷6=﹣12﹣5=﹣17. (4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|. 解:原式=﹣1﹣××6=﹣1﹣1=﹣2. 18、解方程:(1)(x -3)+1=x -(x -2); 1213解:去分母,得3(x -3)+6=6x -2(x -2). 去括号,得3x -9+6=6x -2x +4. 移项、合并同类项,得-x =7. 方程两边同除以-1,得x =-7.(2)x +=6-. 2(x -3)3x -76解:去分母,得6x +4(x -3)=36-(x -7). 去括号,得6x +4x -12=36-x +7. 移项、合并同类项,得11x =55. 方程两边同除以11,得x =5. 19、化简:(1)(x 2-7x)-(3x 2-5-7x); 解:原式=-2x 2+5.(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y). 解:原式=(x -y)+2(x +y) =x -y +2x +2y =3x +y.20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?解:(1)原式=. 1120(2)可能出现的情况是b =0或a =b ,因为b 及a -b 均是除数,除数为0时,无意义,就使该程序无法操作.21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题.(1)这次活动一共调查了250名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于108度. 解:250-80-40-55=75(人),补图如图.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =AB =1.5x cm ,CF =CD =2x cm.1212所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.解:(1)依题意,得M -(5xy -3yz +2xz)=2xy +6yz -4xz , 所以M =2xy +6yz -4xz +(5xy -3yz +2xz)=7xy +3yz -2xz , 即多项式M 为7xy +3yz -2xz.(2)M +(5xy -3yz +2xz)=(7xy +3yz -2xz)+(5xy -3yz +2xz)=12xy , 所以原题目的正确答案为12xy.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC.(1)如图1.①若∠AOC =60°,则∠DOE 的度数为30°;②若∠AOC =α,则∠DOE 的度数为α(用含α的式子表示); 12(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.解:∠DOE =∠AOC.理由如下: 12因为∠BOC =180°-∠AOC ,OE 平分∠BOC ,所以∠COE =∠BOC 12=(180°-∠AOC) 12=90°-∠AOC. 12所以∠DOE =∠COD -∠COE=90°-(90°-∠AOC) 12=∠AOC. 1225、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元.(1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?解:(1)设第一次每支铅笔的进价是x 元,根据题意,得1 000x =1 000×(x +0.2)+300. 12解得x =0.8.答:第一次每支铅笔的进价是0.8元.(2)设第二次购进的铅笔出售y 支后打八折出售.1 000××(0.8+0.2)=500(元). 12由题意,得1 000×0.8×50%+1.5y +×1.5(1 000×-y)-500=560. 81012解得y =200.答:第二次购进的铅笔出售200支后打八折出售.。

2020-2021七年级上期末数学试卷(含答案)

2020-2021七年级上期末数学试卷(含答案)

2020-2021七年级(上)期末数学试卷一、选择题:每小题3分,共30分1.2015的相反数是()A.B.﹣2015 C.2015 D.﹣2.在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A.﹣4 B.0 C.2.5 D.|﹣3|3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×1064.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=25.已知∠A=65°,则∠A的补角等于()A.125° B.105° C.115°D.95°6.下列各式正确的是()A.﹣8+5=3 B.(﹣2)3=6 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 7.如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0 B.a+b<0 C.ab<0 D.b<a8.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.9.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定二、填空题:每小题4分,共24分11.如果“节约10%”记作+10%,那么“浪费6%”记作:.12.按四舍五入法则去近似值:2.086≈(精确到百分位).0.03445≈(精确到0.001)13.若﹣5x n y2与12x3y2m是同类项,则m= ,n= .14.已知5是关于x的方程3x﹣2a=7的解,则a的值为.15.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=.16.已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n= cm.三、解答题:每小题6分,共18分17.计算:﹣12014﹣6÷(﹣2)×|﹣|.18.如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.19.解方程:.四、解答题:每小题7分,共21分20.已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.21.列方程解应用题:七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,到雷锋纪念馆参观的人数有多少人?22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?五、解答题:每小题9分,共27分23.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).25.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为,经t秒后点P走过的路程为(用含t的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P 就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共30分1.2015的相反数是()A.B.﹣2015 C.2015 D.﹣【考点】相反数.【分析】利用相反数的定义即可得结果.【解答】解:2015的相反数是﹣2015,故选B.【点评】本题主要考查了相反数的定义,熟记定义是解答此题的关键.2.在﹣4,0,2.5,|﹣3|这四个数中,最大的数是()A.﹣4 B.0 C.2.5 D.|﹣3|【考点】有理数大小比较.【分析】|﹣3|=3,再去比较﹣4,0,2.5,3这四个数即可得出结论.【解答】解:∵|﹣3|=3,且有﹣4<0<2.5<3,∴最大的数是|﹣3|.故选D.【点评】本题考查了有理数大小的比较以及去绝对值符号,解题的关键是找出|﹣3|=3,再去进行比较.3.我国作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量就比获奖之前增长了180倍,达到2100000册.把2100000用科学记数法表示为()A.0.21×108B.21×106C.2.1×107D.2.1×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2100000=2.1×106,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.5.已知∠A=65°,则∠A的补角等于()A.125° B.105° C.115°D.95°【考点】余角和补角.【分析】根据互补两角之和为180°求解即可.【解答】解:∵∠A=65°,∴∠A的补角=180°﹣65°=115°.故选C.【点评】本题考查了补角的知识,属于基础题,掌握互补两角之和为180°是关键.6.下列各式正确的是()A.﹣8+5=3 B.(﹣2)3=6 C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b 【考点】去括号与添括号;有理数的加法;有理数的乘方.【分析】直接利用去括号法则以及有理数的乘方运算法则分别计算得出答案.【解答】解:A、﹣8+5=﹣3,故此选项错误;B、(﹣2)3=﹣8,故此选项错误;C、﹣(a﹣b)=﹣a+b,正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.【点评】此题主要考查了去括号法则以及有理数的乘方运算等知识,正确掌握运算法则是解题关键.7.如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0 B.a+b<0 C.ab<0 D.b<a【考点】数轴.【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选A.【点评】本题考查了有理数的大小比较,利用数轴确定a、b的大小即|a|与|b|的大小是解题关键.8.将如图所示的直角梯形绕直线l旋转一周,得到的立体图形是()A.B.C.D.【考点】点、线、面、体.【分析】根据直角梯形上下底不同得到旋转一周后上下底面圆的大小也不同,进而得到旋转一周后得到的几何体的形状.【解答】解:题中的图是一个直角梯形,上底短,下底长,绕对称轴旋转后上底形成的圆小于下底形成的圆,因此得到的立体图形应该是一个圆台.故选D.【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及对点、线、面、体之间关系的理解.9.一个长方形的周长是30厘米,若长方形的一边用字母x(厘米)表示,则该长方形的面积是()A.x(30﹣2x)平方厘米B.x(30﹣x)平方厘米C.x(15﹣x)平方厘米D.x(15+x)平方厘米【考点】列代数式.【分析】先长方形的周长是30厘米,长方形的一边用为x厘米,求出长方形的另一边的长,再根据长方形的面积公式即可得出答案.【解答】解:∵长方形的周长是30厘米,长方形的一边用为x厘米,∴长方形的另一边是(15﹣x)厘米,∴该长方形的面积是x(15﹣x)平方厘米;故选C.【点评】此题考查了列代数式,关键是根据长方形的周长表示出长方形的另一边的长,用到的知识点是长方形的周长公式和面积公式.10.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚16元B.赔16元C.不赚不赔D.无法确定【考点】一元一次方程的应用.【分析】此类题应算出实际赔了多少或赚了多少,然后再比较是赚还是赔,赔多少、赚多少,还应注意赔赚都是在原价的基础上.【解答】解:设赚了25%的衣服的售价x元,则(1+25%)x=120,解得x=96元,则实际赚了24元;设赔了25%的衣服的售价y元,则(1﹣25%)y=120,解得y=160元,则赔了160﹣120=40元;∵40>24;∴赔大于赚,在这次交易中,该商人是赔了40﹣24=16元.故选B.【点评】本题考查了一元一次方程的应用,注意赔赚都是在原价的基础上,故需分别求出两件衣服的原价,再比较.二、填空题:每小题4分,共24分11.如果“节约10%”记作+10%,那么“浪费6%”记作:﹣6% .【考点】正数和负数.【分析】明确“正”和“负”所表示的意义:节约用+号表示,则浪费一定用﹣表示,据此即可解决.【解答】解:因为节约10%记作:+10%,所以浪费6%记作:﹣6%.故答案为:﹣6%.【点评】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.按四舍五入法则去近似值:2.086≈ 2.09 (精确到百分位).0.03445≈0.034 (精确到0.001)【考点】近似数和有效数字.【分析】2.086精确到百分位需将千分位数字6四舍五入,0.03445精确到0.001需将小数点后第4位数字4四舍五入即可.【解答】解:2.086≈2.09(精确到百分位),0.03445≈0.034(精确到0.001),故答案为:2.09,0.034.【点评】本题主要考查近似数,四舍五入取近似数看清题目要求及精确的位数是关键.13.若﹣5x n y2与12x3y2m是同类项,则m= 1 ,n= 3 .【考点】同类项.【专题】常规题型.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同),列出方程,从而求出m,n的值.【解答】解:∵﹣5x n y2与12x3y2m是同类项,∴n=3,2=2m,解得:m=1,n=3.故答案为:1,3.【点评】本题考查同类项的知识,属于基础题目,关键是掌握同类项所含字母相同,且相同字母的指数相同,这两点是易混点,同学们要注意区分.14.已知5是关于x的方程3x﹣2a=7的解,则a的值为 4 .【考点】一元一次方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=5代入方程3x﹣2a=7,即可求出a的值.【解答】解:∵x=5是关于x的方程3x﹣2a=7的解,∴3×5﹣2a=7,解得:a=4.故答案为:4.【点评】本题的关键是理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.15.如图,AB,CD相交于点O,OE⊥AB,垂足为O,∠COE=44°,则∠AOD=134°.【考点】垂线;对顶角、邻补角.【分析】首先根据垂直定义可得∠EOB=90°,再根据角的和差关系可得∠COB=134°,再根据对顶角相等可得∠AOD的度数.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠COE=44°,∴∠COB=90°+44°=134°,∴∠AOD=134°,故答案为:134°.【点评】此题主要考查了垂线以及对顶角,关键是算出∠EOB的度数,掌握对顶角相等.16.已知线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,…,A n平分AA n﹣1,则AA n= ()n a cm.【考点】两点间的距离.【专题】计算题;规律型.【分析】根据题意,找出AA1,AA2,AA3与a的关系,再按照规律解答即可.【解答】解:∵线段AB=acm,A1平分AB,A2平分AA1,A3平分AA2,∴AA1=a,AA2=a,AA n=(\frac{1}{2})na.故答案为()n a.【点评】本题主要考查两点间的距离,熟练找出规律是解答本题的关键.三、解答题:每小题6分,共18分17.计算:﹣12014﹣6÷(﹣2)×|﹣|.【考点】有理数的混合运算.【专题】计算题.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣1+6××=﹣1+1=0.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.【考点】作图—复杂作图.【分析】(1)画线段AB,并找到中点P即可;(2)根据射线的性质画射线即可;(3)根据直线的性质画直线BC,根据射线的性质画射线AD.【解答】解:如图所示.【点评】此题主要考查了画射线,直线,线段,关键是掌握三种线得区别与联系.19.解方程:.【考点】解一元一次方程.【专题】计算题.【分析】方程去分母,去括号,移项合并,将y系数化为1,即可求出解.【解答】解:去分母,得3(y+1)=24﹣4(2y﹣1),去括号,得9y+3=24﹣8y+4,移项,得9y+8y=24+4﹣3,合并同类项,得17y=25,系数化为1,得y=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.四、解答题:每小题7分,共21分20.已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x 与y的值,代入计算即可求出值.【解答】解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.21.列方程解应用题:七、八年级学生分别到雷锋、毛泽东纪念馆参观,共590人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人,到雷锋纪念馆参观的人数有多少人?【考点】一元一次方程的应用.【分析】设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人.列方程求解即可.【解答】解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589﹣x)人,由题意得,2x+56=589﹣x,解得x=178.答:到雷锋纪念馆参观的人数有178人.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.22.某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):星期一二三四五六日增减/辆﹣1 +3 ﹣2 +4 +7 ﹣5 ﹣10(1)生产量最多的一天比生产量最少的一天多生产多少辆?(2)本周总生产量是多少?比原计划增加了还是减少了?增减数为多少?【考点】有理数的加减混合运算;正数和负数.【专题】应用题.【分析】(1)由表格找出生产量最多与最少的,相减即可得到结果;(2)根据题意列出算式,计算即可得到结果.【解答】解:(1)7﹣(﹣10)=17(辆);(2)100×7+(﹣1+3﹣2+4+7﹣5﹣10)=696(辆),答:(1)生产量最多的一天比生产量最少的一天多生产17辆;(2)本周总生产量是696辆,比原计划减少了4辆.【点评】此题考查了有理数的加减混合运算,以及正数与负数,弄清题意是解本题的关键.五、解答题:每小题9分,共27分23.某市出租车的收费标准是:行程不超过3千米起步价为10元,超过3千米后每千米增收1.8元.某乘客出租车x千米.(1)试用关于x的代数式分情况表示该乘客的付费.(2)如果该乘客坐了8千米,应付费多少元?(3)如果该乘客付费26.2元,他坐了多少千米?【考点】一元一次方程的应用;列代数式;代数式求值.【分析】(1)需要分类讨论:行程不超过3千米和行程超过3千米,根据两种收费标准进行计算;(2)把x=8代入(1)中相应的代数式进行求值即可;(3)设他坐了x千米,根据该乘客付费26.2元列出方程求解即可.【解答】解:(1)当行程不超过3千米即x≤3时时,收费10元;当行程超过3千米即x>3时,收费为:10+(x﹣3)×1.8=1.8x+4.6(元).(2)当x=8时,1.8x+4.6=1.8×8+4.6=19(元).答:乘客坐了8千米,应付费19元;(3)设他坐了x千米,由题意得:10+(x﹣3)×1.8=26.2,解得x=12.答:他乘坐了12千米.【点评】该题考查了一元一次方程的应用,列代数式及求代数式的值等问题;解决问题的关键是读懂题意,找到所求的量的等量关系,进而列出式子.24.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=35°(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=α(直接写出结果).【考点】角的计算;角平分线的定义.【分析】(1)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(2)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可;(3)求出∠AOC度数,求出∠MOC和∠NOC的度数,代入∠MON=∠MOC﹣∠NOC求出即可.【解答】解:(1)如图1,∵∠AOB=90°,∠BOC=60°,∴∠AOC=90°+60°=150°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=75°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=45°.(2)如图2,∵∠AOB=70°,∠BOC=60°,∴∠AOC=70°+60°=130°,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=∠AOC=65°,∠NOC=∠BOC=30°∴∠MON=∠MOC﹣∠NOC=65°﹣30°=35°.故答案为:35°.(3)如图3,∠MON=α,与β的大小无关.理由:∵∠AOB=α,∠BOC=β,∴∠AOC=α+β.∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MOC=∠AOC=(α+β),∠NOC=∠BOC=β,∴∠AON=∠AOC﹣∠NOC=α+β﹣β=α+β.∴∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α即∠MON=α.故答案为:α.【点评】本题考查了角平分线定义和角的有关计算,关键是求出∠AOC、∠MOC、∠NOC的度数和得出∠MON=∠MOC﹣∠NOC.25.如图,已知数轴上点A,B是数轴上的一点,AB=12,动点P 从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数为﹣4 ,经t秒后点P走过的路程为6t (用含t的代数式表示);(2)若在动点P运动的同时另一动点Q从点B也出发,并以每秒4个单位长度的速度沿数轴向左匀速运动,问经多少时间点P 就能追上点Q?(3)若M为AP的中点,N为BP的中点,点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)设出B点表示的数为x,由数轴上两点间的距离即可得到x的方程,解方程即可得出x,由路程=速度×时间可得出点P走过的路程;(2)设经t秒后P点追上Q点,根据题意可得,关于t的一元一次方程,解方程即可得出时间t;(3)由P点位置的不同分两种情况考虑,依据中点的定义,可以找到线段间的关系,从而能找出MN的长度.【解答】解:(1)设B点表示x,则有AB=8﹣x=12,解得x=﹣4.∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴经t秒后点P走过的路程为6t.故答案为:﹣4;6t.(2)设经t秒后P点追上Q点,根据题意得:6t﹣4t=12,解得t=6.答:经过6秒时间点P就能追上点Q.(3)不论P点运动到哪里,线段MN都等于6.分两种情况分析:①点P在线段AB上时,如图1,MN=PM+PN=PA+PB=(PA+PB)=AB=×12=6;②点P在线段AB的延长线上时,如图2,MN=PM﹣PN=PA﹣PB=(PA﹣PB)=AB=×12=6.综上可知,不论P运动到哪里,线段MN的长度都不变,都等于6.【点评】本题考查了数轴、中点依据解一元一次方程,解题的关键是:(1)找出关于x的一元一次方程;(2)找出关于时间t 的一元一次方程;(3)由中点定义找到线段间的关系.。

2020-2021七年级上学期期末考试卷

2020-2021七年级上学期期末考试卷

2020-2021七年级(上)期末考试卷(考试时间120分钟,总分150分)一、基础知识及应用(26+4分)1、用课文原句填空。

(10分)(l),青山郭外斜。

(孟浩然《过故人庄》)(2),小桥流水人家。

(马致远《天净沙•秋思》(3)《观沧海》中最能反映诗人博大襟怀的诗句是:,。

(4)《钱塘湖春行》的颔联是:,。

(5)《次北固山下》刻画破晓日出,江上春早,抒发诗人情怀的诗句是:,。

(6)《春》中运用联想,由春花写到秋实的一句话是:,。

2、把下列成语补充完整,并写出与下列成语有关的人物或作者。

本题(5)-(8)小题为附加题,学生可做可不做,做对加分。

(4+4分)⑴温故()新⑵老骥伏()⑶()安知非福⑷明()秋毫⑸卧()尝胆⑹负()请罪⑺三顾()庐⑻完()归赵3、为下列各题选择正确的选项。

(12分)⑴选出下列加点的字词注音完全正确的一项:()A、嫌恶(è)匿笑(nì)妥当(tuǒ)炫耀(xuàn)B、丫杈(chà)寒颤(zhàn)骸骨(hái)匀称(yún)C、陛下(bì)澄澈(chéng)分歧(zhī)静谧 (mì)D、瑟缩(sè)霎时(shà)踉跄(liàng)女娲(wō)⑵选出下列字形完全正确的一项:()A、苦心孤诣绝别宛转绵延B、豪不犹豫喧嚣妄弃嬉戏C、津津有味葱茏弥漫攥着D、更胜一筹花瓣潦亮爱慕⑶选出下列句子使用的修辞说法错误的一项:( )A、他每一天每一点钟都要换一套衣服。

(夸张)B、不信,请看那朵流星,是他们提着灯笼在走。

(比喻)C、这布是华丽的、精致的、无双的。

(反复)D、我要悄悄的开放花瓣儿,看着你工作。

(拟人)⑷选出作家作品常识有误的一项:()A、辛弃疾——宋朝著名爱国词人——《西江月》B、老舍——著名作家——《济南的冬天》C、安徒生——丹麦童话作家——《盲孩子和他的影子》D、沈复——清代文学家——《浮生六记闲情记趣》⑸选出与原文不一致的一项:()A、花下成千成百的蜜蜂嗡嗡地闹着,大小的蝴蝶飞来飞去。

2020-2021学年第一学期七年级期末数学试卷及答案

2020-2021学年第一学期七年级期末数学试卷及答案

2020-2021学年第一学期七年级期末评价数 学 试 卷题 号 一 二 三 总 分得 分一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.(-2)×3的结果是…………………………………………………………………………【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】A .5个B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOCC .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】①a -b >0; ②ab <0; ③11ab; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x 元,根据得分 评卷人 …………………………………装………………………………订………………………………线……………………………学校_________________ 班级_____________ 姓名________________ 准考证号______________七年级 数学题意,下面所列的方程正确的是……………………………【 】A .x ·30%×80%=312B .x ·30%=312×80%C .312×30%×80%=xD .x (1+30%)×80%=312 7..下列等式变形正确的是…………………………………………………………………【 】 A .如果s= 2ab,那么b=2sa B .如果12x=6,那么x=3C .如果x-3 =y-3,那么x-y =0D .如果mx= my ,那么x=y8.下列方程中,以x =-1为解的方程是………………………………………………………【】 A .13222xx +=-B .7(x -1)=0C .4x -7=5x +7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。

2020—2021学年度七年级上学期期末考试数学试卷附解答

2020—2021学年度七年级上学期期末考试数学试卷附解答

2020—2021学年度七年级上学期期末考试数学试卷一、单项选择题(每小题2分,共12分)1. 在﹣3,﹣1,1,3四个数中,比﹣2小的数是( ) A .﹣3B .﹣1C .1D .32. 下列说法中正确的是( )A .不是整式B .﹣3x 9y 的次数是10 C .4ab 与4xy 是同类项 D .是单项式3.下列叙述正确的是 ( ) A.若ac=bc ,则a=b B. 若则a=bC.若,则a=b D.若 则 4. 下列各式中,是一元一次方程的是( ) A .4x +2y =3B .y +5=0C .x 2=2x ﹣1 D .x ﹣45.下列图形中是正方体表面展开图的是( )6. 如图,若∠AOB=∠COD=900,则∠1与∠2的关系是 ( )A.互余B.互补C.相等D.无法确定二、填空题(每小题3分,共24分)7. 据亚洲开发银行统计数据,2010年至2020年,亚洲各经济体的基础设施如果要达到世界平均水平,至少需要8000000000000美元基建投资.将8000000000000用科学记数法表示应为 . 8. 任意写出一个含有字母a,b 的五次三项式,其中最高次项的系数为2:_______. 9.如果式子 互为相反数,那么x 的值为________.10.元代朱世杰所著的《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行150里,驽马先行一十二日,良马几何追及之?”请你回答良马____天可以追上驽马.11.把一个平角等分为16个角,则每一个角的度数为____________ (用度、分、秒表示). 12.将一副三角板如图放置,若∠AOD=200,则∠BOC=________0.13. 如图是按某种规律排列的多边形:第41个图形的颜色是 色.22a b =163x -=2x =-21)32-)x x +(与((12题图) (13题图) (14题图)14.长方形纸片ABCD,点E ,F 分别在边AB ,CD 上,连接EF ,将∠BEF 对折,点B 落在直线EF 上的点 处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的 处,得折痕EN,则∠N EM 的度数是________0.三、解答题(每小题5分,共20分) 15. 计算:16. 先化简再求值:(b +3a )+2(3﹣5a )﹣(6﹣2b ),其中:a =﹣1,b =2.17. 解方程:18. 已知,线段AB=60cm ,在直线AB 上画线段BC,使BC=20cm ,点D 是AB 中点,点E 是BC 的中点,求DE 的长.四.解答题(每小题7分,共28分)19. 如图,货轮O 航行过程中,在它的北偏东600方向上,与之相距30海里处发现灯塔A,同时在它的南偏东300方向上,与之相距20海里处发现货轮B ,在它的西南方向上发现货轮C ,按下列要求画图并回答问题: (1)画出线段OB ; (2)画出射线OC ;(3)连接AB 交OE 与点D ; (4)写出图中∠AOD 的所有余角.'A 122233x x x -+-=-'B20.已知:, .(1)若 ,求a+b 值;(2)若 ,求21. 邮递员骑车从邮局出发,先向西骑行3km 到达A 村,继续向西骑行2km 到达B 村,然后向东骑行7km 到达C 村,再继续向东骑行3km 到达D 村,最后骑回邮局. (1)C 村离A 村有多远?(2)邮递员一共骑行了多少千米?22.a 、b 、c 在数轴上的位置如图,则:(1)用“>、<、=”填空:a 0,b 0,c 0. (2)用“>、<、=”填空:﹣a 0,a ﹣b 0,c ﹣a 0. (3)化简:|﹣a |﹣|a ﹣b |+|c ﹣a |.五、解答题(每小题8分,共16分)23.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名? 问:(1)生产螺钉的人数+生产螺母的人数=_________; (2)螺母数=螺钉数×_________;(3)若分配x 名工人生产螺母,分配生产螺钉的工人有_________名,列出方程解应用题.3a =5b =0ab >0ab <2(2)a b +-24. 用“☆”定义一种新运算:对于任意有理数a 和b ,规定a☆b=ab 2+2ab+a .如:1☆3=1×32+2×1×3+1=16. (1)求(﹣2)☆3的值;(2)若(☆3)☆(﹣)=8,求a 的值.六、解答题(每小题10分,共20分)25. 公园门票价格规定如下表:某校初一(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,则一共应付1240元,问: (1)两班各有多少学生?(2)如果两班联合起来,作为一个团体购票,可省多少钱?(3)如果初一(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱?26.已知O 是直线AB 上一点,∠COD 是直角,OE 平分∠BOC.(1)如图①所示,若∠AOC=600,则∠DOE 的度数为_______;若∠AOC=ɑ,则∠DOE 的度数为_______________(用含的式子表示);(2)将图①中的∠DOC 绕点O 顺时针旋转至②的位置,试探究∠DOE 和∠AOC 度数之间的关系,并说明理由.购票张数 1~50张 51~100张 100张以上 每张票的价格13元11元9元参考答案及评分标准(请老师在阅卷前自做一遍答案)一、单项选择题(每小题2分,共12分) 1.A 2.B 3.B 4.B 5.D 6.B 二、填空题(每小题3分,共24分)7.8×10128.答案不唯一,正确即可 9.8; 10.20; 11.11°15′ 12.160°; 13.黑;14.90°三、解答题(每小题5分,共20分) 15. 解:原式=41-61-64916-⨯-------2分 =41-61-49------------3分 =38-----------------5分16. 解:原式=3b ﹣7a ………3分当a=﹣1,,b=2时,3b ﹣7a =13………5分17. 解:原方程可化为:)2((24)1(36+-=--x x x ------------2分 424336--=+-x x x ----------------4分----------………5分35-=x 53-=x18. 解:.………5分(写对一种情况给3分) 四、解答题(每小题7分,共28分) 19.解:(1)画图正确------2分 (2)画图正确-------4分 (3)画图正确-------5分 (4)∠AON------6分 ∠BOD----------7分20.解:53==b a , ∴53±=±=b a ,-------3分(1) ab>0时,a 和b 同号当a=3,b=5时 a+b=3+5=8-------------4分 当a=-3,b=-5时a+b=-3-5=-8----------5分 (2) ab<0时,a 和b 异号当a=3,b=-5时 ------6分 a=-3,b=5时 ----7分2-53-2)-b a 22=+=+)((16)253()222=--=-+b a (21.解:(1)用原点表示邮局,向东为正,向西为负,所以(-2)+7=5,即C村离A村5千米; (4)分(2)3+2+7+3+5=20.所以邮递员一共骑行了20千米.………7分22.(1)<,<,>;(2)>,<,>;(第(1)、(2)小问各2分,第三小问3分)…….………………7分五、解答题(每小题8分,共16分)23. 解:(1)22;…………1分(2)2;…………2分(3)(22-x)…………3分设分配x名工人生产螺母,则(22-x)人生产螺钉,由题意得2000x=2×1200(22-x)………5分解得:x=12,………7分则22-x=10,………8分答:应安排生产螺钉和螺母的工人10名,12名.24解:(1)(﹣2)☆3=﹣2×32+2×(﹣2)×3+(﹣2)=﹣18﹣12﹣2=﹣32………3分(2)☆3=×32+2××3+=8(a+1)………5分8(a+1)☆(﹣)=8(a+1)×(﹣)2+2×8(a+1)×(﹣)+8(a+1)=8解得:a=3………8分七年级数学答案第3页(共4页)六、解答题(每小题10分,共20分)25.解:(1)设七年级(1)班有x个学生,则(2)班有(104-x)个学生---1分根据题意有:13x+11(104-x)=1240-----------------------3分解得:x=48 -----------------------4分104-x=104-48=56-------------------------------5分答:七年级(1)班有48个学生,七年级(2)班有56个学生。

七年级上册数学《期末检测试题》带答案

七年级上册数学《期末检测试题》带答案

2020-2021学年第一学期期末测试人教版七年级数学试题一、单项选择题(每小题3分,共18分)1.在7-,0,3-,9100+,0.27-中,负数有( ) A. 0个B. 1个C. 2个D. 3个2.4的绝对值为( ) A ±4B. 4C. ﹣4D. 23.下列各式成立的是( ) A. 34=3×4B. ﹣62=36C. (13)3=19D. (﹣14)2=1164.下列每组单项式中是同类项的是( ) A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C 12x -与﹣2xy D. xy 与yz5.根据等式性质,下列结论正确的是( ) A. 如果22a b -=,那么=-a b B. 如果22a b -=-,那么=-a b C. 如果22a b =-,那么a b = D. 如果122a b =,那么a b = 6.下列说法中不正确的是( ) ①过两点有且只有一条直线 ②连接两点的线段叫两点的距离 ③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点 A. ①B. ②C. ③D. ④二、填空题(每小题4分,共32分)7.单项式225xy -的系数是___________.8.在式子:222211,,,,15,,61,32a x xy x xy ab a x y ----+-+中,其中多项式有____个. 9.A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的数为______. 10.已知,|a ﹣2|+|b +3|=0,则b a =_____.11.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为_____. 12.已知1x =是关于x的方程(2)a x a x +=+的解,则a 的值是____.13.已知 a ,b 在数轴上的位置如图所示,化简:b a a -+=____________.14.如图,已知50AOB ∠=︒,90AOD ∠=︒,OC 平分AOB ∠,则COD ∠的度数是____.三、解答题(每小题5分,共20分)15.计算:21(8)(6)2⎛⎫-⨯-+- ⎪⎝⎭16.解方程:7132x x-+-=1. 17.先化简后求值:M=(﹣2x 2+x ﹣4)﹣(﹣2x 2﹣112x +),其中x=2. 18.如图,已知85,35AOC BOD BOC ∠=∠=︒∠=︒,求AOD∠的度数.四、解答题(每小题7分,共14分)19.如图,线段10AB =,点E ,点F 分别是线段AC 和线段BC 的中点,求线段EF 的长.20.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3公顷. (1)该村三种农作物种植面积一共是多少公顷? (2)水稻种植面积比玉米种植面积大多少公顷?五、解答题(每小题8分,共16分)21.如图,直线AB,CD交于点O,且∠BOC=80°,OE平分∠BOC,OF为OE的反向延长线.(1)∠2= , ∠3= ;(2)OF平分∠AOD吗?为什么?22.某校七年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?六、解答题(每小题10分,共计20分)23.报社需要在40分钟内将一篇紧急宣传文稿输入电脑.已知独立完成此项任务,小王需要50分钟,小李只需要30分钟.小王独自输入了30分钟后,因为急于完成任务,请求小李帮助他(求助时间忽略不计),他们能在要求的时间内完成任务吗?请说明理由.24.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= ______ ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.答案与解析一、单项选择题(每小题3分,共18分)1.在7-,0,3-,9100+,0.27-中,负数有( ) A. 0个 B. 1个C. 2个D. 3个【答案】D 【解析】 【分析】小于0的数为负数,根据这个特点判断可得 【详解】小于0的数为负数其中,-7、-3和-0.27是小于0的数,为负数 故选:D【点睛】本题考查负数的判定,需要注意,若含有字母,不能仅根据字母的符号判定正负,需要根据负数的定义来判定.2.4的绝对值为( ) A. ±4 B. 4C. ﹣4D. 2【答案】B 【解析】 【分析】根据绝对值的求法求4的绝对值,可得答案. 【详解】|4|=4. 故选:B .【点睛】本题考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 3.下列各式成立的是( ) A. 34=3×4 B. ﹣62=36C. (13)3=19D. (﹣14)2=116【答案】D 【解析】 【分析】n 个相同因数的积的运算叫做乘方.【详解】解:34=3×3×3×3,故A 错误;﹣62=-36,故B 错误;(13)3=127,故C 错误;(﹣14)2=116,故D 正确,故选择D.【点睛】本题考查了有理数乘方的定义. 4.下列每组单项式中是同类项的是( ) A. 2xy 与﹣13yx B. 3x 2y 与﹣2xy 2 C. 12x -与﹣2xy D. xy 与yz【答案】A 【解析】 【分析】根据同类项的概念(所含字母相同,并且相同字母的指数也相同)进行判断. 【详解】A 选项:2xy 与﹣13yx 含字母相同,并且相同字母的指数也相同,所以是同类项,故是正确的; B 选项:3x 2y 与-2xy 2所含字母相同,但相同字母的指数不同,所以不是同类项,故是错误的; C 选项:-12x 与﹣2xy 所含字母不同,所以不是同类项,故是错误的; D 选项:xy 与yz 所含字母不同,所以不是同类项,故是错误的; 故选A .【点睛】考查同类项,掌握同类项的定义:所含字母相同,并且相同字母的指数也相同是解题的关键. 5.根据等式性质,下列结论正确的是( ) A. 如果22a b -=,那么=-a b B. 如果22a b -=-,那么=-a b C. 如果22a b =-,那么a b = D. 如果122a b =,那么a b = 【答案】A 【解析】 【分析】根据等式的性质,可得答案. 【详解】A.两边都除以-2,故A 正确; B.左边加2,右边加-2,故B 错误; C.左边除以2,右边加2,故C 错误; D.左边除以2,右边乘以2,故D 错误; 故选A .【点睛】本题考查了等式的性质,熟记等式的性质是解题的关键.6.下列说法中不正确的是( ) ①过两点有且只有一条直线 ②连接两点的线段叫两点的距离 ③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点 A. ① B. ②C. ③D. ④【答案】B 【解析】 【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可. 【详解】①过两点有且只有一条直线,正确; ②连接两点的线段的长度叫两点间的距离,错误 ③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确; 故选B .二、填空题(每小题4分,共32分)7.单项式225xy -的系数是___________.【答案】25- 【解析】 【分析】单项式中的数字因式叫做单项式的系数,据此即可得答案.【详解】∵单项式225xy -中的数字因式是25-,∴单项式225xy -的系数是25-,故答案为:25-【点睛】本题考查单项式系数的定义,单项式中的数字因式叫做单项式的系数;熟练掌握定义是解题关键. 8.在式子:222211,,,,15,,61,32a x xy x xy ab a x y ----+-+中,其中多项式有____个.【答案】3 【解析】 【分析】几个单项式的和为多项式,根据这个定义判定.【详解】2a ,1x y +,分母有字母,不是单项式,也不是多项式;3a ,12-,x -,是单项式,不是多项式;22215,61,x xy xy a b --+-都是单项式相加得到,是多项式故答案为:3【点睛】本题考查多项式的概念,在判定中需要注意,当分母中包含字母时,这个式子就既不是单项式也不是多项式了.9.A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的数为______. 【答案】2. 【解析】解:∵A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,∴﹣1+3=2,即点B 所表示的数是2,故答案为2.点睛:本题考查了数轴和有理数的应用,关键是能根据题意得出算式. 10.已知,|a ﹣2|+|b +3|=0,则b a =_____. 【答案】9. 【解析】 【分析】根据绝对值的非负性可求出a 、b 的值,再将它们代b a 中求解即可. 【详解】解:∵|a ﹣2|+|b +3|=0 ∴a ﹣2=0,b +3=0 ∴a =2,b =﹣3 则b a =(﹣3)2=9. 故答案是:9【点睛】此题考查了绝对值的非负性质,首先根据绝对值的非负性质确定待定的字母的取值,然后代入所求代数式计算即可解决问题.11.根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为_____.【答案】4.4×109 【解析】 【分析】根据科学记数法的定义即可得.【详解】科学记数法:将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法则94400000000 4.410=⨯ 故答案为:94.410⨯.【点睛】本题考查了科学记数法的定义,熟记定义是解题关键. 12.已知1x =是关于x 的方程(2)a x a x +=+的解,则a 的值是____. 【答案】12【解析】 【分析】将x=1代入方程得到关于a 的方程,解方程得到a 的值.【详解】将x=1代入方程得:(12)1a a +=+,化简得:3a =a +1解得:a =12 故答案为:12【点睛】本题考查解一元一次方程,解题关键是将x=1代入方程,将方程转化为a 的一元一次方程. 13.已知 a ,b 在数轴上的位置如图所示,化简:b a a -+=____________.【答案】2a-b. 【解析】 【分析】根据数轴可得,a >0,b <0,且a b <【详解】由数轴可知a >0,b <0,且a b <,因此可知b-a <0, 根据绝对值的性质可知:b a a -+=a-b+a=2a-b.故答案为2a-b.【点睛】本题考查了学生数轴和两点的距离绝对值表示方法,掌握通过数轴获取信息是解决此题的关键. 14.如图,已知50AOB ∠=︒,90AOD ∠=︒,OC 平分AOB ∠,则COD ∠的度数是____.【答案】65︒ 【解析】 【分析】先求出∠BOD 的大小,再根据角平分线,求得∠COB 的大小,相加即为∠COD. 【详解】∵∠AOD=90°,∠AOB=50° ∴∠BOD=40° ∵OC 平分∠AOB ∴∠COB=25° ∴∠COD=25°+40°=65° 故答案为:65°【点睛】本题考查角度的简单推导,解题关键是将要求解的角度转化为∠BOC 和∠BOD ,再分别求解这两个角即可.三、解答题(每小题5分,共20分)15.计算:21(8)(6)2⎛⎫-⨯-+- ⎪⎝⎭【答案】40 【解析】 【分析】先算乘法和平方运算,再算加法运算 【详解】原式43640=+=【点睛】本题考查有理数的混合运算,需要注意,在计算过程中,若数字为负数,则我们需要带符号计算. 16.解方程:7132x x-+-=1.【答案】x =﹣23. 【解析】 【分析】方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【详解】去分母得,2(x-7)-3(1+x )=6, 去括号得,2x-14-3-3x=6, 移项得,2x-3x=6+14+3, 合并同类项得,-x=23, 系数化为1得,x=-23.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 17.先化简后求值:M=(﹣2x 2+x ﹣4)﹣(﹣2x 2﹣112x +),其中x=2. 【答案】32x ﹣5;-2. 【解析】 【分析】对M 先去括号再合并同类项,最后代入x=2即可. 【详解】解:M=﹣2x 2+x ﹣4+2x 2+12x ﹣1=32x ﹣5, 当x=2时,原式=32×2﹣5=3﹣5=﹣2. 【点睛】本题考查了整式中的先化简再求值.18.如图,已知85,35AOC BOD BOC ∠=∠=︒∠=︒,求AOD ∠的度数.【答案】135°. 【解析】 【分析】先求解出∠COD 的大小,然后用∠COD+∠AOC 可得. 【详解】85,35AOC BOD BOC ︒︒∠=∠=∠=853550COD BOD BOC ︒︒︒∴∠=∠-∠=-=8550135AOD AOC COD ︒︒︒∴∠=∠+∠=+=【点睛】本题考查角度的简单推导,在解题过程中,若我们直接推导角度有困难,可以利用方程思想,设未知角度为未知数,转化为求解方程的形式.四、解答题(每小题7分,共14分)19.如图,线段10AB =,点E ,点F 分别是线段AC 和线段BC 的中点,求线段EF 的长.【答案】5【解析】【分析】根据点E 、F 分别是线段的中点,可推导得到CE+CF=EF ,从而得到EF 与AB 的关系,进而求得EF 的长. 【详解】点E ,点F 分别是线段AC 和线段BC 的中点1122CE AC CF BC ∴== CE CF EF +=1111()2222EF AC BC AC BC AB ∴=+=+= 10AB = 11052EF ∴=⨯= 【点睛】本题考查线段长度的求解,关于中点问题,我们常如本题这样,利用整体思想,求得线段之间的关系进而推导长度. 20.某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a 公顷,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3公顷. (1)该村三种农作物种植面积一共是多少公顷? (2)水稻种植面积比玉米种植面积大多少公顷? 【答案】(1)7a -3;(2)2a +3 【解析】 【分析】 (1)根据题意,分别表示出小麦、水稻和玉米的面积,相加可得; (2)水稻面积减玉米面积可得.【详解】(1)根据题意,小麦a 公顷,水稻4a 公顷,玉米(2a-3)公顷∴总面积为:42373a a a a ++-=-(2)4(23)23--=+a a a【点睛】本题考查用字母表示实际量,解题关键是先根据题干,用字母表示出所有的量,然后再进行加减等运算.五、解答题(每小题8分,共16分)21.如图,直线AB ,CD 交于点O ,且∠BOC =80°,OE 平分∠BOC ,OF 为OE 的反向延长线.(1)∠2= , ∠3= ;(2)OF 平分∠AOD 吗?什么?【答案】(1)∠2=100°,∠3=40°.(2)OF 平分∠AOD . 【解析】【分析】(1)根据邻补角和角平分线的定义进行计算即可;(2)分别计算∠AOD 和∠3的大小,然后进行判断即可.【详解】解:(1) 由题意可知:2+180BOC ∠∠= ,且∠BOC =80°,∴∠2=100°,∵OE 平分∠BOC ∴11=402BOC ∠∠= ∴∠3=180°-∠1-∠2=40°. (2) OF 平分∠AOD .理由:∵∠AOD =180°-∠2=180°-100°=80°,∴∠3=12∠AOD 所以OF 平分∠AOD .【点睛】掌握邻补角的定义和角平分线的定义是本题的解题关键.22.某校七年级社会实践小组去商店调查商品销售情况,了解到该商店以每条80元的价格购进了某品牌牛仔裤50条,并以每条120元的价格销售了40条.商店准备采取促销措施,将剩下的牛仔裤降价销售.请你帮商店计算一下,每条牛仔裤降价多少元时,销售完这批牛仔裤正好达到盈利45%的预期目标?【答案】每条牛仔裤降价20元时,销售完这批牛仔裤正好达到盈利45%的预期目标.【解析】【分析】根据题干,等量关系式为:降价前的销售额+降价后的销售额=总成本+盈利,根据等量关系式列写方程即可.【详解】设每条牛仔裤降价x 元时满足题意,根据题意得:12040(120)(5040)8050(145%)x ⨯+-⋅-=⨯⨯+解得:20x .答:每条牛仔裤降价20元时,销售完这批牛仔裤正好达到盈利45%的预期目标.【点睛】本题考查一元一次方程的应用,解题关键是根据题干找出对应的等量关系式,然后设未知数,列写方程并解答.六、解答题(每小题10分,共计20分)23.报社需要在40分钟内将一篇紧急宣传文稿输入电脑.已知独立完成此项任务,小王需要50分钟,小李只需要30分钟.小王独自输入了30分钟后,因为急于完成任务,请求小李帮助他(求助时间忽略不计),他们能在要求的时间内完成任务吗?请说明理由.【答案】他们能在要求的时间内完成任务,理由见解析.【解析】【分析】设还需x 分钟完成任务,设任务量为单位1,根据题干,等量关系式为:小王前30分钟和后x 分钟完成的工作量+小李x 分钟完成的工作量=1,根据等量关系式列写方程.【详解】他们能在要求的时间内完成任务.理由如下:设小李加入后输入了x 分钟完成任务, 根据题意得:3015030x x ++=, 解这个方程得:7.5x =,307.537.5+=(分钟)所以从小王开始输入到任务完成共用时37.5分钟,37.5分钟<40分钟,∴他们能在要求的时间内完成任务.答:他们能在要求的时间内完成任务【点睛】本题考查一元一次方程中的工程问题,此类题型,我们通常设工作总量为“单位1”24.点O为直线AB上一点,在直线AB上侧任作一个∠COD,使得∠COD=90°.(1)如图1,过点O作射线OE,当OE恰好为∠AOD的角平分线时,请直接写出∠BOD与∠COE之间的倍数关系,即∠BOD= ______ ∠COE(填一个数字);(2)如图2,过点O作射线OE,当OC恰好为∠AOE的角平分线时,另作射线OF,使得OF平分∠COD,求∠FOB+∠EOC的度数;(3)在(2)的条件下,若∠EOC=3∠EOF,求∠AOE的度数.【答案】(1)2;(2) 135°;(3)67.5°.【解析】试题分析:(1)由题意可得∠AOC=90°-∠BOD;∠AOE=12∠AOD;∠AOD=180°-∠BOD;把上述三个关系式代入∠COE=∠AOE-∠AOC中化简即可得到∠COE=12∠BOD,从而可得出∠BOD=2∠COE;(2)由OC为∠AOE的角平分线,OF平分∠COD可得:∠AOC=∠COE,∠DOF=∠COF=45°;结合∠BOD+∠AOC=90°,∠EOC+∠FOB=∠EOC+∠FOD+∠BOD即可求得∠EOC+∠FOB的度数;(3)如备用图,设∠EOF=x,则∠EOC=3x,结合(2)可得∠AOE=2∠EOC=6x,∠COF=4x=45°,由此即可解得∠AOE=67.5°.试题解析:(1)∠BOD=2∠COE;理由如下:∵∠COD=90°.∴∠BOD+∠AOC=90°,∵OE平分∠AOD,∴∠AOE=∠DOE=12∠AOD,又∵∠BOD=180°-∠AOD,∴∠COE=∠AOE-∠AOC=12∠AOD-(90°-∠BOD)=12(180°-∠BOD)-90°+∠BOD=12∠BOD,∴∠BOD=2∠COE;(2)∵OC为∠AOE的角平分线,OF平分∠COD,∴∠AOC=∠COE,∠COF=∠DOF=45°,∴∠FOB+∠EOC=∠DOF+∠BOD+∠AOC=45°+90°=135°;(3)如备用图:∵∠EOC=3∠EOF,∴设∠EOF=x,则∠EOC=3x,∴∠COF=4x,∴结合(2)可得:∠AOE=2∠COE=6x,∠COF=4x=45°,解得:x=11.25°,∴∠AOE=6×11.25°=67.5°.点睛:(1)解第2小题时,把∠FOB化为∠FOD+∠BOD来表达,∠EOC化为∠AOC来表达,这样就可利用∠AOC+∠BOD=90°,∠FOD=45°来求得所求量;(2)解第3小题时,要记住是在第2小题的条件下来解题,这样设∠EOF=x,就可由本问的条件结合第2小题的条件得到∠COF=4x=45°,解得x,再由∠AOE=2∠COE=6x就可求得∠AOE的度数.。

2020-2021学年四川省绵阳市七年级上期末数学试卷

2020-2021学年四川省绵阳市七年级上期末数学试卷

2020-2021学年四川省绵阳市七年级上期末数学试卷
一.选择题(共12小题,满分36分)
1.(3分)如果a表示有理数,那么下列说法中正确的是()
A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等
C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等
【解答】解:A、+a和﹣(﹣a)互为相反数;错误,二者相等;
B、+a和﹣a一定不相等;错误,当a=0时二者相等;
C、﹣a一定是负数;错误,当a=0时不符合;
D、﹣(+a)和+(﹣a)一定相等;正确.
故选:D.
2.(3分)以下几何图形中,表示立体图形的是()
A.B.
C.D.
【解答】解:根据立体图形的概念可知:只有A是立体图形.
故选:A.
3.(3分)“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()
A.0.18×107B.1.8×105C.1.8×106D.18×105
【解答】解:1800000这个数用科学记数法可以表示为1.8×106,
故选:C.
4.(3分)下列计算正确的是()
A.3a2﹣2a2=1B.2m2+m2=3m4
C.﹣ab2+2a2b=a2b D.3m2﹣4m2=﹣m2
【解答】解:3a2﹣2a2=a2,故选项A不合题意;
2m2+m2=3m2,故选项B不合题意;
﹣ab2与2a2b不是同类项,所以不能合并,故选项C不合题意;
第 1 页共9 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档