函数极值的求法(1)

合集下载

函数极值求法及应用

函数极值求法及应用

函数极值求法及应用本文将介绍函数极值求法及其应用。

一、函数极值的定义函数极值是指函数在某一区间内的最大值和最小值。

在函数的导数为0或不存在的点处,函数可能取得极值。

二、求函数极值的方法1. 导数法首先,将函数y=f(x)对x求导得到其导函数y'=f'(x)。

然后,解以下方程组:y'=0或y'不存在求得的解即为函数的极值点。

例如,对于函数y=x^2-2x+1,其导函数y'=2x-2。

令y'=0,得到x=1。

此时,函数取得极小值y=0。

注意:在求解时需要注意导数不存在的情况,例如绝对值函数。

2. 二次函数法对于二次函数y=ax^2+bx+c,当a>0时,该函数的最小值为c-b^2/(4a),当a<0时,该函数的最大值也为c-b^2/(4a)。

例如,对于函数y=x^2-2x+1,其a=1,b=-2,c=1。

因为a>0,所以y的最小值为1-(-2)^2/(4×1)=0。

3. 边界法当函数在一定区间内连续时,其取得极值的点只可能在该区间的边界处或导数不存在的点处。

因此,我们只需要求出函数在该区间的两个端点处的函数值,再比较这两个值和导数不存在的值的大小即可确定极值点。

例如,对于函数y=x^3-3x,当x∈[-1,2]时,极值点只可能在x=-1、x=2或导数不存在的点处。

函数在端点处的值为y(-1)=-2和y(2)=2,导数不存在的点为x=0。

因此,函数在x=0处取得极大值y=0,而在x=-1处取得极小值y=-4。

三、应用函数极值可以在优化问题中起到重要作用。

例如,在最小化成本的问题中,需要确定产量x的大小使得成本最小化。

假设某企业的生产成本函数为y=3x^2-4x+8,其中x为产量,y为成本。

该问题可以转化为求函数y的最小值。

通过求出函数的导数为0的点,我们发现函数在x=2/3处取得最小值y=6.67。

因此,该企业应该保持产量在2/3时,成本会最小。

求极值的方法

求极值的方法

求极值的方法在数学中,求极值是一个非常重要的问题,它涉及到函数的最大值和最小值,对于优化问题和最优化理论具有重要意义。

本文将介绍几种常见的求极值的方法,希望能够帮助读者更好地理解和掌握这一数学问题。

首先,我们来介绍一种常见的求极值的方法——导数法。

对于一个函数f(x),如果要求其极值,可以先求出它的导数f'(x),然后令f'(x)=0,解出方程得到临界点,再通过一阶导数的符号变化来判断极值的位置。

如果f'(x)>0,那么f(x)在x点附近取得极小值;如果f'(x)<0,那么f(x)在x点附近取得极大值。

这种方法适用于绝大多数函数,而且求导的过程相对简单,因此被广泛应用。

其次,我们来介绍一种更为直观的求极值的方法——二阶导数法。

对于一个函数f(x),如果要求其极值,可以先求出它的一阶导数f'(x),然后再求出f'(x)的导数f''(x),即二阶导数。

如果f''(x)>0,那么f(x)在x点附近取得极小值;如果f''(x)<0,那么f(x)在x点附近取得极大值。

这种方法相对于导数法来说,更加直观和简单,适用于一些特定类型的函数。

除了导数法和二阶导数法,还有一种常见的求极值的方法——拉格朗日乘数法。

这种方法主要用于带有约束条件的极值问题,通过引入拉格朗日乘子来构造新的函数,然后求出新函数的驻点,最终得到极值点。

这种方法在一些优化问题中有着重要的应用,能够有效地解决带有约束条件的极值问题。

另外,还有一些特殊函数的极值求解方法,比如三角函数、指数函数、对数函数等。

针对不同类型的函数,可以采用不同的方法来求极值,比如利用周期性、对称性、单调性等特点来简化求解过程。

总的来说,求极值是数学中一个重要且基础的问题,掌握好求极值的方法对于理解和应用数学知识都具有重要意义。

不同的方法适用于不同类型的函数,读者可以根据具体情况选择合适的方法来求解极值问题。

求极值与最值的方法

求极值与最值的方法
求函数极值的方法
极值定义:设函数 f ( x) 在 x0 的某邻域内有定义,且对此邻域内任一点
x ( x x0 ) ,均有 f ( x) f ( x0 ) ,则称 f ( x0 ) 是函数 f ( x) 的一个极大值;同样如果
对此邻域内任一点 x ( x x0 ) ,均有 f ( x) f ( x0 ) ,则称 f ( x0 ) 是函数 f ( x) 的一个 极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点 x0 ,称 为极值点。
例 3 求函数 f ( x) 5 x 4 的极值。 解 令 f ( x) 0 , 得 驻 点 x 0 , 且 f (0) f (0) f (0) 0 , 但
f 4 (0) 120 >0 所以有极小值 0.
2.2 利用拉格朗日乘数法求条件极值
“乘数法”所得到的点只是可能是极值点,到底是否是极值点要依据拉格朗 日函数 F 的二阶微分符号来判断。 例4 求函数 u x m y n z p 在条件 x y z a (m 0, n 0, a 0) 下的极值。
m m m d 2 F ( x, y , z ) p = 2 ( d x ) 2 2 ( d y ) 2 2 ( d z ) y z x
P
故 p 为 v 即 u 的极大值点,此时 up
m m n n p p a m n p (m n p) m n p
第 1 页 (共 12 页)
求极值方法: (1)求一阶导数,找出导数值为 0 的点(驻点) ,导数值不存在的点,及端 点; (2)判断上述各点是否极值点 例 1 求函数 f ( x) x 3 6 x 2 9 x 的极值。
解法一 : 因为 f ( x) x 3 6 x 2 9 x 的定义域为 (, ) , 且 f ' ( x ) 3x 2 12 x 9 3( x 1)( x 3) , 令 f ' ( x ) 0 ,得驻点 x1 1 , x2 3 ; 在 (,1) 内, f ' ( x ) 0 , 在 (1,3) 内, f ' ( x ) 0 , f (1) 4 为函数 f ( x) 的极大值。 解法二: 因为 f ( x) x 3 6 x 2 9 x 的定义域为 (, ) ,

求极值的方法与技巧

求极值的方法与技巧

求极值的方法与技巧
一、求函数极值的最基本方法
1、用微积分中的导数(Derivatives)法。

即要求函数极值问题,可
以将其转化为求解极值点,也就是求求函数的导函数为0时,函数的值最
大最小的解,即求函数的极值点。

2、用泰勒展开(Taylor Series)法。

这是一种利用因式分解法求函
数极值。

如果一个函数f(x)可以被表示为f(x),则它就可以按一定形式
分解成:f(x)=a₁+a₂x+a₃x2+a₄x3....,在这种分解的基础上,再算出
f'(x)=a₂+2a₃x+3a₄x2....,将f'(x)的值设置为0,即可求出此时函数f(x)的极值点。

3、用函数增减(Functional Increasing and Decreasing)法:研
究函数的单调增减性,通过对函数的单调增减性来判断函数的极大值和极
小值。

根据单调性原理,函数在单调递增的区间或单调递减的区间内,极值
只有一个,该函数极值即为极大值或极小值。

当函数在同一区间内的一些
点发生折点时,这个折点对应的函数值,即为函数在整个区间的极值,此
时的折点为函数的极值点。

二、极值点的确定方法
1、求解函数的单调性。

单调性主要是指函数在其中一区间上的曲线
轨迹是单调递增或者是单调递减的。

当函数在区间内的特定点发生折点时,这个折点就是函数的极值点。

2、求解导函数的。

高等数学求极值的方法

高等数学求极值的方法

高等数学求极值的方法求解函数的极值是高等数学中的一个重要内容,可以通过求导和利用导数的性质来进行。

下面将详细介绍求极值的方法。

一、求解函数极值常用的方法有以下几种:1. 初等函数判断法:对于初等函数,可以通过观察函数的定义域、性质和图像特点来判断极值点的存在。

比如对于多项式函数,一阶导数为零时,可以判断函数是否有极值点。

2. 导数判别法:求解函数极值最常用的方法是导数判别法,即利用函数的导数来判断极值点的存在和类型。

3. 高阶导数法:当一阶导数判断不出结果时,可以使用高阶导数进行判别,求解函数的极值。

4. 参数化法:对于含参数的函数,可以通过参数化的方法来求解极值。

二、导数判别法的具体步骤:1. 求导数:对给定的函数进行求导,得到一阶导数和二阶导数。

2. 导函数为零的点:将一阶导数等于零的点求出,并分别判断这些点是否为极值点。

一阶导数等于零的点称为驻点,而极值点必定是驻点。

(1) 当驻点是极大值点时,其对应的二阶导数小于零。

(2) 当驻点是极小值点时,其对应的二阶导数大于零。

3. 极值点的判别:对于一些特殊函数,如周期函数和反函数,还需要考虑边界点的极值判别。

4. 得出结论:根据以上的步骤,得出函数极值的存在和类型。

三、高阶导数法的具体步骤:当一阶导数判断不出结果时,可以通过高阶导数来进行进一步的判断。

1. 求取二阶导数:对给定的函数进行两次求导,得到二阶导数。

2. 极值点的判别:对于一阶导数等于零的驻点,通过二阶导数的正负性来判断其类型。

(1) 当二阶导数大于零时,驻点为极小值点。

(2) 当二阶导数小于零时,驻点为极大值点。

3. 极点的存在性判断:根据二阶导数的正负性,判断函数的定义域是否存在极大值点和极小值点。

4. 得出结论:根据以上的步骤,得出函数极值的存在和类型。

四、参数化法的具体步骤:当给定的函数为参数方程时,可以通过参数化的方法来求解函数的极值。

1. 将函数进行参数化:将给定的函数进行参数化,得到新的函数形式。

求极值的三种方法

求极值的三种方法

求极值的三种方法一、直接法。

先判断函数的单调性,若函数在定义域内为单调函数,则最大值为极大值,最小值为极小值二、导数法(1)、求导数f'(x);(2)、求方程f'(x)=0的根;(3)、检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

举例如下图:该函数在f'(x)大于0,f'(x)小于0,在f'(x)=0时,取极大值。

同理f'(x)小于0,f'(x)大于0时,在f'(x)=0时取极小值。

扩展资料:寻求函数整个定义域上的最大值和最小值是数学优化的目标。

如果函数在闭合区间上是连续的,则通过极值定理存在整个定义域上的最大值和最小值。

此外,整个定义域上最大值(或最小值)必须是域内部的局部最大值(或最小值),或必须位于域的边界上。

因此,寻找整个定义域上最大值(或最小值)的方法是查看内部的所有局部最大值(或最小值),并且还查看边界上的点的最大值(或最小值),并且取最大值或最小的)一个。

1、求极大极小值步骤:求导数f'(x);求方程f'(x)=0的根;检查f'(x)在方程的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正那么f(x)在这个根处取得极小值。

f'(x)无意义的点也要讨论。

即可先求出f'(x)=0的根和f'(x)无意义的点,再按定义去判别。

2、求极值点步骤:求出f'(x)=0,f"(x)≠0的x值;用极值的定义(半径无限小的邻域f(x)值比该点都小或都大的点为极值点),讨论f(x)的间断点。

上述所有点的集合即为极值点集合。

扩展资料:定义:若函数f(x)在x₀的一个邻域D有定义,且对D中除x₀的所有点,都有f(x)<f(x₀),则称f(x₀)是函数f(x)的一个极大值。

求极值的若干方法

求极值的若干方法

求极值的若干方法求解函数的极值是数学分析中重要的问题之一、找出函数的极值可以帮助我们确定函数的最大值或最小值,并且有助于解决各种实际问题。

本文将介绍常见的求解极值的若干方法。

一、导数法(一阶导数法、二阶导数法)导数是函数在其中一点的变化率,求导数的过程可以帮助我们确定函数的增减性,从而找出函数的极值点。

常见的导数法包括一阶导数法和二阶导数法。

1.一阶导数法:首先求函数的一阶导函数,然后将导函数等于零,解出方程得到函数的临界点,再将临界点代入函数,找出对应的函数值,最终从函数值中找出最大值或最小值。

2.二阶导数法:首先求函数的二阶导函数,然后将二阶导函数等于零,解出方程得到函数的拐点,再将拐点代入函数,找出对应的函数值,最终从函数值中找出最大值或最小值。

二阶导数法可以帮助我们判断函数的临界点是极值点还是拐点。

二、边界法(最大最小值定理)边界法是基于最大最小值定理求解函数极值的方法。

最大最小值定理指出,在闭区间内的连续函数中,最大值和最小值一定存在。

因此,我们可以通过求解函数在闭区间端点和临界点处的函数值,找出函数的最大值或最小值。

三、拉格朗日乘数法拉格朗日乘数法是用于求解带约束条件的极值问题的方法。

在求解极值问题时,如果还存在一些约束条件,可以引入拉格朗日乘数,通过构建拉格朗日函数,将约束条件加入目标函数中,然后求解拉格朗日函数的极值点。

最终,通过求解得到的极值点,再进行函数值的比较,找出最大值或最小值。

四、二分法二分法是一种在有序列表中查找特定元素的方法,也可以用于求解函数的极值。

二分法的基本思想是通过将区间一分为二,然后比较中间点与两侧点的大小关系,逐步缩小范围,最终找出函数的极值点。

二分法的效率较高,适用于一些连续单调函数。

五、牛顿法牛顿法是一种用于求解多项式函数的根的方法,也可以用于求解函数的极值。

牛顿法的基本思想是通过构建一个逼近曲线,以曲线与函数的交点为新的逼近值。

然后不断迭代逼近,最终找到函数的极值点。

初中数学中求函数极值的常用解法举例

初中数学中求函数极值的常用解法举例

初中数学中求函数极值的常用解法举例罗江县函数极值是指函数的最大值或最小值,此类问题在初中数学中比较常见。

它涉及的知识面广,综合性强,有着极为丰富的内涵,解法也颇具有技巧性。

解答这类问题需要根据具体的特点,采取不同的方法。

现举例介绍这类问题的常用解法,供大家参考。

一、配方法:配方法是初中数学中解题常用的方法,它是将已知代数式(等式)通过配方,变形成若干个完全平方式的形式,结合完全平方的非负性质,解决问题。

例1 :若 x , y 为实数,求 A=5 x 2 + 5 y 2 − 8 xy + 2 x +2y +5 的最小值。

分析与解:A=(4x 2 − 8 xy + 4 y 2)+(x 2 + 2 x + 1)+( y 2+ 2 y + 1 )+ 3 = ( 2x − 2 y ) 2 + ( x + 1) 2 + ( y + 1) 2 +3显然,当 x = −1,y = − 1 时,A 有最小值3。

二、消元法:消元法是把代数式(等式)中的几个元素转化为以某一元素为主元的函数,再结合已知条件,经过运算,使问题简化,便于求解。

例2 :若 2x + y + z = 40,3x+ y -z = 30 ,且x 、y 、 z 均为非负数,求 A = 5x + 3 y + 2z 的极值。

分析与解:由 2x + y + z = 40及3x + y − z = 30,得 x=2z -10,y=60-5z,又由 x ≥0,y ≥0得2z -10 ≥ 0, 60-5z ≥ 0,解得 5≤z ≤12,把 x=2z -10,y=60-5z 代入 A=5x+3y+2z得A=−3z+130,显然 A 是关于 z 的一次函数,且 A 随 z 增大而减小,所以 当 z=5 时,A 的最大值为115,当 z=12时,A 的最小值为94。

三、数形结合法: 数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ′( x 0 + ∆ x ) − f ′( x 0 ) 证 (1) Q f ′′( x0 ) = lim < 0,
∆x → 0
∆x
异号, 故f ′( x0 + ∆x ) − f ′( x0 )与∆x异号,
当∆x < 0时, 有f ′( x0 + ∆x ) > f ′( x0 ) = 0, 当∆x > 0时, 有f ′( x0 + ∆x ) < f ′( x0 ) = 0,
思考题
下命题正确吗? 下命题正确吗?
的极小值点, 如果 x 0 为 f ( x ) 的极小值点,那么必存在 的某邻域,在此邻域内, x 0 的某邻域,在此邻域内, f ( x ) 在 x 0 的左侧 下降, 的右侧上升. 下降,而在 x 0 的右侧上升
思考题解答
不正确. 不正确.
1 2 2 + x ( 2 + sin ), x ≠ 0 例 f ( x) = x 2, x=0 1 2 当 x ≠ 0时, f ( x ) − f ( 0) = x ( 2 + sin ) > 0 x
1 e
+
(−1,3) −

3 0
极 小 值
( 3,+∞ )
+
f ′( x ) f ( x)
0
极 大 值



极 值 f (−1) = 10, −
极 值 f ( 3) = −22.
f ( x ) = x 3 − 3 x 2 − 9 x + 5图形如下
M
m
定理3(第二充分条件) 定理3(第二充分条件)设f (x)在 0 处 有 阶 数 3(第二充分条件 x 具 二 导 , 且 f ' ( x0 ) = 0, f '' ( x0 ) ≠ 0, 那 末 f '' ( x0 ) < 0时 函 f ( x)在 0 处 得 大 ; x 取 极 值 (1)当 (1)当 , 数 '' x 取 极 值 (2)当 (2)当f ( x0 ) > 0时 函 f ( x)在 0 处 得 小 . , 数
仍用定理 2.
注意:函数的不可导点 也可能是函数的极值点 也可能是函数的极值点. 注意:函数的不可导点,也可能是函数的极值点 例3 解
求出函数 f ( x ) = 1 − ( x − 2) 的极值 .
− 2 f ′( x ) = − ( x − 2 ) 3 3 1
2 3
( x ≠ 2)
当x = 2时, f ′( x )不存在 . 但函数 f ( x )在该点连续 .
函数的极大值与极小值统称为极值 使函数取得 函数的极大值与极小值统称为极值,使函数取得 极值 极值的点称为极值点 极值点. 极值的点称为极值点
二、函数极值的求法
定理1 必要条件) 定理1(必要条件) 设 f (x)在点x0 处具有导数,且 处具有导数, 在x0处 得 值 那 必 f ' ( x0 ) = 0. 取 极 , 末 定 定义 使导数为零的点 (即方程 f ′( x ) = 0 的实根 )叫
Q f ′′( x ) − 18 < 0,
f ′′( 2) = 18 > 0,
故极大值 f (−4) = 60, − 故极小值 f ( 2) = −48.
f ( x ) = x 3 + 3 x 2 − 24 x − 20 图形如下
M
m
注意: f ′′( x0 ) = 0时, f ( x )在点x0处不一定取极值 , 注意:
0
y
y
+ − o
x0

x
+
x0
o
x
(是极值点情形 是极值点情形) 是极值点情形
y
+ +
y
− −
o
x0
x
o
x0
求极值的步骤: 求极值的步骤:
x (不是极值点情形 不是极值点情形) 不是极值点情形
(1) 求导数 f ′( x );
( 2) 求驻点,即方程 f ′( x ) = 0 的根; 求驻点,
( 3) 检查 f ′( x ) 在驻点左右的正负号 , 判断极值点;
所以,函数 所以 函数 f ( x ) 在 x0 处取得极大值
例2 求出函数 f ( x ) = x 3 + 3 x 2 − 24 x − 20 的极值 . 解
f ′( x ) = 3 x 2 + 6 x − 24 = 3( x + 4)( x − 2)
x 2 = 2.
令 f ′( x ) = 0, 得驻点 x1 = −4,
2 3 1 3
y = 3 − 2( x + 1) 的极值为__________. 的极值为__________. x 3x , x > 0 4、已知函数 f ( x ) = 当 x = _______ 时 , x + 1, x ≤ 0 y = ________ 为极 小 值 ; 当 x = ________ 时 , y = ________ 为极 大值. 大值.
于是 x = 0为 f ( x ) 的极小值点
当 x ≠ 0时,
1 1 f ′( x ) = 2 x ( 2 + sin ) − cos x x 当 x → 0 时,
1 1 2 x ( 2 + sin ) → 0, cos 在–1和1之间振荡 和 之间振荡 x x
的两侧都不单调. 因而 f ( x ) 在 x = 0 的两侧都不单调
做函数 f ( x ) 的驻点.
注意: 注意 可导函数 f ( x ) 的极值点必定是它的驻 点,
但函数的驻点却不一定 是极值点.
y = x 3 , y ′ x = 0 = 0, 例如, 例如
但x = 0不是极值点. 不是极值点
定理2(第一充分条件) 定理2(第一充分条件) 2(第一充分条件
(1)如 果 (1)如 x ∈( x0 − δ , x0 ),有f ' ( x) > 0;而x ∈( x0 , x0 + δ ), x 有f ' ( x) < 0, f (x)在 处 得 大 . 则 取 极 值 (2)如 (2)如 x ∈( x0 − δ , x0 ),有f ' ( x) < 0;而x ∈( x0 , x0 + δ ) 果 f ' ( x) > 0, f (x)在x0 处 得 小 . 有 则 取 极 值 ' (3)如 (3)如 当x ∈( x0 − δ , x0 )及x ∈( x0 , x0 + δ )时 f ( x) 果 , 符 相 ,则f (x) 在x0 处 极 . 号 同 无 值
(4) 求极值 .
例1 求出函数 f ( x ) = x 3 − 3 x 2 − 9 x + 5 的极值 . 解
f ′( x ) = 3 x 2 − 6 x − 9 = 3( x + 1)( x − 3)
令 f ′( x ) = 0, 得驻点 x1 = −1, x2 = 3. 列表讨论
x
( −∞ ,−1) − 1
当x < 2时, f ′( x ) > 0; 当x > 2时, f ′( x ) < 0.
M
∴ f ( 2) = 1为f ( x )的极大值 .
三、小结
极值是函数的局部性概念: 极值是函数的局部性概念:极大值可能小于极小 极小值可能大于极大值. 值,极小值可能大于极大值 极小值可能大于极大值 驻点和不可导点统称为临界点. 驻点和不可导点统称为临界点. 临界点 函数的极值必在临界点取得. 函数的极值必在临界点取得 临界点取得 第一充分条件; 第一充分条件 判别法 第二充分条件; 第二充分条件 (注意使用条件 注意使用条件) 注意使用条件
一、函数极值的定义
y
y = f (x)
ax
y
1
o
x2
x3
x4
x5
x6
b
x
y
o
x0
x
o
x0
x
( f 定义 设函数 ( x)在区间 a, b)内有定义, x0是 (a, b)内的一个点 , 如果存在着点x0的一个邻域,对于这邻域内的 , 任何点x,除了点x0外, f ( x) < f ( x0 )均成立 就称 ; f ( x0 )是函数f ( x)的一个极大值 如果存在着点x0的一个邻域,对于这邻域内的 , 任何点x,除了点x0外, f ( x) > f ( x0 )均成立 就称 f ( x0 )是函数f ( x)的一个极小值.
1 x
练习题答案
2、 2、 f ′( x 0 ) = 0 ; 3 1 1 e 3、(1,2),无 4、 3、(1,2),无; 4、 , ( ) ,0,1; e e π 2 4 + 2 kπ π e 二、1、极大值 y( + 2kπ ) = ,极小值 4 2 π 2 4 + ( 2 k +1) π π y( + ( 2k + 1)π ) = − e ( k = 0,±1,±2,L) ; 4 2 局部; 一、1、局部; 2、极大值 y(e ) = e ; 3、极小值 y(0) = −1; 4、极小值 y(0) = 0 .
故命题不成立. 故命题不成立.
练习题
一、填空题: 填空题: ________性质 性质. 1、极值反映的是函数的 ________性质. 可导, 2、若函数 y = f ( x ) 在 x = x 0 可导,则它在点 x 0 处到 得极值的必要条件中为___________. 得极值的必要条件中为___________. 3、函 数 y = 2 − ( x − 1) 的 极 值 点 为 ________ ;
相关文档
最新文档