(仅供参考)信号与系统课后答案第五章作业答案-第三次

合集下载

信号与系统第五章习题答案

信号与系统第五章习题答案
i = −∞ i= 0

n− 6
1 − a n− 5 ε [n − 6 ] 1− a
故系统的零状态响应为
y zs [n ] = f [n] ∗ h[n] = a n ε [n] ∗ (ε [n] − ε [n − 6]) = a n ε [n] ∗ ε [n ] − a nε [n] ∗ ε [n − 6]
联立以上两式可解得: A1 = 1 , A2 = 2 于是齐次解为
275
y h [n] = (− 3) + 2 n+1
n
5.10
如有齐次差分方程为 y[n] + 4 y[n − 1] + 4 y[n − 2] = 0 , 已知 y[0] = y[1] = −2 , 试求其齐次解。 【知识点窍】主要考察系统的齐次解的概念及其求解方法。 【逻辑推理】首先通过差分方程得特征方程,由特征方程求得特征根,代入条件即可求得齐次
λ2 + 3λ + 2 = 0
y zi [n ] = A1 (− 1) + A2 (− 2)
n
n
将初始状态 y[− 1] = −
1 , 2
y[− 2] =
5 代入上式,有: 4
−1 −1
y[− 1] = y zi [− 1] = A1 (− 1) + A2 (− 2 ) = − y[− 2] = y zi [− 2 ] = A1 (− 1) + A2 (− 2 )
−2 −2
1 2 5 = 4
271
联立以上两式可解得: A1 = 2 , A2 = −3 则系统的零输入响应为
y zi [n ] = 2(− 1) − 3(− 2)
n
n
5.4 设有离散系统的差分方程为 y[n] + 4 y[n − 1] + 3 y[n − 2] = 4 f [n] + f [n − 1] ,试画出其时域模拟 图。 【知识点窍】主要考察由系统的差分方程画出系统的直接模拟图,掌握直接模拟图的意义。 【逻辑推理】将差分方程各个环节分别用加法器及延时器来表示。 解:时域模拟图如图 5.1

随机信号与系统第五章习题部分答案

随机信号与系统第五章习题部分答案

第五章 习题5-1 设某信号为1000||()t x t e -=(1)试求x (t )的傅里叶变换X (j ω),并绘制X (j ω)曲线;(2)假设分别以采样频率为f s =5000Hz 和f s =1000Hz 对该信号进行采样,得到一组采样序列x k ,说明采样频率对序列x k 频率特性X (e j Ω)的影响。

解:(1)1000||622000()()10j t t j t X j x t e dt e e dt ωωωω∞∞----∞-∞===+⎰⎰. X (j ω)的曲线如下图所示:(2)设采样周期为T ,则采样输出为()()()()k k k x x t t kT x kT t kT δδ∞∞=-∞=-∞=-=-∑∑.由时域相乘等于频域卷积,有1122()()*[()]()*[()]22j k k X e X j t kT X j kT Tππδδππ∞∞Ω=-∞=-∞=Ω-=ΩΩ-∑∑F 121212()()()2k k X j k d X j jk T T T T Tπππωδωωπ∞∞∞-∞=-∞=-∞=⋅=Ω--=Ω-∑∑⎰. 即序列x k 频率特性X (e j Ω)是原信号频谱X (j ω)以2Tπ为周期进行延拓而成的,而采样频率1122s f T Tππ==⋅,所以采样频率越高,序列x k 频率特性的各周期越分散,越不容易发生频谱混叠。

5-2 假设平稳随机过程x (t )和y (t )满足下列离散差分方程11;k k k k k k k x ax e y ay x v ---=-=+式中,|a|<1;e k ,v k ~N (0,σ 2)分布,且二者互不相关。

试求随机序列y k 的功率谱。

解:对1k k k x ax e --=进行离散时间傅里叶变换(DTFT ),且记DTFT(x k )=X (e j Ω),DTFT(e k )=E (e j Ω),则有j j j ()(1)()X e ae E e ΩΩΩ--=式中,Ω=ωT s ,称为数字频率(rad ),ω为实际频率(rad/s ),T s 为采样周期(s )。

信号与系统课后习题参考答案

信号与系统课后习题参考答案

1试分别指出以下波形是属于哪种信号?题图1-11-2 试写出题1-1 图中信号的函数表达式。

1-3 已知信号x1(t)与x2(t)波形如题图1-3 中所示,试作出下列各信号的波形图,并加以标注。

题图1-3⑴x1(t2)⑵ x1(1 t)⑶ x1(2t 2)⑷ x2(t 3)⑸ x2(t 2) ⑹x2(1 2t)2⑺x1(t) x2( t)⑻x1(1 t)x2(t 1)⑼x1(2 t) x2(t 4)21- 4 已知信号x1(n)与x2 (n)波形如题图1-4中所示,试作出下列各信号的波形图,并加以标注。

题图1-4⑴x1(2n 1) ⑵ x1(4 n)⑶ x1(n)2⑷ x2 (2 n)⑸ x2(n 2) ⑹ x2(n 2) x2( n 1)⑺x1(n 2) x2(1 2n)⑻x1(1 n) x2(n 4)⑼ x1(n 1) x2(n 3)1- 5 已知信号x(5 2t )的波形如题图1-5 所示,试作出信号x(t)的波形图,并加以标注。

题图1-51- 6 试画出下列信号的波形图:1⑴ x(t) sin( t) sin(8 t)⑵ x(t) [1 sin( t )] sin(8 t)21⑶x(t) [1 sin( t)] sin(8 t)⑷ x(t) sin( 2t )1-7 试画出下列信号的波形图:⑴ x(t)1 e t u(t) ⑵ x(t) e t cos10 t[u(t 1) u(t 2)]⑶ x(t)(2 e t)u(t)⑷ x(t) e (t 1)u(t)⑸ x(t)u(t22 9) ⑹ x(t)(t2 4)1-8 试求出以下复变函数的模与幅角,并画出模与幅角的波形图1j2 ⑴ X (j ) (1 e j2)⑵ X( j1 e j4⑶ X (j ) 11 ee j ⑷ X( j )试作出下列波形的奇分量、偶分量和非零区间上的平均分量与交流分量。

题图 1-10形图。

题图 1-141-15 已知系统的信号流图如下,试写出各自系统的输入输出方程。

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案

《信号与系统》课后习题参考答案第二章 连续信号与系统的时域分析2-9、(1)解:∵系统的微分方程为:)(2)(3)(t e t r t r '=+',∴r(t)的阶数与e(t) 的阶数相等,则h(t)应包含一个)(t δ项。

又∵系统的特征方程为:03=+α,∴特征根3-=α∴)()(2)(3t u Ae t t h t -+=δ∴)]()(3[)(2)(33t e t u e A t t h t t δδ--+-+'=')()(3)(23t A t u Ae t t δδ+-'=-将)(t h 和)(t h '代入微分方程(此时e(t)= )(t δ),得:)()(3)(23t A t u Ae t t δδ+-'-+3)(2)]()(2[3t t u Ae t t δδ'=+-∴A=-6则系统的冲激响应)(6)(2)(3t u et t h t --=δ。

∴⎰⎰∞--∞--==t td ue d h t g τττδτττ)](6)(2[)()(3⎰∞-=t d ττδ)(2⎰∞---t d u e τττ)(63 )()(6)(203t u d e u t t ⎰-∞--=τττ )()3(6)(203t u e t u t --=-τ)()1(2)(23t u e t u t -+=- )(23t u e t -=则系统的阶跃响应)(2)(3t u et g t -=。

2-11、解:①求)(t r zi : ∵系统的特征方程为:0)3)(2(652=++=++αααα,∴特征根:21-=α,32-=α ∴t t zi e C eC t r 3221)(--+= (t ≥0) ②求)(t r zs :t t e A eA t h 3221)(--+= (t ≥0),可求得:11=A ,12-=A (求解过程略) ∴)()()(32t u e e t h t t ---=∴)(*)()(*)()]()[(*)()(*)()(3232t u e t u e t u e t u e t u e e t u e t h t e t r t t t t t t t zs --------=-==)()2121()()(21)()(3232t u e e e t u e e t u e e t t t t t t t -------+-=---= ③求)(t r :)(t r =)(t r zi +)(t r zs ++=--)(3221t te C e C )2121(32t t t e e e ---+- t tt e C e C e 3221)21()1(21---++-+= (t ≥0) ∵)()(t u Ce t r t -=,21=C 21=C ∴ 011=-C , ∴ 11=C0212=+C 212-=C ∴=-)0(r 21211)0(21=-=+=+C C r zi , ='-)0(r 2123232)0(21-=+-=--='+C C r zi 2-12、解:(1)依题意,得:)(2)(*)()(t u e t h t u t r tzi -=+)()()(t t h t r zi δ=+∴)(2)]()([*)()(t u e t r t t u t r t zi zi -=-+δ)(2)()()()1(t u e t r t u t r t zi zi --=-+∴)()12()()()1(t u e t r t r t zi zi -=---,两边求导得:)()12()(2)()(t e t u e t r t r t t zi ziδ-+-=-'-- )(2)()()(t u e t t r t r t zi zi--=-'δ ∴)(11)(112)()()1(t p p t p t t r p zi δδδ+-=+-=- ∴)()(11)(t u e t p t r t zi -=+=δ (2)∵系统的起始状态保持不变,∴)()(t u e t r t zi -=∵)()()(t t h t r zi δ=+,∴)()()(t u e t t h t--=δ∴)]()([*)()()(*)()()(33t u e t t u e t u e t h t e t r t r t t t zi ----+=+=δ )()()(t u te t u e t u e tt t ----+=)()2(t u e t t --= 2-16、证:∑∑∞-∞=--∞-∞=--=-=k k t k t k t u e k t t u e t r )3()3(*)()()3(δ∑∞-∞=--=k k t k t u e e )3(3 ∵当t-3k>0即3t k <时:u(t-3k)为非零值 又∵0≤t ≤3,∴k 取负整数,则:3003311)(---∞=∞=----===∑∑e e e e e et r t k k k t k t 则t Ae t r -=)(,且311--=e A 。

信号与系统--完整版答案--纠错修改后版本

信号与系统--完整版答案--纠错修改后版本
3.6、求下列差分方程所描述的LTI离散系统的零输入相应、零状态响应和全响应。
1)
3)
5)
3.8、求下列差分方程所描述的离散系统的单位序列响应。
2)5)
3.9、求图所示各系统的单位序列响应。
(a)
(c)
3.10、求图所示系统的单位序列响应。
3.11、各序列的图形如图所示,求下列卷积和。
(1)(2)(3)(4)
4.34 某LTI系统的频率响应,若系统输入,求该系统的输出。
4.35 一理想低通滤波器的频率响应
4.36 一个LTI系统的频率响应
若输入,求该系统的输出。
4.39 如图4-35的系统,其输出是输入的平方,即(设为实函数)。该系统是线性的吗?
(1)如,求的频谱函数(或画出频谱图)。
(2)如,求的频谱函数(或画出频谱图)。
(1) (2) (3) (4) (5)
4.19 试用时域微积分性质,求图4-23示信号的频谱。
图4-23
4.20 若已知,试求下列函数的频谱:
(1)(3) (5)
(8)(9)
4下列方式求图4-25示信号的频谱函数 (1)利用xx和线性性质(门函数的频谱可利用已知结果)。
(1)
5-18 已知系统函数和初始状态如下,求系统的零输入响应。
(1),
(3),
5-22 如图5-5所示的复合系统,由4个子系统连接组成,若各子系统的系统函数或冲激响应分别为,,,,求复合系统的冲激响应。
5-26 如图5-7所示系统,已知当时,系统的零状态响应,求系数a、b、c。
5-28 某LTI系统,在以下各种情况下起初始状态相同。已知当激励时,其全响应;当激励时,其全响应。
(7)(8)
1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统第5章习题答案

信号与系统第5章习题答案

第5章连续时间信号的抽样与量化5.1试证明时域抽样定理。

证明:设抽样脉冲序列是一个周期性冲激序列,它可以表示为T(t)(tnT)sn由频域卷积定理得到抽样信号的频谱为:1F s ()F()T 2()1 T snFns式中F()为原信号f(t)的频谱,T ()为单位冲激序列T (t)的频谱。

可知抽样后信 号的频谱()F 由F()以s 为周期进行周期延拓后再与1T s 相乘而得到,这意味着如果 s s2,抽样后的信号f s (t)就包含了信号f(t)的全部信息。

如果s2m ,即抽样m 间隔 1 Tsf2m,则抽样后信号的频谱在相邻的周期内发生混叠,此时不可能无失真地重建 原信号。

因此必须要求满足1 Tsf2 m,f(t)才能由f s (t)完全恢复,这就证明了抽样定理。

5.2确定下列信号的最低抽样频率和奈奎斯特间隔:2t (1)Sa(50t)(2)Sa(100)2t (3)Sa(50t)Sa(100t)(4)(100)(60)SatSa解:抽样的最大间隔 T s 12f 称为奈奎斯特间隔,最低抽样速率f s 2f m 称为奈奎m斯特速率,最低采样频率s 2称为奈奎斯特频率。

m(1)Sa(t[u(50)u(50)],由此知m50rad/s ,则50)5025 f , m由抽样定理得:最低抽样频率50 f s 2f m ,奈奎斯特间隔1 T 。

sf50s2t(2))Sa(100)(1100200脉宽为400,由此可得radsm200/,则100f,由抽样定理得最低抽样频率m200f s2f m,奈奎斯特间隔1T。

sf200s(3)Sa[(50)(50)],该信号频谱的m50rad/s(50t)uu50Sa(100t)[u(100)u(100)],该信号频谱的m100rad/s10050Sa(50t)Sa(100t)信号频谱的m100rad/s,则f,由抽样定理得最低m抽样频率100f s2f m,奈奎斯特间隔1T。

信号与系统课后习题答案第5章

信号与系统课后习题答案第5章
代入初始条件yzi(0)=1,确定c=1,故有零输入响应:
yzi(k)=(-2)kε(k)
39
第5章 离散信号与系统的时域分析 40
第5章 离散信号与系统的时域分析 41
第5章 离散信号与系统的时域分析 42
第5章 离散信号与系统的时域分析 43
第5章 离散信号与系统的时域分析
(6) 系统传输算子:
22
第5章 离散信号与系统的时域分析
5.9 已知两序列
试计算f1(k)*f2(k)。
23
解 因为
第5章 离散信号与系统的时域分析
所以
24
第5章 离散信号与系统的时域分析
5.10 已知序列x(k)、y(k)为
试用图解法求g(k)=x(k)*y(k)。
25
第5章 离散信号与系统的时域分析
解 首先画出y(k)和x(k)图形如题解图5.10所示, 然后结合 卷积和的图解机理和常用公式,应用局部范围等效的计算方法 求解。
题解图 5.10
26
第5章 离散信号与系统的时域分析 27
总之有
第5章 离散信号与系统的时域分析
28
第5章 离散信号与系统的时域分析
5.11 下列系统方程中,f(k)和y(k)分别表示系统的输入和输 出,试写出各离散系统的传输算子H(E)。
29
第5章 离散信号与系统的时域分析
解 由系统差分方程写出传输算子H(E)如下:
解 各序列的图形如题解图5.2所示。
题解图 5.2
5
第5章 离散信号与系统的时域分析
5.3 写出题图 5.1 所示各序列的表达式。
题图 5.1
6
第5章 离散信号与系统的时域分析 7
第5章 离散信号与系统的时域分析

信号与系统课后习题答案

信号与系统课后习题答案

习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。

因此,公共周期3110==f T s 。

(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。

因此,公共周期5110==f T s 。

(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。

所以是非周期的。

(d) 两个分量是同频率的,基频 =0f 1/π Hz 。

因此,公共周期π==01f T s 。

1-2 解 (a) 波形如图1-2(a)所示。

显然是功率信号。

t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。

显然是能量信号。

3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。

1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试用 s 域方法求零输入响应和零状态响应。
解:设 y (t ) ↔ Y ( s) , x(t) = e−2tu(t) ↔ X ( s) = 1 , Re[s] > −2
s+2
对方程 y"(t) + 4 y' (t) + 3y(t) = 2x' (t) + x(t) 两边取拉式变换得:
s2Y (s) − sy (0− ) − y'(0− ) + 4 ⎡⎣sY (s) − y (0− )⎤⎦ + 3Y (s) = 2sX (s) + X (s)
2
2
统的阶跃响应为
∫ ∫ ∫ ( ) ( ) g (t ) = t h (τ )dτ = t 1 e−τ dτ + t 1 e−3τ dτ = 1 1− e−t u (t ) + 1 1− e−3t u (t )
−∞
02
02
2
6
5-11 已知 LTI 系统函数为 H (s) = 1+ s + 1 ,求 h(t) 。 s
H1
(s)
=
1 s
=
s −1 1
,H2
(s)
=
s2
+
5 7s
+ 10
=
1−
5s −2 −7s−1 −10s−2
,由梅森公式得系统的
级联型信流图和模拟图分别如下图所示:
F (s)
s −1
s−1 s−1
Y (s)
F (s)
1
1
1
s
s
s
Y (s)
注:该级联形式有多种,如果对系统函数进行如下分解,则信号流图将进行如下变化:
=
s +1 s2 + 2s
(2)
H
(s)
=
s+2 (s +1)10
(3)
H
(s)
=
s3

3s 4s2
+1 − 3s
项式 A( s) = s2 + 2s 有缺项(缺 s0 项),故不满足霍尔维兹多项式
的必要条件,所以系统不稳定。
(2)由系统函数 H (s) 得系统在 s = −1 处有一个 10 阶极点,其收敛域为 Re[s] > −1,
5-14 已知系统函数 H (s) = 5(s +1) ,分别画出直接型、级联型、并联型模拟图及信 s(s + 2)(s + 5)
号流图。
( ) 解: H (s) = 5(s +1) = 5s + 5 = 5s−2 + 5s−3 ,由梅森公式可得系统 s(s + 2)(s + 5) s3 + 7s2 +10s 1− −7s−1 −10s−2
5-9 用拉普拉斯变换方法求下列微分方程描述的系统冲激响应 h (t ) 和阶跃响应 g (t )
(2)
d2 y(t) dt 2
+
4
dy (t ) dt
+
3 y (t )
=
dx(t) dt
+
2x(t)
解:设 y(t) ↔ Y ( s) , x(t) ↔ X ( s) ,对方程两边取单边拉式变换(其初始值为零)得:
( ) ( ) H (s) = 5(s +1) = 1 ⋅ 5 = 1 ⋅ 5 = 5s−2 ⋅ s−1 s(s + 2)(s + 5) s(s + 2) (s + 5) s + 5 s2 + 2s 1− −2s−1 1− −5s−1
F (s)
s−1 s−1
s −1 Y (s)
分解不同,其信号流图及模拟图都有所变化。
(s)
=
s2
2s +1 ⋅ + 4s + 3
X
(s) ,代入
x(t) 的拉式变换并求其逆变换得系统的零状态响应
Yf
(s)
=
s2
2s +1 ⋅ + 4s + 3
s
1 +
2
=
−0.5 s +1
+
s
3 +
2
+
−2.5 s+3
( ) ↔ y f (t ) = −0.5e−t + 3e−2t − 2.5e−3t u (t )
对 H (s) 进行部分分式展开可得系统的并联形式
( ) ( ) H (s) =
5(s +1)
= 0.5 +
5 6
+
−4 3
= 0.5s−1 +
5 s−1 6
− 4 s−1 +3
s(s + 2)(s + 5) s s + 2 s + 5 1 1− −2s−1 1− −5s−1
其信号流图及模拟图如下图所示:
解:由于 LTI 系统的系统函数 H (s) 与其单位冲激相应 h(t) 为一对拉式变换对,故利用常用
信号拉式变换及时域微分特性可得:
h(t) = δ (t ) + δ'(t ) + u (t )
5-13 已知系统微分方程和初始条件如下:
y ''(t) + 4 y '(t) + 3y(t) = 2x '(t) + x(t), y(0− ) = 1,y '(0− ) = 1,x(t) = e−2tu(t)
其零输入响应的拉式变换为 Yx
(s)
=
sy
(0−
)
+ y' (0− s2 + 4s
) + 4y +3
(0−
)
,代入已知条件并求其
逆变换得系统的零输入响应
( ) Yx
(s)
=
s2
s +
+5 4s +
3
=
−1 s+3
+
s
2 +1

yx
(t)
=
−e−3t + 2e−t
u(t)
将初始条件为零,可得系统零状态响应的拉式变换为 Yf
+
−4 / 3 s+5
( ) ( ) = 4s−1 / 3 + s−2 + −4s−1 / 3 1− −2s−1 1− −5s−1
其信号流图如下图所示
s −1
F (s)
s −1
Y (s)
s −1
与级联形式相类似,分解不同,其信号流图及模拟图都有所变化。
5-16 试判断下列系统的稳定性:
(1)
H (s)
的直接型信流图和模拟图分别如下图所示:
F (s)
s −1
s −1
s −1
Y (s)
1
1
1
F (s)
s
s
s
Y (s)
将 H (s) 写出连乘的形式,可得系统的级联型结构,
H
(s)
=
5(s +1) s(s + 2)(s +
5)
=
1 s

(s
+
5 2)(s
+
5)
=
1 s

s2
+
5 7s
+ 10
( ) 其中
其极点全部在左半平面,故系统稳定。(注:可以采用罗斯-霍尔维兹准则进行判决,但比较 麻烦)
s −1
s −1
F (s)
Y (s)
s −1
1 s
1
F (s)
s
Y (s)
1 s
也可将 H (s) 分解成一阶子系统和二阶子系统的级联形式,例如
H
(s)
=
5(s +1) s(s + 2)(s +
5)
=
⎡ 0.5 ⎢⎣ s
+
5/6 ⎤ s + 2 ⎥⎦
+
−4 / 3 s+5
=
1+ s2
4s / 3 + 2s
s2Y (s) + 4sY (s) + 3Y (s) = sX (s) + 2X (s)

H
(s)
=
Y (s) X (s)
=
s2
s+2 + 4s + 3
=
1 2

1 s +1
+
1 2

s
1 +
3
对上式求逆变换得 h (t ) = 1 e−tu (t ) + 1 e−3tu (t ) ,根据冲激响应与阶跃响应的关系得系
相关文档
最新文档