《找次品问题》方法
找次品的规律公式

找次品的规律公式
找次品的规律公式
一次称量2-3件物品
称4-9个物品两次
称10-27个物品3次
28-81件物品称重4次
(以上是为了知道次品的重量。
如果你不知道次品轻而重要,那就再叫一次。
)发现缺陷产品的规则
有没有发现次品的公式?问题的格式应该是什么?
例如:共有六个零件,知道其中一个零件有缺陷,比另外五个零件稍轻,另外五个零件的重量相同。
我至少要称几次?
我更想要的是找到次品的配方和解决问题的方式。
这个例子的解决方案是次要的。
{不平衡6-2(2,2)
天平6-2(2,2)
A:两次。
平均分为三组,称重一次,知道你属于哪一组!
所以:
如果你知道其中一个是次品,比其他的稍微轻一点,
称为n次,最多可分辨3^n个部分!
两次称重最多可分辨9个零件!
发现不良品的规律非常复杂,涉及多方面,这不是一个很好的总结!
找次品的bai规律
1、把待测物品尽量平均分成三份(使称du量次数最少);zhi
2、不能平分的也使dao多的一份与少的一份相差1。
3、方法:三个(或三堆)物品随机称一次,平衡:次品在天平下;不平衡:次品在天平上(按题目所给重或轻条件找出。
4、知道称量次数求物品个数:3^n。
5、知道物品个数求称量次数:取n值,3^(n-1)<个数<3^n。
先
估算,再实际求出。
6、如不知轻或重,则在每次称量后标记重1、重2、重3、……轻1、轻2、轻3……,与已称量平衡的比较,异常的为次品。
2023年人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思(优选3篇)

人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思(优选3篇)〖人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思第【1】篇〗[教学内容]人教版五年级数学下册教学设计1 .通过观察、猜测、实验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2 .感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
知识新授1、解决9 个零件的问题,归纳出找次品的最优方法。
(1)出示问题:有9 个零件,其中有一个是次品(次品重一些),你能用天平把它找出来吗?老师引导分析方法:你可以拿学具摆一摆,也可以用笔在纸上进行分析,看看至少需要几次就一定能找出次品?(2)自主探索。
在有一定结果以后请一个学生上台展示方法,老师帮助梳理方法:分成几份?每份各是多少?至少需要几次就一定能找出次品,(3)反思自己的分法并在小组内交流。
老师指导交流重点:看看我们的分法有什么不同?分成了几份?每份是多少?至少需要几次就能保证伐出次品?(4)全班汇报。
老师引导学生阐述:分成几份?怎么分?怎样找出次品?至少需要称几次就一定能找出次品?边汇报边板书示意图。
(5)老师先引导学生观察、梳理一遍,然后进行比较:哪种分法能保证用最少的次数称出次品?这种分法有什么特点?(6)小结:把9 个零件分成3 部分,并且平均分,能够保证找出次品而且称的次数最少。
2、.推测多个零件找次品的解决办法。
(l)提出猜测:那么,是否在所有的找次品问题中,这样平均分成 3 份的方法都能保证找出次品而且所需次数一定最少呢?我们来猜一猜。
(2)学生猜想。
(3)要验证猜想我们再来试一下。
如果有12 个零件,其中一个是次品,按刚才我们的猜想,应该怎么分,称的次数就最少而且一切能找出次品?(平均分成3 份,即4 , 4 , 4 。
)迅速在草稿纸上分析一下,看看至少需要几次就一定能找出次品?学生汇报:3 次。
1~200找次品的规律

1~200找次品的规律摘要:一、问题的提出1.找次品的规律是什么?2.探究找次品规律的意义。
二、找次品的规律1.暴力法2.规律一:若次品数量为1,则只需检查一次。
3.规律二:若次品数量为2,则需要检查3 次。
4.规律三:若次品数量为3,则需要检查4 次。
5.规律四:若次品数量为4,则需要检查5 次。
6.规律五:若次品数量为5,则需要检查6 次。
三、规律的证明与分析1.规律的证明方法2.规律的适用范围3.规律的优缺点分析四、实际应用案例1.案例一:找次品在生活中的应用2.案例二:找次品在工业生产中的应用3.案例三:找次品在科学研究中的应用五、结论1.总结找次品规律的重要性2.对未来找次品规律研究的展望正文:一、问题的提出在日常生活和工业生产中,我们常常需要对大量产品进行检验,以找出其中的次品。
如何快速有效地找到次品,提高检验效率,成为了一个亟待解决的问题。
找次品的规律是什么?探究找次品规律的意义何在?二、找次品的规律1.暴力法:对于n 个物品,暴力法就是一一检查,时间复杂度为O(n)。
2.规律一:若次品数量为1,则只需检查一次。
例如,有9 个产品,其中1 个是次品,我们只需要检查其中一个产品,就能找到次品。
3.规律二:若次品数量为2,则需要检查3 次。
例如,有9 个产品,其中2 个是次品,我们可以将这9 个产品分成三组,每组3 个,然后分别检查这三组,若某组有次品,则次品就在该组中。
4.规律三:若次品数量为3,则需要检查4 次。
5.规律四:若次品数量为4,则需要检查5 次。
6.规律五:若次品数量为5,则需要检查6 次。
三、规律的证明与分析1.规律的证明方法:通过数学归纳法证明。
2.规律的适用范围:对于物品数量较小的情况,规律可能不适用。
但当物品数量较大时,规律能显著提高找次品的效率。
3.规律的优缺点分析:优点是速度快,缺点是对于特殊情况下,如物品数量较少,规律可能不适用。
四、实际应用案例1.案例一:在电子产品生产过程中,需要对大量的元器件进行检验,找出其中的次品。
人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思3篇

人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思3篇〖人教版数学五年级下册第46课“找次品问题的基本解决策略和方法教案与反思第【1】篇〗教材内容分析《找次品》是人教版数学五年级下册第七单元“数学广角”的内容。
在现实生活中“次品”的情况各不相同,有的是外观与合格品不同,有的是所用质量不合格等。
这节课的学习中要找的次品就是外观完全相同,但是质量有所差异,并且知道次品比合格品轻(或重),在所有待测物品中只有唯一的一个次品。
教学目标1.知识和技能:通过观察、猜测、操作、画图、推理与合作交流验证等学习方法,探究找次品的策略,能够借助抽象记法对“找次品”问题进行分析,归纳出解决这类问题的最优策略,经历由多样化到优化的思维过程。
2.过程与方法:经历用天平测次品的过程,体验实验探究、发现运用的学习方法。
3.情感态度与价值观:在学习活动中,体会数学的优化思想,感受数学知识的魅力,激发学习探究的欲望,培养学生的逻辑思维能力。
学情分析五年级学生的思维水平总体上还处在具体运算操作的发展阶段,形象思维是他们的优势。
由于在前段的学习中,学生已积累了探索数字规律的基本方法与策略,使学生学会灵活地、有序地思考,及时引导学生归纳出解决这类问题的最优策略,经历由多样到优化的思维过程。
教学策略选择与设计“找次品”的教学,旨在通过“找次品”渗透优化思想,引导学生充分感受到数学与日常生活的密切联系。
通过本节课的教学培养学生用数学的能力。
提高学生数学思维能力和解决问题的能力。
本节课以“找次品”的一系列操作活动为载体,让学生通过动手操作、观察等方式感受生活中解决问题方法的多样性,在此基础上,通过归纳、推理的方法体会运用最优化策略解决问题的有效性,感受数学的魅力。
教具学具:12个小方块课件教学过程课前交流视频(美国第二架航天飞机“挑战者”号在进行飞行时发生爆炸,价值12亿美元的航天飞机化作碎片坠入大西洋,造成世界航天史上最大的悲剧。
找次品的规律公式

找次品的规律公式小学数学找次品的公式:找次品的公式计算规律:2~3个物品称1次4~9个物品称2次10~27个物品称3次28~81个物品称4次(以上是知道次品轻重的,不知道次品轻重要称多一次)小学数学找次品的公式:五年级数学题找次品公式找次品的规律1、把待测物品尽量平均分成三份(使称量次数最少);2、不能平分的也使多的一份与少的一份相差1。
3、方法:三个(或三堆)物品随机称一次,平衡:次品在天平下;不平衡:次品在天平上(按题目所给重或轻条件找出。
4、知道称量次数求物品个数:3^n。
5、知道物品个数求称量次数:取n值,3^(n-1)<个数<3^n。
先估算,再实际求出。
小学数学找次品的公式:找次品的公式有那些2~3个物品称1次4~9个物品称2次10~27个物品称3次28~81个物品称4次(以上是知道次品轻重的,不知道次品轻重要称多一次)找次品的规律找次品有公式吗?做找次品应用题的格式应该怎样?例如:有6个零件,知道其中一个是次品,比其他5个稍轻,其他五个一样重,至少称几次?我更想要的是找次品的公式和做应用题的格式,例题的解是次要的。
{不平衡6—2(2,2)平衡6—2(2,2)答:2次。
平均分成三组,称一次就可以知道在哪一组了!所以:如果知道其中一个是次品,比其他稍轻,则称n次,最多可以分辨出3^n个零件!称两次最多可以分辨9个零件!找次品的规律很复杂,要涉及很多方面,不是好总结的!希望能帮到你,满意望哦。
小学数学找次品的公式:找次品有公式吗?在知道次品轻重的情况下,运气好时最少一次,取两个天平两边各放一个就可以了。
当然事实上这种概率是很低的,因此要说是最多少多少次。
要找的个数小于3的n大于3的n-1次时最多n次即可。
如3³=27,3²=9,因此在10~27个之间最多3次即可找出次品。
望,有点累数字公式是1至3 1次后来后面的乘三前面的是后面的乘三加以小学数学找次品的公式:找次品的公式方法2~3个物品称1次4~9个物品称2次10~27个物品称3次28~81个物品称4次(以上是知道次品轻重的,不知道次品轻重要称多一次)小学数学找次品的公式:五年级数学题找次品公式找次品的规律1、把待测物品尽量平均分成三份(使称量次数最少);2、不能平分的也使多的一份与少的一份相差1。
找次品问题方法

找次品问题方法 Revised as of 23 November 2020《找次品问题》的求解方法还是从比尔·盖茨与81个玻璃球的问题说开来吧。
(1)小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢(2)如果不知道次品玻璃球与标准球的轻重,同样只用天平来测量,至少要称多少次才能保证找出次品玻璃球来怎样用天平来测量次品就是要用天平称量时的“平衡”与“不平衡”来判断研究对象的情况。
“平衡”判明没次品;“不平衡”判明次品就在这里。
本题要求最少的称量次数,显然还要找出一个解决问题的最优策略,也就是要让天平每称量一次能判断的研究对象个数最多,最终达到称量次数最少的目的。
实际操作起来就是把研究对象怎样分组,分成多少组的问题。
怎样分组有平均分(对于不能平均分的数量,让数量多的组多1个,少的组少1个),任意分两种分法。
比较起来只有平均分才能让“平衡”与“不平衡”说明研究对象的情况(任意分时,天平两边数量不等,“平衡”已不可能,“不平衡”也不能判断出问题),所以选择平均分法。
分成多少组有分成2组、3组、4组、5组等多种分法。
因为天平有两个托盘,每称量一次能放上两组研究对象,最多能判断出3组的情况(既能判断出天平上两组的情况,还能判断出天平外一组的情况。
若平衡,次品就在盘外那组中;若不平衡,盘外那组中就无次品),所以只有分成2组或3组才能使天平每称量一次包括研究对象的全部,其他组数达不到这个要求——舍弃。
再比较2组分法、3组分法的优劣:把2组分法、3组分法上次称量判断出的问题组对一般地,用天平称量n次,能判断出研究对象的最多个数Y=3n。
上面研究的都是“最多”数量的情况,不满足“最多”条件的数量情况如何呢比如4、12情况怎样先研究4:因为天平称量1次最多只能判断出3个,所以要再称量1次,一共2次才能有保证。
[平衡2次:(2,1,1)→(1,1)。
数学广角(2) 找次品的最佳方法

其中一瓶少3片。
打开瓶子 数一数
用手掂一掂, 比较轻的就 是少的那一
瓶。
用秤称
像这种比较轻的物品, 我们一般借助天平来 测量它的重量。
在天平的左右两边各放1瓶钙片, 如果平衡说明这两个都不是次品.
在天平的左右两边各放1 瓶钙片,如果不平衡,说 明次品就在翘起来的那边。
2
2
2
2
3
3
3
3
最好是平均分 或者使多的一份与少的一份个数只相差1
找次品的最优策略:
一、把待测物品分成3份; 二、能够平均分成3份就平均分成3份,尽量平均分, 如果不能平均分的,也应该使多的一份与少的一份只相差 1。如9(3,3,3);不能平均分成3份的,要使3份每份 分得尽量平均,如7(2,2,3)。
平均分成 3 份称, 需要称的次数最少。
平均分成 3 份 称的方法最好。
如果零件是 10 个,11 个······应该怎样称?
研究记录表
5
3
6
3
7
3
8
3
9
3
10
3
11
3
最佳分法
3
(2, 2, 1)
2
2
(2, 2, 2) (2, 2, 3)
2
2
2
2
(3, 3, 2) (3, 3, 3) (3, 3, 4) (4, 4, 3)
用天平称,至少称几次就一定能找出次品来?
咱们从 9 个零件 每次拿 2 个称太慢了,能
开始实验吧!
不能分成几份称呢?
把每次称的 过程记录下 来吧。
观察实验记录,你能发现什么?
小结:
如果待测物体总数是三的倍数, 其中有一个是次品,用天平来 称,我们把它平均分成三份, 保证找出次品所用的次数就是 最少的。
找次品问题解题技巧和方法

找次品问题解题技巧和方法
一、建立“次品关怀系统”
1. 建立次品收集、追查系统
首先要建立起一套完善的次品收集、追查系统,以保障次品的有效收集、记录、追查,并使次品责任落到实处。
2. 建立次品分类管理体系
其次,要根据质量规范和次品等级等,建立相应的次品分类管理体系,以确保次品的科学分类和准确判定。
3. 建立次品处理技术管理系统
再者,要建立次品处理技术管理系统,以便有效地解决次品的处理问题,并确保次品的有效处理。
4. 建立次品统计、分析系统
最后,要建立完善的次品统计、分析系统,通过对次品的定量统计、分析,加以完善,以便有效地解决次品问题。
二、牢固树立质量管理思想
1. 质量管理从头到尾
要牢固树立质量管理从头到尾的思想,从质量管理的角度来进行次品分析,以便从根本上解决次品问题。
2. 建立及时有效的质量反馈机制
要建立及时有效的质量反馈机制,通过收集和分析客户的质量反馈,及早发现次品问题,以便及时采取有效行动解决次品问题。
3. 加强管理过程的检查控制
要加强管理过程的检查控制,科学设计各管理节点,做到监控严、检查严、把关严,实行层层把关,以有效解决次品问题。
4. 强化责任追究
最后要强化责任追究,切实落实质量责任,把责任落到实处,并加大对次品责任人的惩戒力度,以致于次品问题的彻底解决。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一般地,用天平称量n次,能判断出研究对象的最多个数Y=3n。
上面研究的都是“最多”数量的情况,不满足“最多”条件的数量情况如何呢比如4、12情况怎样
先研究4:因为天平称量1次最多只能判断出3个,所以要再称量1 次,一共2次才能有保证。
[平衡2次:(2,1,1)→(1,1)。
不平衡1次:(2,1,1)。
]再研究12:天平称量2次最多能判断出9个,所以也要再称1次,一共是3次才能有保证。
[平衡3次:(4,4,4)→(2,1,1)→(1,1)。
不平衡2次:(4,4,4)→(2,1,1)]
一般地,用天平称量法找次品,当研究对象的个数Y满足关系式3n-1<Y≤3n时,最少要称量n次才能保证找出次品。
现在回头解答比尔·盖茨与81个玻璃球的问题。
问题(1)小比尔·盖茨的问题:这儿有81个玻璃球,其中有一个球比其他的球稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢
因为81=34,所以最少要称4次才能保证找出次品。
问题(2)如果不知道次品玻璃球与标准球的轻重,同样只用天平来测量,至少要称多少次才能保证找出次品玻璃球来
先测出次品玻璃球是重了还是轻了:
分组81÷3=27 (27,27,27)
1次——任取两组过天平,有“平衡”与“不平衡”两种情况。
研究“平衡”情况既是“平衡”,就判断出次品在天平外那组中。
2次——任取已过天平一组与天平外那组同称,肯定不平衡。
若原天平外那组重些,就判断出次品比标准球重,否则,次品就是比标准球轻。
研究“不平衡”情况既是“不平衡”,就判断出次品已在天平中,天平外那组是标准球。
2次——取较重的一组与天平外那组同称,有“平衡”、“不平衡”两种可能。
若“平衡”就判断出次品球比标准球轻;若“不平衡”就判断出次品球比标准球重。
综合以上研究得出:最少称2次才能知道次品球在那组中,也才能知道次品球比标准球是重些还是轻些。
此时,次品所在组有球27个。
因为,27=33,所以最少再称3次才能保证找出次品球来。
一共是2+3=5(次)
例:若73个零件,其中有一个比其他的零件稍重,如果只能用天平来测量,至少要称多少次才能保证找出来呢
解:因为33<73≤34,所以最少要称4次才能保证找出次品。
[平衡4次:(25,24,24)(9,8,8)(3,3,3)(1,1,1)。
不平衡4次:(25,24,24)(8,8,8)(3,3,2)(1,1,1)]。