华东理工复变函数与积分变化1-2次作业答案

合集下载

复变函数与积分变量课后习题答4(全).doc

复变函数与积分变量课后习题答4(全).doc

(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。

复变函数与积分变换习题答案

复变函数与积分变换习题答案

第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。

复变函数作业答案

复变函数作业答案

=-251
8.化简
(1 i)n (1 i)n2
解:原式
(1
i)
2
1 1
i i
n
2ie
n 2
i
2i n1
第二次作业
教学内容:1.2 平面点集的一般概念 1.3 复变函数
1. 填空题
(1)连接点1 i 与 1 4i 的直线断的参数方程为 z 1 i (2 5i)t 0 t 1
(2) 以 原 点 为 中 心 , 焦 点 在 实 轴 上 , 长 轴 为 a , 短 轴 为 b 的 椭 圆 的 参 数 方 程 为 z a cos t ib sin t 0 t 2
华东理工大学
复 变 函 数 与 积 分 变 换 作 业 (第 1 册)
班级____________学号_____________姓名_____________任课教师_____________
第一次作业
教学内容:1.1 复数及其运算
1.2 平面点集的一般概念
1.填空题:
(1)
3 2
,
5 2
,
3 2
5 2
(2)1 cos i sin (0 )
解:1 cos i sin
2 sin
2
[cos(2
2
)
i sin(2
2
)]
2 sin
2
ei(
2
2
)
1
(3)
(cos 5 (cos 3
i sin 5)2 i sin 3)3
.
解:
(cos (cos
5 3
i i
sin sin
5 3
arg( z
2i)
2

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

积分变换习题解答1-2

积分变换习题解答1-2

1-21.求矩形脉冲函数,0()0,A t f t τ⎧≤≤⎪=⎨⎪⎩其他的Fourier 变换.解:[]()j j j j 01e e()()()e d e d 0j j t t t t A F f t f t t A t A τωωωωτωωω-----+∞⎡⎤=====⎢⎥-∞-⎣⎦⎰⎰F 2.设()F ω是函数()f t 的Fourier 变换,证明()F ω与()f t 有相同的奇偶性.证明:()F ω与()f t 是一个Fourier 变换对,即 ()()j e d t F f t t ωω-+∞=-∞⎰,()()j 1e d 2πt f t F ωωω+∞=-∞⎰ 如果()F ω为奇函数,即()()F F ωω-=-,则()()()()()()j j 11e d e d 2π2πt tf t F F ωωωωωω--+∞+∞-==---∞-∞⎰⎰ (令u ω-=)()j 1e d 2πut F u u -∞=+∞⎰(换积分变量u 为ω)()()j 1e d 2πtF f t ωωω+∞=-=--∞⎰ 所以()f t 亦为奇函数.如果()f t 为奇函数,即()()f t f t -=-,则()()()()()j j e d e d t t F f t t f t t ωωω----+∞+∞-==---∞-∞⎰⎰ (令t u -=)()j e d u f u u ω--∞=+∞⎰(换积分变量u 为t )()()j e d t f t t F ωω-+∞=-=--∞⎰所以()F ω亦为奇函数.同理可证()f t 与()F ω同为偶函数.4.求函数()()e 0t f t t -=≥的Fourier 正弦变换,并推证()20012sin πd e αωαωωαω+∞-=>+⎰解:由Fourier 正弦变换公式,有()()s s F f t ω⎡⎤=⎣⎦F ()0sin f t t t ω+∞=⎰d 0sin tt t ω+∞-=⎰e d ()2sin cos 10t t t ωωωω---+∞=+e 21ωω=+ 由Fourier 正弦逆变换公式,有()120022sin ()()sin 1s s s t f t F F t ωωωωωωωω+∞+∞-===⎡⎤⎣⎦+⎰⎰F d d ππ 由此,当0t α=>时,可得()()2sin ππd e 0122f αωαωωααω+∞-==>+⎰5.设()()f t F ω⎡⎤=⎣⎦F ,试证明:1)()f t 为实值函数的充要条件是()()F F ωω-=; 2)()f t 为虚值函数的充要条件是()()F F ωω-=-.证明: 在一般情况下,记()()()r i f t f t f t =+j 其中()r f t 和()i f t 均为t 的实值函数,且分别为()f t 的实部与虚部. 因此()()()()[]j e d j cos jsin d t r i F f t t f t f t t t t ωωωω-+∞+∞⎡⎤==+-⎣⎦-∞-∞⎰⎰ ()()()()cos sin d j sin cos d ri r i f t t f t t t f t t f t t t ωωωω+∞+∞⎡⎤⎡⎤=+--⎣⎦⎣⎦-∞-∞⎰⎰ ()()Re Im F j F ωω⎡⎤⎡⎤=+⎣⎦⎣⎦其中()()()Re cos sin d r i F f t t f t t t ωωω+∞⎡⎤⎡⎤=+⎣⎦⎣⎦-∞⎰, ()a ()()()Im sin cos d ri F f t t f t t t ωωω+∞⎡⎤⎡⎤=--⎣⎦⎣⎦-∞⎰()b 1)若()f t 为t 的实值函数,即()()(),0r i f t t f f t ==.此时,()a 式和()b 式分别为()()Re cos d rF f t t t ωω+∞⎡⎤=⎣⎦-∞⎰()()Im sin d rF f t t t ωω+∞⎡⎤=-⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()()Re jIm F F F ωωω⎡⎤⎡⎤=-=⎣⎦⎣⎦反之,若已知()()F F ωω-=,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的偶函数;()F ω的虚部是关于ω的奇函数.因此,必定有()()()cos d j sin d r rF f t t t f t t t ωωω+∞+∞=--∞-∞⎰⎰ 亦即表明()()r f t f t =为t 的实值函数.从而结论1)获证.2)若()f t 为t 的虚值函数,即()()()j ,0i r f t f f t t ==.此时,()a 式和()b 式分别为()()Re sin d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰ ()()Im cos d i F f t t t ωω+∞⎡⎤=⎣⎦-∞⎰所以()()()Re jIm F F F ωωω⎡⎤⎡⎤-=-+-⎣⎦⎣⎦()()Re jIm F F ωω⎡⎤⎡⎤=-+⎣⎦⎣⎦()(){}Re jIm F F ωω⎡⎤⎡⎤=--⎣⎦⎣⎦()F ω=-反之,若已知()()F F ωω-=-,则有()()()()Re jIm Re jIm F F F F ωωωω⎡⎤⎡⎤⎡⎤⎡⎤-+-=-+⎣⎦⎣⎦⎣⎦⎣⎦此即表明()F ω的实部是关于ω的奇函数;()F ω的虚部是关于ω的偶函数.因此,必定有()()()sin d j cos d i iF f t t t f t t t ωωω+∞+∞==+-∞-∞⎰⎰, 亦即表明()()j i f t f t =为t 的虚值函数.从而结论2)获证.6.已知某函数的Fourier 变换sin ()F ωωω=,求该函数()f t .解:sin ()F ωωω=为连续的偶函数,由公式有()()j π1sin e d cos d 2π0tf t F t ωωωωωωω+∞+∞==-∞⎰⎰ ()()sin 1sin 111d d 2π02π0t t ωωωωωω+∞++∞-=+⎰⎰ 但由于当0a >时sin sin sin πd d()d 0002a a t a t t ωωωωωω+∞+∞+∞===⎰⎰⎰ 当0a <时sin sin()πd d 002a a ωωωωωω+∞+∞-=-=-⎰⎰当0a =时,sin d 0,0a ωωω+∞=⎰所以得 ()11211401t f t t t ⎧<⎪⎪⎪==⎨⎪⎪>⎪⎩,,,7.已知某函数的Fourier 变换为()()()00πδδF ωωωωω⎡⎤=++-⎣⎦,求该函数()f t .解:由函数()()()00δd t t g t t g t -=,易知()()()()j j j 001e d 2π11πδe d πδe d 2π2πt t t f t F ωωωωωωωωωωω+∞=-∞+∞+∞=++--∞-∞⎰⎰⎰j j 00011e e cos 22t t t ωωωωωωω=-==+=8.求符号函数(又称正负号函数)()1,0sgn 1,0t t t -<⎧=⎨>⎩的Fourier变换.解:容易看出()()()sgn t u t u t =--,而1[()]()πδ().j u t F ωωω=-+F 9.求函数()()()1δδδδ222aa t a t a t f t t ⎡⎤⎛⎫⎛⎫=++-+++- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的Fourier 变换.解 :()()()()j 1δδδδe d 222ta a F f t t a t a t t ωωω+∞--∞⎡⎤⎛⎫⎛⎫⎡⎤==++-+++- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎣⎦⎰F j j j j 1e e e e 222t t t t a a t a t a t t ωωωω----⎡⎤⎢⎥=+++⎢⎥=-==-=⎢⎥⎣⎦cos cos 2aa ωω=+.10 .求函数()cos sin t f t t =的Fourier 变换. 解: 已知()()000sin j πδδt ωωωωω⎡⎤=+--⎡⎤⎣⎦⎣⎦F由()1cos sin sin 22f t t t t ==有()()()πjδ2δ22f t ωω⎡⎤⎡⎤=+--⎣⎦⎣⎦F 11.求函数()3sin f t t =的Fourier 变换.解:已知()0j 0e 2πδtωωω⎡⎤=-⎣⎦F ,由()()3j j 33j j -j 3j e e j sin e 3e 3e e 2j 8t t t t t t f t t --⎛⎫-===-+- ⎪⎝⎭即得()()()()()πjδ33δ13δ1δ34f t ωωωω⎡⎤⎡⎤=---++-+⎣⎦⎣⎦F12.求函数()πsin 53t t f ⎛⎫=+ ⎪⎝⎭的Fourier 变换.解: 由于()π1sin 5sin5cos5322f t t t t ⎛⎫=+=+ ⎪⎝⎭故()()()()()πjδ5δ55δ52f t ωωωω⎤⎡⎤⎡⎤=+--+++-⎥⎣⎦⎣⎦⎣⎦F . 14.证明:若()()j e t F ϕω⎡⎤=⎣⎦F ,其中()t ϕ为一实数,则()()()1cos 2t F F ϕωω⎡⎤⎡⎤=+-⎣⎦⎣⎦F ()()()1sin 2j t F F ϕωω⎡⎤⎡⎤=--⎣⎦⎣⎦F 其中()F ω-为()F ω的共轭函数.证明:因为 ()()j j e e d t t F t ϕωω+∞--∞=⋅⎰()()()j j j j ee d ee d t t tt F t t ϕϕωωω+∞+∞---∞-∞-==⋅⎰⎰()()()()()()j j j j 1e ee d cos e d cos 22t t t t F F t t t t ϕϕωωωωϕϕ-+∞+∞---∞-∞+⎡⎤⎡⎤+-===⎣⎦⎣⎦⎰⎰F 同理可证另一等式.17.求作如图的锯齿形波的频谱图.(图形见教科书).解 :02π,T ω=()1,00,ht t Tf t T ⎧≤≤⎪=⎨⎪⎩其他()00111d d 2TTh C f t t ht t TTT ===⎰⎰()()000j j j 02011e d e d e d TTTn t n t n t n ht h C F n f t t t t t TTT Tωωωω---===⋅=⎰⎰⎰00j j 211j e e d j j 2πTn t n t Thht T n n n ωωωω--⎡⎤=⋅+=⎢⎥-⎣⎦⎰()()()()()000j j 2πδ2πδπδδ.22πn n n n h h hF n h n n nωωωωωωω+∞+∞=-∞=-∞≠≠=+⋅-=+⋅-∑∑。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

华东理工复变函数与积分变化1-2次作业答案

华东理工复变函数与积分变化1-2次作业答案

华东理工大学复变函数与积分变换作业(第1册)班级____________学号_____________姓名_____________任课教师_____________第一次作业教学内容:复数及其运算 平面点集的一般概念1.填空题:(1)35arctan 2,234,2523,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i(3))31(21i +- (4) 13,1=-=y x 。

2.将下列复数化成三角表示式和指数表示式。

(1)31i +; 解:32)3sin 3(cos 2)2321(231πππi e i i i =+=+=+ (2))0(sin cos 1πϕϕϕ≤≤+-i 解:)22(2sin 2)]22sin()22[cos(2sin 2sin cos 1ϕπϕϕπϕπϕϕϕ-=-+-=+-i e i i(3)32)3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φφφφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e ee e e i i ===-+-- φε19sin 19cos i +3.求复数11+-z z 的实部与虚部 解:2|1|)1)(1()1)(1()1)(1(11++-=+++-=+-=z z z z z z z z z w 222|1|Im 2|1|1|1|)1(+++-=+--+=z z i z z z z z z z z 所以,2|1|1Re +-=z z z w ,2|1|Im 2Im +=z z w 4. 求方程083=+z 的所有的根. 解:.2,1,0,2)8()21(331==-=+k e z k i π即原方程有如下三个解:31,2,31i i --+5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三角形是正三角形. 证明:记a z =||1,则232232223221)(2z z z z z z z --+=+= 得22323||a z z =-221|)||(|z z -=,同样,22212123||a z z z z =-=- 所以.||||212321z z z z z z -=-=-6. 设2,1z z 是两个复数,试证明. 212z z ++221z z -22122()z z =+. 并说明此等式的几何意义.证明: 左式=(21z z +)(21z z +)+(21z z +)(21z z -)=(21z z +)(21z z +)+(21z z +)(21z z -) =2121221121212211z z z z z z z z z z z z z z z z ⋅-⋅-⋅+⋅+⋅+⋅+⋅+⋅ =2(2221z z z z ⋅+⋅)=2(2221z z +)7.求下列各式的值: (1)5)3(i -; 解:5)3(i -=6556532)2()223(2ππi i e e i --==⎥⎦⎤⎢⎣⎡- =i i 16316)65sin()65cos(32--=⎥⎦⎤⎢⎣⎡-+-ππ (2)31)1(i -;解: 31)1(i -.2,1,0,2)2()221(23)24(631431===⎥⎦⎤⎢⎣⎡-=+--k e e i k i i πππ 可知31)1(i -的3个值分别是)12sin 12(cos 22626πππi e i -=-;)127sin 127(cos 226276πππi e i += )45sin 45(cos226456πππi e i += (3)求61-解:61-=.5,4,3,2,1,0,)(6/)21(612-=++k e e k i k i πππ可知61-的6个值分别是 223,1,2236526i ei e i e i i i +-==+=πππ223,,2234112367i e i e i ei i i -=-=--=πππ (4) ()()()()1001001001005050511+i +1-i =cos +isin +cos -isin 4444 =2cos 25+isin 25+2cos 25-isin 25 =-2ππππππππ⎤⎤⎫⎫⎪⎪⎥⎥⎭⎭⎦⎦8.化简2)1()1(--+n ni i 解:原式1222211)1(+-=-=⎪⎭⎫ ⎝⎛-+-=n i n n i ie i i i π第二次作业教学内容: 平面点集的一般概念 复变函数1. 填空题(1)连接点i +1与i 41--的直线断的参数方程为10)52(1≤≤--++=t t i i z(2)以原点为中心,焦点在实轴上,长轴为a ,短轴为b 的椭圆的参数方程为π20sin cos ≤≤+=t t ib t a z2.指出下列各题中点z 的轨迹,并作图. (1)12≥-i z ;中心在i 2-半径为1的圆周及其外部。

华东理工复变函数与积分变化3-4次作业答案

华东理工复变函数与积分变化3-4次作业答案

华东理工大学复变函数与积分变换作业(第2册)班级____________学号_____________姓名_____________任课教师_____________第三次作业教学内容:2.1.2柯西—黎曼方程1.填空:(1) 函数z z z f Re )(=的导数=')(z f ⎩⎨⎧≠=时不存在,时000z z (2) 函数n z z f =)(的导数=')(z f 1-n nz(3)函数223(1)(1)z z z -++的奇点为i ±-,1 2.下列函数何处可导?何处解析?(1)yi x f -=2)z (;(2)i y x z f 3332)(+=;(3)z z z f 2)(=解:(1)yi x f -=2)z (,则2u=x v=-y ,, u v u v =2x =-1=0=0x y y x ∂∂∂∂∂∂∂∂,,,,令u v =x y∂∂∂∂得,1x=-2 即:在直线1x=-2上可导,复平面内处处不解析。

(2)i y x z f 3332)(+=,则3u=2x v=y ,3,22u v u v =6x =9y =0=0x y y x ∂∂∂∂∂∂∂∂,,,,令u v =x y∂∂∂∂上可导,在复平面内处处不解析。

(3)z z z f 2)(=,()()()3223f z =x xy x y+y ++i ,则3223u=x xy v=x y+y +,, 222u v u v =3x +y =x +3y =2xy =2xy x y y x ∂∂∂∂∂∂∂∂2,,,,令u v =x y ∂∂∂∂,u v =-y x∂∂∂∂得,0==y x ,函数仅在0=z 点可导,在复平面内处处不解析。

3.验证函数()f z =sin xcosh y+icosxsinh y 在复平面上解析,并求其导数。

解:u=sin x cosh y v=cos xsinh y ,,u v u v =cos x cosh y =cos x cosh y =sin xsinhy =-sin xsinhy x y y x∂∂∂∂∂∂∂∂,,,, 即:u v =x y ∂∂∂∂,u v =-y x∂∂∂∂,所以函数在复平面上解析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东理工大学
复变函数与积分变换作业(第1册)
班级____________学号_____________姓名_____________任课教师_____________
第一次作业
教学内容:1.1复数及其运算 1.2平面点集的一般概念
1.填空题:
(1)
3
5arctan 2,234,25
23,25,23-+-πk i (2)3arctan 2,10,31,3,1-+-πk i
(3))31(2
1
i +-
(4) 13,1=-=y x 。

2.将下列复数化成三角表示式和指数表示式。

(1)31i +;
解:32)3
sin 3(cos 2)2321(231π
π
πi e i i
i =+=+=+ (2))0(sin cos 1πϕϕϕ≤≤+-i 解:)
22(2
sin
2)]22sin()22[cos(2sin 2sin cos 1ϕ
πϕ
ϕπϕπϕϕ
ϕ-=-+-=+-i e i i
(3)3
2)
3sin 3(cos )5sin 5(cos φφφφi i -+. 解:φ
φ
φφφφφφφ199********)/()()3sin 3(cos )5sin 5(cos i i i i i e e
e e e i i ===-+-- φε19sin 19cos i +
3.求复数
1
1
+-z z 的实部与虚部 解:2
|
1|)
1)(1()1)(1()1)(1(11++-=+++-=+-=
z z z z z z z z z w 2
22|
1|Im 2|1|1|1|)1(+++-=+--+=
z z
i z z z z z z z z 所以,2|1|1Re +-=
z z z w ,2
|1|Im 2Im +=z z
w
4. 求方程083
=+z 的所有的根. 解:.2,1,0,2)8()21(3
3
1
==-=+k e
z k i π
即原方程有如下三个解:
31,2,31i i --+
5. 若 321z z z ==且0321=++z z z ,证明:以321,,z z z 为顶点的三角形是正三角形. 证明:记a z =||1,则2
3223222
3
22
1
)(2z z z z z z z --+=+=
得2232
3||a z z =-221|)||(|z z -=,同样,
22
212123||a z z z z =-=-
所以.||||212321
z z z z z z -=-=-
6. 设2,1z z 是两个复数,试证明.
2
12z z ++2
21z z -22
122()z z =+.
并说明此等式的几何意义.
证明: 左式=(21
z z +)(21z z +)+(21z z +)(2
1z z -)
=(21z z +)(21z z +)+(21z z +)(2
1z z -)
=2121221121212211
z z z z z z z z z z z z z z z z ⋅-⋅-⋅+⋅+⋅+⋅+⋅+⋅
=2(2
221z z z z ⋅+⋅)=2(
2
2
21z z +)
7.求下列各式的值:
(1)5
)3(i -;
解:5
)3(i -=6556
5
32)2()223(
2ππ
i i e e i --==⎥⎦
⎤⎢⎣⎡- =i i 16316)65sin()65cos(32--=⎥⎦

⎢⎣
⎡-+-
ππ (2)3
1)1(i -; 解: 3
1
)1(i -.2,1,0,2)2()22
1(
23
)24
(
63
14
3
1===⎥⎦

⎢⎣
⎡-
=+--k e
e i k i i ππ
π
可知3
1)1(i -的3个值分别是
)12
sin
12
(cos
2262
6
π
π
πi e
i -=-;
)127sin 127(cos
2262
76
πππi e
i += )4
5sin 45(cos
2264
56
πππ
i e
i += (3)求61- 解:6
1-=.5,4,3,2,1,0,)(6
/)21(6
12-=++k e e
k i k i ππ
π可知61-的6个值分别是
2
23,1,2
236
526
i ei e i e
i i i +-
==+=πππ
2
23,,2
234
112
36
7i e
i e
i e
i i i -=
-=--=πππ (4)
()(
)()()100
100
100100
505051
1+i +1-i =cos +isin +cos -isin 4444 =2cos 25+isin 25+2cos 25-isin 25 =-2ππππππππ⎤⎤⎫⎫⎪⎪⎥⎥⎭⎭⎦⎦
8.化简2
)
1()1(--+n n
i i 解:原式12
2
2211)1(+-=-=⎪

⎫ ⎝⎛-+-=n i n n
i ie i i i π
第二次作业
教学内容:1.2 平面点集的一般概念 1.3复变函数
1. 填空题
(1)连接点i +1与i 41--的直线断的参数方程为10)52(1≤≤--++=t t
i i z
(2)以原点为中心,焦点在实轴上,长轴为a ,短轴为b 的椭圆的参数方程为
π20sin cos ≤≤+=t t ib t a z
2.指出下列各题中点z 的轨迹,并作图. (1)12≥-i z ;
中心在i 2-半径为1的圆周及其外部。

(2)1)2Re(-=+z . 直线3-=x (3)413=+++z z
以-3与-1为焦点,长轴为4的椭圆 (4)4
)arg(π
=
-i z
以i 为起点的射线1+=x y
(5) 12
3
≥--z z
直线2
5
=
x 及其右半平面 3.指出下列不等式所确定的区域或闭区域,并指出是有界区域还是无界区域,多连通还是单连通的。

(1)
11<--z
a a
z ;
解:z a a z -<-12
)1)(1())((z a z a a z a z --<--
0)1)(1(2
2<--a z
1<a 时,表示单位圆的内部,有界单连通域。

1>a 时,表示单位圆的外部,无界单连通域,1=a 不表示任何区域。

(2)4)2()2(≤--+-z i z i z z
圆9)1()2(2
2=++-y x 及其内部区域,有界,单连通区域。

(3)141+<-z z 中心在1517-=z ,半径为15
8
的圆外部区域,无界,多连通 (4)
2
)2arg(6
π
π
<
+<i z 且.2>z
解:i y x i z )2(2++=+x y 2tan +=
⇒θx
y i z 2
arctan
)2arg(+=+⇒ ⎪⎪⎪


⎪⎪⎨⎧
<-+<<<<++<><<+<>⇒2
2arctan 6,0,02
2arctan 6,0,02
2arctan 6,0ππππ
ππππx y y x x y y x x y x 332>+⇒x y 且有422222>+⇒>+=y x y x z 以i 2-为顶点,两边分别与正实轴成角度
6π与2
π的角形域内部,且以原点为圆心,半径为2的圆外部分,无界单连通区域。

4.设 t 是实参数,指出下列曲线表示什么图形
(1)t
i t z +=;
;1,1
=⎪⎩
⎪⎨⎧==⇔+=+=xy t y t x t i t iy x z 即为双曲线
(2)it
it
be
ae z -+=。

1)
()(2
2
22=-++b a y b a x ,为椭圆。

5.已知函 数z
w 1
=
,求以下曲线的像曲线. (1)42
2
=+y x ; 解:,,,112
2222222y x y v y x x u y x y i y x x iy x z w +-=+=+-+=+==
41
1)(2
2222222
2
=+=++=+y
x y x y x v u ,是w 平面上一圆周。

(2)1=x ; 解:由,1=x 知,1,112
2y y v y u +-=+=
从而
u y v u =+=+22211 此为2
2
2
)2
1()2
1
(=+-v u ,是平面上一圆周。

(3)x y =;
x i i x w 21)1(1-=+=
,则,x
v x u 21
,21-==,像曲线为v u -=。

相关文档
最新文档